Procesamiento del Lenguaje Natural, n°39 (2007), pp. 89-96

Causal-State

Studying CSSR Algorithm Applicability on NLP Tasks

Muntsa Padré and Lluis Padré
TALP Research Center
Universitat Politecnica de Catalunya
Barcelona, Spain
{mpadro, padro}lsi.upc.edu

Resumen: CSSR es un algoritmo de aprendizaje de automatas para representar
los patrones de un proceso a partir de datos sequenciales. Este articulo estudia la
aplicabilidad del CSSR al reconocimiento de sintagmas nominales. Estudiaremos la
habilidad del CSSR para capturar los patrones que hay detrds de esta tarea y en
que condiciones el algoritmo los aprende mejor. También presentaremos un método
para aplicar los modelos obtenidos para realizar tareas de anotacién de sintagmas
nominales. Dados todos los resultados, discutiremos la aplicabilidad del CSSR a

tareas de PLN.
Palabras clave: Tareas seqiienciales de PLN, aprendizage de automatas, deteccién

de sintagmas nominales

Abstract: CSSR algorithm learns automata representing the patterns of a process
from sequential data. This paper studies the applicability of CSSR to some Noun
Phrase detection. The ability of the algorithm to capture the patterns behind this
tasks and the conditions under which it performs better are studied. Also, an ap-
proach to use the acquired models to annotate new sentences is pointed out and, at
the sight of all results, the applicability of CSSR to NLP tasks is discussed.
Keywords: NLP sequential tasks, automata acquisition, Noun Phrase detection

Introduction

Splitting Reconstruction

recibido 17-05-2007; aceptado 22-06-2007

2005b; Padré and Padrd, 2005a). This is
a slightly different use, as it is necessary to

(CSSR) algorithm (Shalizi and Shalizi,
2004) builds deterministic automata from
data sequences. This algorithm is based on
Computational Mechanics and is conceived
to model stationary processes by learning
their causal states. These causal states
build a minimum deterministic machine that
models the process. Its main benefit is that
it does not have a predefined structure (as
HMMs do) and that if the pattern to learn
is simple enough, the obtained automaton
is “intelligible”, providing an explicit model
for the training data.

CSSR has been applied to different re-
search areas such as solid state physics (Varn
and Crutchfield, 2004) and anomaly de-
tection in dynamical systems (Ray, 2004).
These applications use CSSR to capture pat-
terns representing obtained data. These pat-
terns are then used for different purposes.

This algorithm has been also used in the
field of Natural Language Processing (NLP)
to learn automata than can be afterwards
used to tag new data (Padré and Padro,

ISSN: 1135-5948

introduce some hidden information into the
automaton. Furthermore, the alphabets in-
volved in NLP tasks tend to be bigger than
the other CSSR applications presented. This
is a handicap when using CSSR for NLP
tasks, as we will discuss in this paper. De-
spite of that, the results obtained in first
experiments show that this technique can
provide state-of-the-art results in some NLP
tasks. Given these results, the challenge is to
improve them, developing systems rivalling
best state-of-the-art systems. To do so, more
information should be incorporated into the
system but, as it will be discussed in this pa-
per, this can lead to other problems given the
nature of the algorithm.

The aim of this work is to study the ability
of CSSR to capture a model for the patterns
underlying NLP sequences structure, as well
as under which conditions it performs bet-
ter. We focus on studying the models learned
by CSSR in NP detection with different data
rather than using CSSR to perform the anno-
tating task, which was done in previous work.

© 2007 Sociedad Espafiola para el Procesamiento del Lenguaje Natural

Muntsa Padr6 y Lluis Padro

2 Theoretical Foundations of
CSSR

The CSSR algorithm (Shalizi and Shalizi,
2004) inferres the causal states of a process
from data in the form of Markov Models.
Thus, the many desirable features of HMMs
are secured, without having to make a pri-
ori assumptions about the architecture of the
system.

2.1 Causal States

Given a discrete alphabet X of size k, con-
sider a sequence x~ (history) and a random
variable Z1 for its possible future sequences.
Z% can be observed after x— with a proba-
bility P(Z*|z~). Two histories, 2~ and y~,
are equivalent when P(Z*|x~) = P(Z*|y™),
i.e. when they have the same probability dis-
tribution for the future. The different future
distributions determine causal states of the
process. Each causal state is a set of histories
(suffixes of alphabet symbols up to a preesta-
blished maximum length) with the same pro-
bability distribution for the future.

