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Resumen: Tradicionalmente, modelos computacionales de morfoloǵıa y fonoloǵıa
han venido asumiendo, como punto de partida, un modelo morfotáctico donde los
morfemas se extraen de subléxicos y se van concatenando de izquierda a derecha. El
modelo de ‘clase de continuación’ se ha venido utilizando como el sistema estándar
de facto en la creación de diferentes cajas de herramientas de software. Tras estudiar
lenguas de tipoloǵıa diversa, proponemos aqúı un modelo de rasgos ampliado. Nues-
tro modelo consta de varias operaciones diseñadas con el fin de que un buen número
de restrictiones de co-ocurrencia local y global puedan ser descritas de manera con-
cisa. Aparte también sugerimos ciertas formas de implementar estos operadores en
modelos de morfoloǵıa basados en transductores de estado finito. Palabras clave:
morfoloǵıa computacional; morfotáctica, unificación de rasgos.
Palabras clave: morfoloǵıa computacional, morfotáctica, unificación de rasgos.

Abstract: Computational models of morphology and phonology have traditiona-
lly assumed as a starting point a morphotactic model where morpehemes are drawn
from sublexicons and concatenated left-to-right. In defining the lexicon-morphotactic
level of a system, this ‘continuation-class’ model has been the de facto standard im-
plementation in various software toolkits. From surveying of a number of typologi-
cally different languages, we propose a more comprehensive feature-driven model of
morphotactics that provides the linguist with various operations that are designed
to concisely define a variety of local and global co-occurrence restrictions. We also
sketch ways to implement these operators in finite-state-transducer-based models of
morphology.
Keywords: computational morphology, morphotactics, feature unification.

1. Introduction

Morphotactics—how morphemes combine
together to make for well-formed words in
languages—can, and is, often treated as an
isolated problem in computational morpholo-
gical analysis and generation. This has been
particularly true of two-level and finite-state
morphological models, where grammars des-
cribe a mapping from an abstract morpho-
tactic level to a surface level. In such models,
the topmost level is often described not only
as a mapping to some lower level of represen-
tation, but is also separately constrained to
reflect only legal combinations of morphemes
in a language.

Insofar as morphotactics is seen to be a
problem of expressing combinatorial cons-
traints, it would be desirable to develop a
formalism that would allow for simple des-

criptions of such constraints on combinations
of morphemes as frequently occur in various
natural languages. Such models have indeed
been proposed. By far the most popular mo-
del in computational morphology has been
the ‘continuation class’ model (Koskenniemi,
1983; Beesley and Karttunen, 2003) and va-
riants thereof. The underlying assumption—
and the reason for its popularity—is that
a majority of languages exhibit the kind of
morphotactics that is easily expressed th-
rough such systems: left-to-right concatenati-
vemodels where the allowability of amorphe-
me is primarily conditioned by the preceding
morpheme. This assumption does not always
hold, however, which has led to many propo-
sals and implementations that augment this
model with extensions that provide for ex-
pressive power to include some phenomenon
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otherwise not capturable.

While a variety of such extensions to
the continuation-class model have been
proposed—some quite comprehensive—we
depart entirely from the continuation-class
model in this proposal, and instead propose a
formalism that is based on declarative cons-
traints over both the order and co-occurrence
of individual morphemes.1 This approach to
restricting morphotactics takes advantage
of a fairly restricted set of operations on
feature-value combinations in morphemes.
The formalism allows us express a variety
of non-concatenative phenomena—complex
co-occurrence patterns, free morpheme
ordering, circumfixation, among others—
concisely with a small number of statements.

2. Nonconcatenative phenomena

In the following, we give a few examples
of nonconcatenative morphotactic phenome-
na that are difficult to capture with only a
continuation-class model of morphotactics in
order to motivate particular features of the
notation we propose.2

2.1. Slot-and-filler morphotactics

The so-called slot-and-filler morphologies
(also called templatic morphologies) tend to
differ from concatenative processes or left-to-
right agglutinative morphologies in that they
feature abundant, often long-distance, res-
trictions on the co-occurrence of morphemes.
An example of this type of language is Nava-
jo (and other Athabaskan languages) where
a strict template guides the order of morp-
hemes. Some templatic slots may be empty,
while others are obligatorily filled:

1The Xerox xfst/lexc (Beesley and Karttunen,
2003) toolkit is a particularly versatile toolkit that
offers a variety of notational devices to capture the
same phenomena we document here.

2We exclude two common patterns from this dis-
cussion: that of templatic root-and-pattern morpho-
logy (as seen in Arabic), as well as reduplication phe-
nomena. These have been extensively treated in the li-
terature and the most efficient solutions seem to treat
these more as phonological phenomena not specified
in themost abstract level of morphotactic description.

