
Integrating OWL Ontologies with a Dialogue Manager∗

Guillermo Pérez, Gabriel Amores, Pilar Manchón, Fernando Gómez y Jesús González
G. Investigación Julietta
Universidad de Sevilla

{ gperez, jgabriel, pmanchon, fernando, jgonzalez}@us.es

Resumen: Este art́ıculo describe la integración de ontoloǵıas en formato OWL como
fuentes de conocimiento externas de un sistema de diálogo. El presente trabajo se
centra en conseguir un agente que gestione cualquier ontoloǵıa independientemente
del dominio y sin perder expresividad al aprovechar los razonadores existentes sobre
OWL y la estructura estática Sujeto-Propiedad-Objeto de RDFS común a todas las
ontoloǵıas con formato OWL.
Palabras clave: Sistemas de gestión de diálogo, Ontoloǵıas.

Abstract: This paper describes the integration of OWL ontologies as external
knowledge resources for dialogue systems. The current work focuses on implementing
a domain-independent agent whose role is to deal with any ontology without losing
expressivity, by using the existing OWL reasoners and the static structure Subject-
Property-Object common to every ontology with OWL format
Keywords: Dialogue Systems, Ontologies.

1 Introduction

This paper describes the use of OWL ontolo-
gies as the external knowledge resource for
a Dialogue Manager, focusing on reusability
while maintaining the expressivity. The pa-
per presents the advantages of our approach
and describes how we have actually applied
it within a real Dialogue Manager system:
Delfos (Gabriel Amores, 2001). A descrip-
tion of the real ontology developed for the
in-home domain is also included.

The separation of the knowledge manage-
ment from the interaction modules has been
argued in previous works. The main rea-
son for this separation is that the knowl-
edge management is conceptually different
from the dialogue management and is not
even necessary for all cases (Dahlback and
Jonsson, 1999). In (Annika Flycht-Eriksson,
2000) the authors also point out that this sep-
aration facilitates the portability of dialogue
systems to new domains. Today, a number
of spoken and multimodal dialogue systems
include a specific Knowledge Manager mod-
ule, like Malin (Arne Jonsson, 2003), Javelin
(Eric Nyberg, 2003) or Delfos (José Fran-
cisco Quesada, 2002). The agent described
hereby preserves this separation between the
Dialogue Manager and the Knowledge Mana-

∗ Part of this research has been funded by the Span-
ish Ministry of Education under Grant TIC2002-
00526, and the European FP6 IST Talk Project
(507802).

ger.

Question-answering systems have tradi-
tionally studied the problem of linking the
dialogue manager with the knowledge re-
sources. In these systems the expected goal
of the interaction with the users is to pro-
vide them with some information extracted
from the knowledge resource. Therefore the
knowledge management was often treated as
an extension or a part of the dialogue ma-
nager and not as an independent module.
In (Joseph Polifroni, 2002) the authors pro-
pose an extension to Galaxy (Stephanie Sen-
eff, 1998) so that the Dialogue Mana-
ger becomes a domain-independent question-
answering system, being able to automati-
cally build the queries without changing the
code, storing the domain-specific data in a ta-
ble with standardized format. The approach
presented in this paper keeps the idea of pro-
moting portability by keeping domain inde-
pendency, but extends the coverage of the so-
lution: not limiting it to question-answering
systems but extending it to any dialogue that
may need reference resolution from external
knowledge resources.
The solutions for data storage in dialogue sys-
tems that are proposed in nowadays systems
can be classified in three groups: databases,
ontologies and propietary solutions. There
are arguments in favor and real imple-
mented examples of each one of the ap-
proaches: see (Arne Jonsson, 2003) for a

153



solution based on database access through
SQL, (Iryna Gurevych, 2003) for arguments
in favor of using OWL based ontologies or
(Joseph Polifroni, 2002) for a table-based
proprietary solution. The general discussion
goes beyond the scope of this paper, but in
section 3 there is a set of arguments in favor
of the OWL approach for the scenario under
study.