Causal States machines have many de-
sirable properties that make them the best
possible representation of a process. They are
minimal and have sufficient statistics to re-
present a process, this is, from causal states
it is possible to determine the future for
a given past. For that reason we are in-
terested in using these kind of machines in
NLP tasks. For more theoretical foundations
about causal states and their properties see
(Shalizi and Crutchfield, 2001).

2.2 The Algorithm

The algorithm starts by assuming the process
is an identically-distributed and independent
sequence with a single causal state, and then
iteratively adds new states when it is shown
by statistical tests that the current states set
is not sufficient. The causal state machine
is built in three phases briefly described be-
low. For more details on the algorithm, see
(Shalizi and Shalizi, 2004).

1. Initialize: Set the machine to one state
containing only the null suffix. Set [=0
(length of the longest suffix so far).

2. Sufficiency: Iteratively build new
states depending on the future proba-
bility distribution of each possible suf-
fix extension. Suffix sons (ax) for each
longest suffix (x) are created adding each

90

alphabet symbol (a) at the beginning
of each suffix. The future distribution
for each son is computed and compared
to the distribution of all other existing
states. If the new distribution equals
(with a certain confidence degree «) to
the distribution of an existing state, the
suffix son is added to this state. Oth-
erwise, a new state for the suffix son is
created.

The suffix length [is increased by one at
each iteration. This phase goes on un-
til [reaches some fixed maximum value
Imaz, the maximum length to be consi-
dered for a suffix, which represents the
longest histories taken into account. The
results of the system will be significantly
different depending on the chosen I,q:
value, since the larger this value is, the
longer will be the pattern that CSSR will
be able to capture, but also the more
training data will be necessary to learn
a correct automaton with statistical re-
liability.

3. Recursion: Since CSSR models sta-
tionary processes, first of all the tran-
sient states are removed. Then the
states are splitted until a deterministic
machine is reached. To do so, the tran-
sitions for each suffix in each state are
computed and if two suffixes in one state
have different transitions for the same
symbol, they are splitted into two diffe-
rent states.

The main parameter of this algorithm is
the maximum length (l,,,4,) the suffixes can
reach. That is, the maximum length of the
considered histories. In terms of HMMS, ;42
would be the potential maximum order of the
model (the learned automaton would be an
HMM of 44 order if all the suffixes belonged
to different states).

When using CSSR, it is necessary to reach
a trade off between the amount of data (N),
the vocabulary size (k) and the used max-
imum length (l;42). According to (Shalizi
and Shalizi, 2004), the maximum length that
can be used with statistical reliability is given
by the ratio log N/log k.

3 Chunking and NP Detection

This work focus on studying CSSR behaviour
when applied to NP detection. This section
presents an overview on this task.

Studying CSSR Algorithm Applicability on NLP Tasks

Text Chunking consists of dividing sen-
tences into non-recursive non-overlapping
phrases (chunks) and of classifying them into
a closed set of grammatical classes (Abney,
1991) such as noun phrase, verb phrase,
etc. Each chunk contains a set of correlative
words syntactically related.

This task is usually seen as a previous step
of full parsing, but for many NLP tasks, hav-
ing the text correctly separated into chunks
is preferred than having a full parsing, more
likely to contain mistakes. In fact, some-
times the only information needed are the
noun phrase (NP) chunks, or, at most, the
NP and VP (verb phrase) chunks. For that
reason, the first efforts devoted to Chunk-
ing were focused on NP-chunking (Church,
1988; Ramshaw and Marcus, 1995), others
deal with NP, VP and PP (prepositional
phrase) (Veenstra, 1999). In (Buchholz,
Veenstra, and Daelemans, 1999) an approach
to perform text Chunking for NP, VP, PP,
ADJP (adjective phrases) and ADVP (adver-
bial phrases) using Memory-Based Learning
is presented.

As most NLP tasks, Chunking can be ap-
proached using hand-built grammars and fi-
nite state techniques or via statistical models
and Machine Learning techniques. Some of
these approaches are framed in the CoNLL-
2000 Shared Task (Tjong Kim Sang and
Buchholz, 2000).

As the aim of this work is to study the vi-
ability of applying CSSR to NLP tasks, spe-
cially studying the patterns that CSSR is able
to learn, the performed experiments are fo-
cused on the task of detecting NPs, ignoring,
for the moment, the other kind of chunks.