1 2 3 4 5 6 7 8
O P Obj. In Fut S Cl Stem
ha da j ∅ ∅ ı́́ı ∅ geed

Pl. 4p 4p Imp.
‘out’ ‘dig’

hadaj́ı́ıgeed

‘Those guys dug them up’

In the above example, we have a template
consisting of eight slots, where certain classes
of morphemes are allowed to appear—slot 1
for ‘outer’ lexical prefixes, slot 2 for marking
distributive plurals, etc.3

What is noteworthy is the complex co-
occurrence constraints that govern the legal
formation of Navajo verbs. To give a few
examples with respect to the above templatic
derivation: 1) the ‘outer’ prefix ha is allowed
with stems that conjugate according to a cer-
tain pattern (the so-called yi-perfective), whi-
ch geed fulfils; 2) the allomorph of the 4th
person subject pronoun ı́́ı is selected on the
basis of what slots 1 and 2 contain; 3) the
4th person subject pronoun is discontinous in
that a j must also appear in slot 3—without
this, the ı́́ı in slot 6 signals 3rd person; 4) the
‘classifier’ in slot 7 has four possibilities whi-
ch together with the stem mode and prefixes
in slots 1 and 2 determine what the subject
allomorph can be.

Navajo is an extreme example of long-
distance systematic patterns of co-occurrence
restrictions. Some languages, such as the
American Indian language Koasati, which
features around 30 slots for its verbs, allow
almost any co-occurrence pattern (Kimball,
1991). Nevertheless, a consise formalism for
defining morphotactics needs to include the
possibility of capturing easily the type of pat-
terns Navajo and other similar languages ha-
ve.

2.2. Free morpheme ordering

Although less documented among the
world’s major languages, there also exists
languages where certain classes of morphe-
mes can appear in free relative order without
affecting the semantics of a word. Recent
examples of this include Aymara, an Ame-
rican Indian language spoken in the Andean

3This simplified model follows Faltz (1998); the
majority of analyses for Navajo assume 16 slots or
more. See Young (2000) for details.

Mans Hulden y Shannon Bischoff

22



region,4 and Chintang, a Tibeto-Burman lan-
guage, from which the following example is
drawn:

(1) u-kha-ma-cop-yokt-e
3nsA-1nsP-NEG-see-NEG-PST

(2) u-ma-kha-cop-yokt-e
(3) kha-u-ma-cop-yokt-e
(4) ma-u-kha-cop-yokt-e
(5) kha-ma-u-cop-yokt-e
(6) ma-kha-u-cop-yokt-e

‘They didn’t see us’

(from Bickel et al. (2007))

Here, examples (1) through (6) are inter-
changeable and equally grammatical.

A concatenative model where order must
be declared would require extra machinery to
capture this phenomenon.5 As will be seen
below, we will want to capture this pheno-
menon by simply leaving certain order cons-
traints undeclared, from which the free order
falls out naturally.

3. Constraining morphotactics

Given these phenomena, we now propo-
se a simple formalism to capture morphotac-
tics. First, we assume the existence of labe-
led sublexicons containing various morphe-
mes in a given class. Also, we assume that ea-
ch morpheme can be associated with feature-
value combinations:

Class1 . . . Classn

Morpheme1 . . . Morpheme1
{Subclass} . . . {Subclass}
OP Feat Value . . . OP Feat Value
...

...
...

Morphemei . . . Morphemej

OP Feat Value . . . OP Feat Value
That is, we assume that a complete lexicon

is a collection of sublexicons (or classes) that
contain morphemes. These morphemes may
carry any number of feature-value pairs, to
which an operator is associated, and may be
a member of a subclass as well.

4See Hardman (2001) for examples of the free
morpheme ordering in Aymara. Thanks to Ken Bees-
ley and Mike Maxwell for pointing out these resources
and the phenomenon.

5Beesley and Karttunen (2003) hint at a solution
that first declares a strict order with contination clas-
ses and subsequently ‘shuffle’ the morphemes freely
with a regular expression operator that is composed
after the output of the strictly ordered morphotactic
level.

3.1. Order

In a fashion similar to that of the
continuation-class model, we propose that
morphemes are drawn out of this finite num-
ber of sublexicons (classes) one at a time.
However, instead of each sublexicon consis-
ting of a statement guiding the choice of the
next sublexicon, the order is to be governed
by a number of statements over the sublexi-
cons using two operators: > and ≫.