Summarizing, the solution presented in
this paper consists on a independent module
that offers knowledge management capabili-
ties to the Dialogue Manager. The Knowl-
edge Manager is both domain-independent:
no need to change the module from one do-
main to another, and general-purpose: it
works for question-answering systems but can
also be used for reference resolution in any
other dialogue. The knowledge resources are
structured as OWL ontologies.

In section 2 an overall view of the system
is presented. Section 3 introduces OWL and
explains the advantages of this approach. In
section 4 the actual ontology used for the In-
Home domain is described. To wrap up, a set
of real showcases (section 5) and the conclu-
sions and future work (section 6).

2 Overall Architecture

The present work is included in the frame-
work of a multimodal application in the In-
Home domain. Although the results can be
extrapolated to other user profiles, the cur-
rent scenario is focused on wheel-chair bound
users and their special circumstances. The
scenario has been detailed after a set of WOZ
experiments described in (Pilar Manchón,
2006).

In this particular scenario, users are able
to access the system at all times through
different modalities, that is, using speech
and/or a graphical interface. The scenario
includes microphones, speakers and a touch
screen where the information can be dis-
played and introduced or selected.

The software components of the system
are implemented as independent OAA (Open
Agent Architecture) agents (David Martin,
1999), linked therefore through the OAA fa-
cilitator. An overall view of the system is
shown in figure 1.

The core of the System is the Dialogue
Manager agent, whose role is to control the
course of the interactions with the user,
checking the Multimodal Input Pool for

Figure 1: Overall Architecture

new inputs from the user, that may come
from the ASR agent (speech) or from the
Home Setup agent (clicks). The presenta-
tion of information from the Dialogue Ma-
nager to the user can also be done multi-
modally: by voice through the TTS agent
and graphically through the Home Setup
agent. The Dialogue Manager is inspired
on the Information State Update approach
(David Traum, 1999), and includes Delfos
(Gabriel Amores, 2001) at dialogue level and
Episteme (Gabriel Amores, 1997) for Natural
Language Understanding.

The Dialogue Manager uses the Knowl-
edge Manager described in this paper for re-
solving references to particular devices, that
may be referred to by its label but also by its
location, type, etc.

Finally the Dialogue Manager may decide
to execute commands (e.g. switch on a light)
using the x10 protocol through the Device
Manager.

A detailed description of the scenario and
the role and services offered by each agent
can be found in (Tilman Beckerm, 2006).

3 Extending the Knowledge
Manager

3.1 OWL

3.1.1 OWL Overview
OWL is the Web Ontology Language rec-
ommendation from the W3C, and has been
defined to be compatible with the architec-
ture or the World Wide Web in general,
and the Semantic Web in particular. The
recommendation is built on top of RDF:

154

Gabriel Amores, Guillermo Pérez, Pilar Manchón, Fernando Gómez y Jesús González



“OWL builds on RDF and RDF Schema and
adds more vocabulary for describing prop-
erties and classes: among others, relations
between classes (e.g. disjointness), cardinal-
ity (e.g. “exactly one”), equality, richer typ-
ing of properties, characteristics of properties
(e.g. symmetry), and enumerated classes”
(http://www.w3.org/2004/OWL/). OWL
adds the following capabilities to ontologies:

• Scalability to Web needs

• Compatibility with Web standards for
accessibility and internationalization

• Possibility of constructing classes

• Restrictions on properties

And it has other generic advantages:

• It has been defined as a standard by
W3C

• A big number of free resources available
for development (APIs, Editors, Visual-
izators, etc.)

3.1.2 OWL Layers
OWL was divided into layers to reflect com-
promises between expressability and imple-
mentability. Three layers of OWL are de-
fined: Lite, DL, and Full, in increasing level
of expressiveness:

• OWL Lite supports those users
primarily needing a classifi-
cation hierarchy and simple
constraints.(http://www.w3.org/TR/owl-
ref/#OWLLite).

– For example: it only permits cardi-
nality values of 0 or 1

– It also has a lower formal complex-
ity than OWL DL.