4 Ability of CSSR to Capture NP
Models

This section presents the experiments per-
formed using CSSR to capture the patterns
that form language subsequences as NPs.
The goal of these experiments is to see how
able is this method to infer automata that
capture phrase patterns, as well as to study
the influence of different [,,,,,; and amount of
training data on the learned automata.

The patterns that may be found in a
phrase, depend on the studied word features.
For example, there are some orthographical
patterns associated with punctuation marks
(e.g. after a dot a capitalized word is ex-
pected), other more complex patterns asso-

ciated to syntactic structure of the sentence,
etc. Depending on which patterns need to be
captured, different features of the words in
the sentence should be highlighted.

To use CSSR to learn these patterns, it is
necessary to define an alphabet representing
the desired features. These features may vary
depending on which structures we are really
interested in modelling. To learn NP pat-
terns, the used features are the Part of Speech
(PoS) tags of words as syntactic structure of
sentences depends strongly on them.

The data used for NP detection are ex-
tracted from the English WSJ corpus (Char-
niak, 2000). This is a corpus with full pars-
ing information, with eleven different chunk
types and a complete analysis of sentences.
though in this work just NP chunks infor-
mation will be used. The alphabet used to
train CSSR consists of a symbol for each PoS
tag used in the corpus. The total number
of different tags is 44, but there are some
PoS tags that never appear inside any NP,
so these tags can be merged into one special
symbol. With this reduction, the alphabet
has 38 symbols.

This training corpus has about
1.000.000 words which means that
lmaz < log N/logk = 3.8.

To learn an automaton representing NP
patterns it is necessary to distinguish the
words belonging and not belonging to a NP,
even if the PoS tag is the same. To do so
each word belonging to a NP is represented
by its PoS tag (a symbol of the alphabet)
and the words not belonging to NP chunks
are mapped into a special symbol. Figure 1
shows an example of how a sentence is trans-
lated into a sequence of alphabet symbols.

‘Word PoS Tag Chunk Type | Symbol
He PRP NP PRP
succeeds VBZ VP Out
Terrence NNP NP NNP
Daniels NNP NNP
, , none Out
formerly RB ADVP Out
a DT DT
Grace NNP NP NNP
chairman NN NN
none Out

Figure 1: Example of a training sentence and
its translation to the alphabet

Sentences encoded in this way are the se-
quences used to train CSSR. The algorithm

Muntsa Padr6 y Lluis Padro

may to learn an automaton representing NP
chunks in terms of PoS tags.

Different automata with l,,,, from 1 to
4 were learned, but the obtained automata
are not readable, even when minimized .
The number of states of the minimized au-
tomata varies from 34 for l,,,, = 1 to 1,767
for lyar = 4.

Given the size of the obtained automata,
even after minimization, it is not possible to
qualitatively determine if the acquired au-
tomata appropriately models NP patterns,
so another method to qualitatively evaluate
how accurately the generated automaton rep-
resents the data was devised, as described in
next section.

4.1 Comparing Grammars to
Determine the Quality of
Learned Models

In order to obtain a qualitative evaluation of
the automaton acquired by CSSR for NPs,
we will compare it with the regular grammar
directly extracted from the syntactic annota-
tions available in the WSJ training corpus.

The grammar obtained from the anno-
tated corpus is regular, since the NP chunks
are never recursive and are formed only by
terminal symbols in this corpus. So, the
grammar consists of the different possible
PoS sequences for NPs observed in the cor-
pus, with their relative frequencies.

On the other hand, the automaton learned
using CSSR can be used to generate the same
kind of patterns: using the transitions and
probabilities of the automaton, sequences of
PoS tags are generated. The subsequences
between two “Out” symbols are the NP pat-
terns that CSSR has learned. These pat-
terns, and their occurrence frequencies, are
extracted and compared with the grammar
acquired from WSJ annotations. The more
similar the set of rules produced by CSSR is
to the actual WSJ grammar behind the data,
the better we can consider the automaton is
modelling NP patterns.

To perform the comparison between these
two sets of patterns and its frequencies,
Jensen-Shannon divergence 2 (Lin, 1991) is
used. This divergence gives a measure of the

1To minimize the automaton, the probabilistic in-
formation of transitions is ignored and a normal min-
imizing algorithm is applied

2A symmetric distance derived from Kullback-
Leibler divergence.

92

distance between two distributions.