The operator C1 > C2 defines the patterns
(languages) where each morpheme drawn out
of the sublexicon named C1 must immedia-
tely precede each morpheme drawn out of C2.
Likewise C1 ≫ C2 illustrates the constraint
that morphemes drawn from C1 must prece-
de (not necessarily immediately) those from
C2. For the sake of completeness, we can also
assume the existence of the reverse variants
< and ≪.

In a templatic morphology, order cons-
traints could simply be a single transitive
statement C1 ≫ . . . ≫ Cn, and the majo-
rity of the grammar would consist of feature-
based constraints regarding the possible co-

occurrence of morphemes.
Likewise, the examples of free morpheme

order are now easy to capture: let us suppo-
se that there exists a number of prefixes that
have free internal order (such as in the Chin-
tang example above), C1 to Cn, followed by
a number of morphemes with strict internal
ordering, Cx . . . Cy. This could now be cap-
tured by the statements:

C1 ≪ Cx

. . .

Cn ≪ Cx

Cx ≪ . . . ≪ Cy

When modeled in this fashion there need not
be any separate statements saying that C1

to Cn occur in free internal order—rather,
this falls out of simply not specifying an order
constraint for those morpheme classes, other
than that they must occur before Cx.

3.2. Co-occurrence

For defining the possible co-occurrence of
morphemes, we take advantage of the basic
idea of features and feature unification. We
do not assume elaborate feature structures to
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exist, rather we take unification to be an ope-
rator associated with features in the morp-
heme lexicon, such that conflicting feature-
value pairs may not exist in the same word.

As mentioned, every morpheme in every
sublexicon can carry OP [Feature Value]
combinations, where OP is one of ⊔, +, or
−.

3.2.1. Unification

The ‘unification’ operator ⊔ has the fo-
llowing semantics: a morpheme associated
with ⊔[FX] disallows the presence of any ot-
her morpheme in the same word carrying a
feature F and a value other than X.

3.2.2. Coercion

The operator + control for co-ocurrence
as follows: an +[FX] combination associated
with amorpheme requires that there be anot-
her [FX] combination in the word somewhere
else for the word to be legal.

3.2.3. Exclusion

Similarly, −[FV ] requires that any [FV ]
combination be absent from the word in ques-
tion.

For the sake of transparency, it is assumed
that a +[FV ] statement can be satisfied by
⊔[FV ].

3.3. Examples

With these tools of defining morphotac-
tics, we can now outline an example from
English derivational morphology using order
constraints and the feature-related operators.

3.3.1. Order constraints

A well-known generalization of English is
that derivational suffixes often change parts
of speech, and so must attach to the proper
part of speech that the preceding morpheme
‘produces.’ Also, prefixes and suffixes are seen
to fall into two strata: an inner stratum of
(mostly) latinate affixes (such as ic and ity,
which attach closest to the stem, and an outer
stratum of (mostly native) affixes (such as
ness and less) (Mohanan, 1986). Assuming
the stem atom, and a vocabulary of suffixes
ic, ity, ness and less, we should be able to
form atom, atomic, atomicity, atomnessless,
among others, but not ∗atomity, ∗atomlessity.

Class {Stems}
atom {toN}

Class {LatinateSuffix}

ic {fromN}

{toA}

ity {fromA}

{toN}

Class {NativeSuffix}

ness {fromN}
{toN}

less {fromN}

{toA}

Constraints

LatinateSuffix >> Stems

NativeSuffix >> LatinateSuffix | Stems

{fromN} > {toN}
{fromA} > {toA}

In the above notation (reflecting an actual
implementation) ic belongs to the head class
LatinateSuffix but also to fromN and toA,
reflecting that the suffix is latinate and chan-
ges a noun into an adjective. The relevant
constraints are that latinate suffixes must
follow stems, and that nonlatinate suffixes
must both follow stems and latinate suffi-
xes. The above snippet suffices to capture
the general order constraints with respect to
the strata-based derivational view mentioned
previously.

3.3.2. Feature constraints:

circumfixes

Circumfixes are a classical simple case of
co-occurrence that can be captured using the
feature constraints. To continue with English,
an example of a circumfix is the combination
em+adjective+en, as in embolden. However,
the suffix en can occur on its own, as in red-

den, while the prefix em cannot.6 This can
be modelled as follows:

Class {LatinatePrefix}

em

+[Circ emen]

Class {Stems}

bold {toA}

Class {NativeSuffix}

6The prefix em is actually modeled to be underl-
yingly en where the nasal assimilates in place to the
following consonant.
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en {fromA}
{toV}

U[Circ emen]

Here, the prefix em, carries +[Circ emen], re-
quiring the presence of a feature-value pair
[Circ emen] somewhere else in the deriva-
tion. This can be satisfied by the suffix en.
However, this suffix can also surface on its
own since it does not carry the coercion +
operator on the feature-value pair, but only
the unification operator. The interplay be-
tween these two operators yields the desired
morphotactics.