• OWL DL : maximum expressiveness
while retaining computational complete-
ness (all conclusions are guaranteed
to be computable) and decidability
(all computations will finish in finite
time). OWL DL includes all OWL lan-
guage constructs under certain restric-
tions. (http://www.w3.org/TR/owl-
ref/#OWLDL)

• OWL Full : maximum expressive-
ness and the syntactic freedom
of RDF with no computational
guarantees.(http://www.w3.org/TR/owl-
ref/#OWLFULL)

Figure 2: Former USE Ontology

3.2 Motivation

In former versions or our system, a näıve
ontology manager was implemented (José
Francisco Quesada, 2002) , which allowed to
define semantic graphs of a house domain.
These graphs looked like the tree shown in
figure 2.

In order to work with such graphs, a
Knowledge Manager was built as an OAA
agent that solved reference resolution queries
over tree–shaped graphs. The goal of each
query was to identify one or several unknown
devices by means of a list of “positive” and
“negative” filters. That is, it specified the
values which should be satisfied (or not)
by the device (or devices) within the graph
(color, device type, etc.). For instance, given
the user request:

User Could you please turn on all the big
lamps except the one in the kitchen?

The Knowledge Manager would solve a
query such as:

KMDevRes(Pos[size:big,devtype:lamp],
Neg[location:kitchen])

As shown in this example, the Knowledge
Manager enables the system to have a flex-
ible interaction with the user using natural
language commands and reference resolution.
Nevertheless, this agent could be improved in
a number of ways, by:

1. Not imposing tree structures to the se-
mantic network

155

Integrating OWL Ontologies with a Dialogue Manager



2. Allowing other relationships between
concepts (not just subsumption). For in-
stance, a television is locatedIn a room,
a lamp hasColor red, etc.

3. Allowing the definition of property fea-
tures. For example transitivity over the
property locatedIn: (if Lamp is locate-
dIn Kitchen and Kitchen is locate-
dIn House, then Lamp is locatedIn
House).

4. Allowing the definition of restrictions
over properties. For instance, a given
Device must be described by one (and
only one) Color.

5. Having a more generic ontology inter-
face, which allowed abstract queries in-
dependent from the particular knowl-
edge domain.

As the current needs were analyzed and
some research on current standards and tools
was carried out, we realized that the already
existing standard OWL in conjunction with
the querying language RDQL (RDF Data
Query Language) and the reasoners included
within the open–source Jena platform could
help a great deal:

1. Since OWL is built on RDF, the se-
mantic network could be defined by
subject–property–object triplets with-
out any predefined hierarchy and, there-
fore, no imposition of a tree structure.

2. OWL includes subsumption
(SubPropertyOf, SubClassOf), but
they are just two alternative possible
relations. Actually, any subject–object
pair can be linked by any user–defined
property.

3. The reasoners included within Jena al-
low the definition of inference rules for
all layers.

4. In OWL (Sub)classes can be created by
restricting a property’s behavior on that
class.

5. RDQL provides a way of specifying a
graph pattern that is matched against
the graph to yield a set of matches. This
approach provides a very flexible inter-
face with the dialogue manager, since
it can generate queries using any graph
pattern.

Once it was determined that using OWL,
Jena and RDQL the intended objectives
could be achieved, an independent agent had
to be implemented to substitute the previous
Knowledge Manager. For this agent to com-
ply with the goals described in section 1, the
agent had to offer:

Reusability: It should provide a mechanism
to make abstract (domain independent)
queries, useful for any ontology.

Expressivity: The agent should allow the
dialogue manager to generate queries
that might turn out to be necessary dur-
ing the dialogue.

Both requisites were fulfilled by implement-
ing two different OAA solvables:

• One in charge of queries about the do-
main of the property.

• A second one in charge of queries about
its range.

This approach is completely independent
of the particular ontology used and therefore
reusable in any domain (only limited by the
expressivity of the queries).