There are two main differences between
the rules generated by the CSSR automa-
ton and the rules acquired from corpus an-
notations. On the one hand, there are rules
generated by CSSR automaton that are not
present in the corpus. This is due to the fact
that CSSR over-generalizes patterns from
data. On the other hand, there are some dif-
ferences in frequencies of common rules, par-
tially due to the probability mass given to
wrong rules. Both differences are captured by
Jensen-Shannon divergence. The smaller this
divergence is, the more similar to the origi-
nal corpus grammar can the CSSR acquired
automata be considered.

The line labelled as “WSJ data” in Fig-
ure 2 shows the values of this divergence
for different 4, values. It can be seen
how Jensen Shannon divergence falls as ;42
grows. This is because the number of over-
generated patterns falls, what means that
CSSR generalizes better, as it may be ex-
pected. The difference in frequencies of com-
mon rules is also lower when using longer
histories. For l,q; = 4 the divergence rises
again because there are not enough data to
learn an automaton with statistical reliabil-
ity, so using CSSR with this length introduces
incorrect patterns.

4.2 Generating Data to Study
CSSR Performance

One of the limitations of the study presented
in section 4.1 is that, given the size of the
alphabet, there are too few available data to
learn automata with large l,,q,. As discussed
above, the larger [,,,,, that can be used with
WSJ data is 3, which may be too small to
capture long NP patterns.

In order to study the influence of the
amount of training data when using such a
big alphabet, new data was created in the
following way: using the WSJ corpus, which
has a complete syntactic analysis, a gram-
mar can be extracted capturing the structure
of sentences (divided into different kind of
chunks and PoS tags) and of chunks (divided
into PoS tags). Each rule has a probability
depending on how many times it appears in
the training corpus. Using this grammar new
data can be generated applying rules recur-
sively until a whole sentence is created.

The generated sentences, are parse trees
with the same chunk distribution than the

Studying CSSR Algorithm Applicability on NLP Tasks

Distance between real and CSSR-generated grammar

0.08 T

WSJ data
1 milion words, no filter -------
50 milion words, no filter --------
0.07 ks 1 milion words, filter 1% b
~ 50 milion words, filter 1% -——-
1 milion words, filter 10% -------
50 milion words, filter 10% -------
0.06]
Q
s}
c
(9]
2 0.05 |]
[
=
a
c N,
2 0.04 i
=
©
£
7]
§ 0.03 i
(2]
C
(5]
- T =
0.02 RS e
0.01 e E
0 1 Sowmmnnn T e
1 2 3 4 5

Figure 2: Jensen Shannon divergence between CSSR generated set of rules and real grammar
for different values of I, when using different filter levels of the grammar

original corpus. Then, the same method to
translate sentences to the NP alphabet de-
scribed above is performed, and CSSR is used
to learn automata.

Note that the NP structures present in the
generated data will be the same that the ones
observed in real corpus, so creating data in
this way is quite similar to replicating the
real corpus many times. The aim of this is to
simulate that large amounts of data are avail-
able and to study the algorithm behaviour
under these conditions. In fact, replicating
the same data many times is equivalent to ar-
tificially simulate that the real data is more
significant, and we are interested in studying
the influence of doing so in CSSR, automata.

Given the nature of the algorithm, repeat-
ing the observations N times changes the de-
cision of splitting or not two histories because
the statistical significance of the observation
changes. This decision is performed using
x? statistics and the value of x? is multi-
plied by N when the data is increased by
this value. Thus, generating more data in
this way, equals to give more weight to the
available data, and the results will show that
this leads to learning automata that repro-
duce data patterns more accurately. The
same goal could be theoretically obtained by
adjusting the confidence level of the y? tests,
but we found this parameter to be less influ-
ent on CSSR behaviour.

The reason why in this work we generate

93

data using the grammar rather than replica-
ting the corpus many times is that in this
way, experiments can be performed filtering
low-frequency rules to get rid of some of the
noise from the original corpus. Thus, before
generating the data using the learned gram-
mar, the rules that appear less can be filtered
and a less noisy corpus can be created. In
this way the generated data is expected to
be more easily reproduced using CSSR.

The experiments were conducted using
different corpora generated with three diffe-
rent grammars: one with all rules learned
from WSJ (no filter), which is expected to
generate data similar to the WSJ corpus, and
two grammars with 1% and 10% of the pro-
bability mass filtered. This means that just
the most likely rules that sum the 99% or
90% of the mass are conserved.