4. Implementation

While we wish to remain somewhat ag-
nostic as to the preferred computational mo-
dels of morphological analysis and parsing,
we shall here outline a possible implementa-
tion of the proposed formalism in terms of
finite-state automata/transducers, since the-
se are a popular mode of building morpholo-
gical analyzers and generators.7

We assume the standard regular expres-
sion notations where Σ denotes the alphabet,
L1∪L2 is the union of two languages, L is the
complement of language L, # is an auxiliary
boundary marker denoting a left or right ed-
ge of a string. Also, in our notation, symbol
and language concatenation is implied whe-
never two symbols are placed adjacent to ea-
ch other. Following this, our earlier notation
+[FV ] denotes the language that consists of
one string with five elements concatenated
(we assume F and V to represent features
and values, respectively, and +, −, [, ], {, },
and ⊔ to be single symbols).

4.1. Context restriction

As an auxiliary notation, we shall assume
the presence of a regular expressions context-
restriction operator (⇒) in the compilation
of automata and transducers as this allevia-
tes the task of defining many morphotactic
restrictions. We take:

X ⇒ Y1 Z1, . . . , Yn Zn

7A parser for Navajo verbal morphology has been
built this way: converting the contents of a grammar
into regular expressions, and then building automata
that constrain the morphotactic level (Hulden and
Bischoff, 2007).

to characterize the regular language where
every instance of the language X is immedia-
tely preceded by the language Yi and imme-
diately followed by Zi, for some i. The reader
is urged to consult Yli-Jyrä and Koskenniemi
(2004) for a very efficient method of compi-
ling such statements into automata.

4.2. Unification

With the above, we can build ⊔[FV ], for
some feature-value combination present in
our grammar, as:

⊔[FV ] ⇒

#Σ∗(⊔ ∪+)[FV ]Σ∗ Σ∗(⊔ ∪+)[FV ]Σ∗#

That is, the presence of a ⊔[FV ] is allowed
only in the environment where both the left
and right-hand sides do not contain a string
⊔[FVx] such that Vx is not V and the opera-
tor preceding is either + or ⊔.

4.3. Coercion

Similarly, we can build the + operator as
follows:

+[FV ] ⇒ Σ∗ (⊔ ∪+)[FV ], (⊔ ∪+)[FV ]

Here, the statement implies that any pre-
sence of +[FV ] is allowed only if the string
also contains a similar [FV ] somewhere to its
left or right, where the operator is either +
or ⊔.

4.4. Exclusion

The exclusion (−) operator is built simi-
larly, as:

−[FV ] ⇒

#Σ∗(⊔ ∪+)[FV ]Σ∗ Σ∗(⊔ ∪+)[FV ]Σ∗#

This defines the languages where an ins-
tance of some string −[FV ], where F and
V are features and values, respectively, is
allowed only if surrounded by strings that do
not contain [FV ] with the operator either +
or ⊔.

5. Order constraints

In order to address the compilation of
the order constraints (<, > and ≪, ≫), one
would have to make assumptions about the
exactly how the morphemes, features, values,
and class labels are represented as automata.
Supposing every morpheme is followed by
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its bundle of features, so that a word on
the morphotactic level is represented as:
M1{Class}op[F1V1] . . . op[FnVn]M2{Class} . . .,
where op is one of ⊔, +,−, the presence of
a constraint Class1 ≪ Class2 can be
represented as:

Σ∗{Class2}Σ∗{Class1}Σ∗

that is, the language where no instance of the
string Class2 precedes Class1. The ≫ opera-
tor can be defined symmetrically.

The immediate precedence Class1 <

Class2 can be defined as:

Σ∗{Class1}Σ∗{Σ∗{Class2}Σ∗

representing the language where no Classn

string may intevene between a string Class1
and Class2. Note that the brackets { and }
are single symbols in Σ in the above.

6. Conclusion

We have presented a formalism for spe-
cifying morphotactics that allows for separa-
te description of morpheme order and morp-
heme co-occurrence. These are controlled by
a small number of operators on features, or
classes of morphemes. The order-related ope-
rators have the power to state that a class
of morpheme must either precede, or imme-
diately precede some other class of morphe-
mes, while the co-occurrence operators allow
for unification of feature-value pairs, exclu-
sion of feature-value pairs, or coercion, i.e.
expression of a demand that some feature-
value pair be present.

We have also sketched a way to imple-
ment the formalism as finite-state automata
through first converting the notation into re-
gular expressions, which can then be compi-
led into automata or transducers using stan-
dard methods.
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