Since the knowledge management is im-
plemented as a separated agent, the replace-
ment did not imply changes over other com-
ponents of the system, like modifying the di-
alogue strategies or retraining the speech rec-
ognizer.

3.3 Implementation

The concrete implementation of the Knowl-
edge Manager offers two services:

1. DQ: Queries about the domain (Sub-
jects) of some properties.

(a) Parameters:
i. P1: The class searched for.
ii. P2: A list of [nameProperty,

value] pairs; that is, of proper-
ties which the subject must sat-
isfy.

iii. P3: a list of [nameProperty,
value] pairs; that is, of prop-
erties which the object must not
satisfy.

(b) Solution: The individuals belonging
to Class P1 and compatible with the
graph restrictions defined in P2 and
P3.

156

Gabriel Amores, Guillermo Pérez, Pilar Manchón, Fernando Gómez y Jesús González



2. RQ: Queries about the range (Objects)
of some properties, with the following
parameters:

(a) Parameters:
i. P1: The list of individuals

searched for.
ii. P2: A list of properties.

(b) Solution: All the individuals that
are linked to any of the individuals
listed in P1 by any of the properties
listed in P2.

To elaborate further on how these queries
are translated into RDQL and the results
obtained, consider the first of the two ser-
vices (i.e. Domain Queries). First, the agent
looks for triplets whose object belongs to the
class specified by P1 (i.e. NameClass), which
is expressed as NameClass:(?obj rdf:type
NS:NameClass) in RDQL syntax.

Then, it looks for the group of individuals
(group “A”, below), which satisfies the P2
restriction:

SELECT ?obj WHERE (?obj rdf:type
NS:NameClass)

(?obj NS:prop1 NS:value1)
. . .
(?obj NS:propN NS:valueN)
→ Result A

The next step is to find the set of M individ-
uals which satisfy the P3 restriction:

SELECT ?obj WHERE (?obj rdf:type
NS:NameClass)

(?obj NS:prop1 NS:value1)
→ Result B1
. . .

SELECT ?obj WHERE (?obj rdf:type
NS:NameClass)

(?obj NS:propM NS:valueM)
→ Result BM

Considering that the group B is defined as
the union of the individuals Bi:

ResultB = B1 ∪ B2 ∪ . . . ∪ BM

the final result is:

Result = ResultA − (ResultA ∩ ResultB).

The actual wrappers are available for the gen-
eral public at www.us.es/julietta/tools.html

4 Ontology for the In-Home
Domain

4.1 Developing a Home Ontology
in OWL

Once it was determined that OWL would be
the standard chosen, Protégé 3.1 open source
ontology editor was chosen to help the devel-
opment of the ontology. Protégé is extensi-
ble and based on Java, and allows users to
construct domain ontologies in various for-
mats such as OWL, RDF, XML and HTML
(http://protege.stanford.edu).
4.1.1 Ontology Coverage
An additional objective within this task was
the design of a more exhaustive and complete
version of the home ontology, which should
include the “telephone operator” functional-
ity defined in Siridus (Siridus Project). For
this purpose, new devices and relations have
been included and a new ontological struc-
ture has been designed. Obviously, the on-
tology described below is just for illustration
purposes, and is not meant to be exhaustive,
neither in its class coverage nor in the instan-
tiation of individuals.
4.1.2 Classes and Subclasses
The basic element in OWL consists of the
triplet Subject–Predicate–Object. Subjects
and objects are denoted by classes and sub-
classes, while Predicates are typically de-
noted by properties.

System: is a special class, used to describe
the role of the dialogue system in the
ontology and how it interacts with the
objects of this universe.