Using these grammars three different cor-
pora of 50 milions tokens were created. With
this amount of data l,q, < log N/logk = 4.9
so the maximum usable length is 5. Also, a
subset of each corpus of 1 milion tokens was
used to perform more experiments, in order
to better study the influence of the amount
of training corpus.

Figure 2 shows the divergence between the
learned automata and the grammar used to
generate the corpus, without filtering and
with each of the two filters. For each filter
level there are two lines: one for the 1 milion
words generated corpus and one for the 50

Muntsa Padr6 y Lluis Padro

milion words. It can be seen that the results
obtained with both non-filtered corpora are
very similar to those obtained with WSJ cor-
pus, specially the results obtained with the 1
milion corpus, as this is the size of WSJ. That
means that the generated corpus reproduces
accurately the NP patterns present in WSJ.
Also, it can be seen that the more rules are
filtered, the more similar is the learned au-
tomaton behaviour to the underlying gram-
mar, since less noisy patterns are more easily
captured by CSSR.

These results also show that using more
training data enables CSSR to learn more
accurate automata for larger [l,,q,. While
for low lp,q, values increasing the amount
of data doesn’t introduce significant differ-
ences, if enough data is available CSSR can
use larger [, and infer more informed au-
tomata that reproduce better the grammar
behind the real corpus. Generating corpus
does not really introduce new patterns, but
simulates that the patterns present in real
data have more statistical significance.

4.3 Discussion

At the sight of the results, we can conclude
that CSSR is a good method for learning
patterns, even quite complicated patterns as
those of NPs, but it is highly dependent on
amount of available data. For each process,
there is a necessary l,,q, value that captures
the patterns, and if this value is big, large
corpus will be necessary. Furthermore, as
the minimum amount of data necessary to
learn an automaton with a determined [,,44
depends exponentially on the alphabet size
(N > klmas), to be able to increase lq, in
1, it would be necessary to multiply the data
size by the size of the alphabet k.

For NP detection, CSSR generated au-
tomaton is not readable, but that doesn’t
mean that it doesn’t reproduces NP patterns
correctly. The automaton can be qualita-
tively studied comparing the patterns that it
generates with the patterns observed in the
training corpus. The more similar are the two
sets of patterns, the better is CSSR repro-
ducing the patterns of the task. This com-
parison shows that for real data CSSR can
learn better patterns as l,,q, grows but due
to the limited amount of available data, for
Imaz = 4 the divergence rises again, as there
is not enough data to learn an automaton re-
producing corpus patterns with this length.

94

So, the performance of the system is limited
by the size of the training corpus.

The generated and not filtered data can
be considered equivalent to the real corpus.
Also, it can be seen that when using a big
amount of generated data the performance
is better than for the real data as the sys-
tem can deal with longer l,,,,, - When using
small I, the difference between using 1 mil-
ion or 50 milion data is not significant. Fur-
thermore, as it was expected, as the number
of filtered rules grows, the divergence falls,
being really small when [,,,, grows. This
means that the easier the patterns to learn
are, the better they are captured by CSSR. In
the case of filtered rules, the system also per-
forms better with large l,,q. if enough data
is available.

Furthermore, in (Padré and Padré, 2005b)
similar experiments to those presented here
were performed for Named Entity Recogni-
tion (NER). In this case, the learned au-
tomata were readable when minimized, and
captured correctly the patterns of sentences
given the chosen sets of features. The con-
clusion was that CSSR was able to learn cor-
rectly the patterns of NEs with the chosen al-
phabet, what combined with the results pre-
sented in this work, can lead to the conclusion
that CSSR is a good method to capture lan-
guage structures if enough data is available.

5 Applying CSSR to Annotating
Tasks

This work has focused on the ability of CSSR
to learn phrase patterns in terms of some se-
lected sets of features, and has been seen that
CSSR can reproduce correctly the patterns of
some NLP structures.

Nevertheless, in these NLP tasks it is nec-
essary not only to obtain generative phrase
models, but also to develop systems able to
annotate new sentences. To perform this tag-
ging task, hidden information about where a
NP begins and ends must be taken into ac-
count. An usual approach is to encode this
information in “B-I-O” tags (Ramshaw and
Marcus, 1995): each word has a B, T or O tag,
where B stands for words at phrase (chunk
or NE) Beggining, I for words Internal to a
phrase, and O for words Outside a phrase.

When CSSR is to be used to annotate new
text, it is necessary to introduce this hidden
information into the system. In (Padré and
Padré, 2005b; Padré and Padrd, 2005a) an

Studying CSSR Algorithm Applicability on NLP Tasks

approach to use CSSR for NER and Chunk-
ing was presented, which will be summarized
here in order to discuss the applicability of
CSSR to NLP tasks.

The basic idea of the method is that it is
necessary to introduce into the alphabet the
hidden information of the tag (B, I or O).
To do so, each symbol encoding the features
previously selected (e.g. ¥ = { DT, NN,
NNP |, etc. } for NP) is combined with each
possible B-1-O tag (X = { DT, DTy, DTy,
NNp, NNp, etc}). Thus, each word in the
training corpus is translated to one of these
symbols forming the training sequence.

When a new sentence has to be tagged,
the part of the symbol related to context fea-
tures is known (e.g. “DT”, ‘NN”, etc) but
the information about the correct B-I-O tag
is not available, so there are three possible
alphabet symbols for each word (e.g. DTp,
DTy, DTp, if the visible part is a DT).

To find the most likely tag for each word
in a sentence —that is, to find the most likely
symbol of the alphabet—, (e.g. DTp, D17,
DTy for a DT word) a Viterbi algorithm is
applied. For each word in a sentence, the pos-
sible states the automaton could reach if the
current word had the tag B, I, or O, and the
probabilities of these paths are computed. At
the end of the sentence, the best probability
is chosen and the optimal path is backwards
recovered. In this way, the most likely se-
quence of B-I-O tags is obtained.

5.1 Results on NP Detection

For NP detection experiments, CoNLL-00
shared task (Tjong Kim Sang and Buchholz,
2000) data are used. The training corpus
has about 200,000 words, and the best ob-
tained Fy is 89.11% with I, = 2. In fact,
in (Padré and Padré, 2005a) chunking with
all chunk types was performed, obtaining an
overall result of F; = 88.20 which is compa-
rable to last systems in the competition but
is quite far from best systems.

Furthermore, following the strategy de-
picted in section 4.2, we can force the sta-
tistical significance of hypothesis test by re-
producing the data many times. Doing so
leads to a improvement of the results, obtain-
ing F7 = 90.96 also with [,,4, = 2 when the
data is replicated 1000 times. So increasing
the significance of data leads to better results
when performing also annotating tasks.

Also, in (Padré and Padré, 2005b), similar

95

experiments (without replicating the corpus)
to perform NER with CSSR were presented.
In those experiments the best parametriza-
tion led to a F; of 88.96%. The system
with this parametrization, combined with the
NEC system used by the winner of CoNLL-
2002 shared task (Carreras, Marquez, and
Padrd, 2002), would situate our system in the
fifth position of the competition. This is not
a bad result, specially taking into account the
simplicity of the used features.

5.2 Discussion

The results obtained on NP annotating task,
show that the problem with the necessary
amount of data becomes worse when trying
to use CSSR to tag new sentences.

First experiments with these kind of tasks
were promising, as the used approach was
very simple and the results were comparable
to state-of-the-art systems. Nevertheless, if
more information is to be included into the
system to try to improve obtained results, a
limitation will be found due to the amount of
necessary data. Furthermore, even if enough
data were available, a computational limita-
tion will be found, specially in tasks such as
NP detection, where the alphabet is big and
lots of data have to be processed.

The main problem of this approach is that
to introduce the hidden information the al-
phabet size is multiplied by 3, what means
that the amount of data necessary to use
CSSR with the same l,,,4, used without B-I-O
information is 3= times bigger than what
was needed before. If CSSR can learn an ac-
curate automaton of length [using a training
corpus of N = k! words, N’ = (3k)! = N 3!
words will be necessary to perform the tag-
ging task under the B-I-O approach.

6 Conclusions and Future Work

A study of how CSSR is able to capture pat-
terns in language has been presented. It
has been seen that this algorithm can learn
automata representing processes if there are
enough data available, or if the process is sim-
ple enough.

One of the main limitations of CSSR is
that it is useful to learn patterns, but it
is not directly prepared to introduce hid-
den information and to perform annotating
tasks. The approach presented in (Padr6 and
Padré, 2005b) gives reasonably good results
for NER but not so good results in NP detec-

Muntsa Padr6 y Lluis Padro

tion. This is because as the alphabet grows,
more than the available data would be nec-
essary to learn an accurate automaton, and
the available corpus is not big enough.

The main conclusion of this work is that
CSSR can learn correctly the patterns of se-
quential data, specially if the data is not very
noisy, but that it is highly dependent on the
amount of data, the size of the alphabet and
Imaz - Furthermore, this dependency is expo-
nential, so to increase a little bit the perfor-
mance of the system, it would be necessary
to magnify the amount of data. So, CSSR
can be useful when dealing with systems with
small alphabets —as in other applications of
CSSR such as those presented in (Varn and
Crutchfield, 2004; Ray, 2004)— but to use it in
systems with lots of features to be taken into
account, as NLP annotating tasks, a limita-
tion due to the amount of available data will
be probably found.

In this line, the main future line devised
is to modify CSSR to be able to introduce
more information into the system. As the
alphabet size has to be small, our proposal
is to introduce all the features not encoded
in the alphabet via Maximum Entropy (ME)
models. Thus, the histories would consist of
sets of features, instead of suffixes, and CSSR
would build the causal states taking into ac-
count the probability of seeing a symbol after
a determined history, computing it using ME,
instead of taking into account just the simple
suffixes and its transition probabilities.

References

Abney, Steven. 1991. Parsing by Chunks.
R. Berwick, S. Abney and C. Tenny
(eds.) Principle-based Parsing. Kluwer
Academic Publishers, Dordrecht.

Buchholz, Sabine, Jorn Veenstra, and Walter
Daelemans. 1999. Cascaded grammatical
relation assignment. In In Proceedings of
EMNLP/VLC-99, pages 239-246, Univer-
sity of Maryland, USA.

Carreras, Xavier, Llufs Marquez, and Lluis
Padré. 2002. Named entity extraction
using adaboost. In Proceedings of CoNLL
Shared Task, pages 167-170, Taipei.

Charniak, Eugene. 2000. Bllip 1987-89 wsj
corpus release 1. In Linguistic Data Con-
sortium, Philadelphia.

Church, Kenneth W. 1988. A stochastic
parts program and noun phrase parser for

96

unrestricted text. In Proceedings of the 1st
Conference on Applied Natural Language
Processing, ANLP, pages 136-143. ACL.

Lin, J. 1991. Divergence measures based on
the shannon entropy. IEEE Transactions
on Information Theory, 37(1):145-151.

Padré, Muntsa and Lluis Padré. 2005a. Ap-
proaching sequential nlp tasks with an au-
tomata acquisition algorithm. In Proceed-
ings of International Conference on Re-
cent Advances in NLP (RANLP’05), Bul-

garia, September.

Padré, Muntsa and Lluis Padré. 2005b. A
named entity recognition system based
on a finite automata acquisition algo-
rithm. Procesamiento del Lenguaje Nat-
ural, (35):319-326, September.

Ramshaw, L. and M. P. Marcus. 1995.
Text chunking using transformation-based
learning. In Proceedings of the Third ACL
Workshop on Very Large Corpora.

Ray, Asok. 2004. Symbolic dynamic analysis
of complex systems for anomaly detection.
Signal Process., 84(7):1115-1130.

Shalizi, Cosma R. and James P. Crutchfield.
2001. Computational mechanics: pattern,
prediction strucutre and simplicity. Jour-
nal of Statistical Physics, 104:817-879.

Shalizi, Cosma R. and Kristina L. Shalizi.
2004. Blind construction of optimal non-
linear recursive predictors for discrete se-
quences. In Uncertainty in Artificial In-
telligence: Proceedings of the Twentieth
Conference.

Tjong Kim Sang, Erik F. and Sabine Buch-
holz. 2000. Introduction to the conll-2000
shared task: Chunking. In Claire Cardie,
Walter Daelemans, Claire Nedellec, and
Erik Tjong Kim Sang, editors, Proceed-
ings of CoNLL-2000 and LLL-2000, pages
127-132. Lisbon, Portugal.

Varn, D. P. and J. P. Crutchfield. 2004.
From finite to infinite range order via an-
nealing: The causal architecture of defor-
mation faulting in annealed close-packed

crystals. Physics Letters A, 324:299-307.

Veenstra, J. 1999. Memory-based text
chunking. In Nikos Fakotakis (ed), Ma-
chine learning in human language tech-
nology, workshop at ACAI 99, Chania,
Greece.