Device: Describes device types, and con-
tains subclasses like:

1. Lamp and Dimmer (actually a
subclass of Lamp)

(a) Lamp 1 through Lamp 6 as in-
dividuals

(b) DimmerLamp 1 and Dimmer-
Lamp 2 individuals

2. Blind (one individual, Blind 1 )

3. Radio (one individual, Radio 1 )

4. TV (one individual, TV 1 )

Area includes the following individuals: Up-
stairs, Downstairs, Indoors, Outdoors

Room includes other subclasses like:

157

Integrating OWL Ontologies with a Dialogue Manager



1. Bathroom (Bathroom 1 and Bath-
room 2 )

2. Bedroom (Bedroom 1 through
Bedroom 4 )

3. Garage (Garage 1 )

SpecificLocation contains 5 sample indi-
viduals: Ceiling , LeftCorner , Table ,
Wall , RightCorner

Color is a class available for both rooms and
devices, whose individuals are: Black,
Blue, Green, Red, White, Yellow.

Size has two individuals: Big, Small.

The actual functionality taken into account
in this new version of the ontology includes
the following commands for the home de-
vices:

• On/Off, Open/Close, Raise/Lower

As discussed previously, the telephone op-
erator functionality and its corresponding di-
rectory of entries have also been integrated
in the new ontology. However, they deserve
a special consideration within the ontology
with respect to the rest of the devices and/or
functionalities. Ontologically, a class of name
Directory describes the directories available
in the home (currently, it only contains one
individual).

The information stored in each entry in
the directory is defined as a DirectoryEn-
try class, with six individual instantiations
in our example (DirectoryEntry 1 to Directo-
ryEntry 6 ). Each Directory Entry requires a
set of objects, defined as independent classes:

• FirstName (several instances)

• LastName (several instances)

• HomeNumber (no instances)

• Mobile (no instances)

• Email (20 individuals)

• Relationship to the user, with the
following individuals: Boss, Brother,
Cousin, Father, Friend, Mother, Neigh-
bour, Sister, Uncle

4.1.3 Properties
Instances of objects are linked to other ob-
jects according to the OWL triplet by means
of properties and subproperties. The hierar-
chy of properties developed for the In-Home
domain is as follows:

The property hasDeviceCommand is
conceptualized as a System class perform-
ing a set of functions or commands over the
set of devices:

• hasDeviceCommand (System hasDe-
viceCommand Device)

– Domain: System, Range: Device

This property contains a series of subproper-
ties, each corresponding to one type of func-
tionality over the devices in the house:

• SwitchOn and SwitchOff, whose
ranges are the classes Fan, Heater,
Lamp and Radio

• Open, Close, Raise and Lower, whose
range is the class Blind

Additional properties have been defined
for the Device class, which are not related
to the devices’ functionality, such as:

• hasColor (Device hasColor Color)

– Domain: Device, Range: Color

• hasSize (Device hasSize Size)

– Domain: Device, Range: Size

• locatedIn a transitive function with
four domains and ranges

– Domain: Device, SpecificLocation,
Room, Area. Range: SpecificLo-
cation, Room, Area, Home (respec-
tively)

The functionality considered for the tele-
phone operator is described by the sub-
properties of the hasTelephoneCommand
property. All of them take System as
their Domain, and DirectoryEntry as their
Range:

• Call, MakeConference, Transfer,
CancelTransfer, List, Find, Redial

Additional properties have also been de-
fined for the DirectoryEntry class which
are not related to its functionality, such as:

• hasEmail (DirectoryEntry hasEmail
Email)

– Domain: DirectoryEntry, Range:
Email

. . . and so on for each property: hasFName,
hasHName, hasHNumber, hasLName,
hasNNumber, hasRelationship, has-
Size, hasWNumber.

158

Gabriel Amores, Guillermo Pérez, Pilar Manchón, Fernando Gómez y Jesús González



Figure 3: Direct User Query 1

5 ShowCases

In this section three real examples are pre-
sented to show how the Dialogue Manager
interacts with the Knowledge Manager. The
first two examples show how the Knowledge
Manager can be applied in the context of a
question-answering dialogue. The third ex-
ample shows how the same agent is used by
the Dialogue Manager for reference resolution
in a general-purpose dialogue.

ShowCase 1: Direct User Query This
example shows how the Dialogue Manager
would translate a direct query from the user.
The user is interested in knowing which de-
vices satisfy a set of conditions. The situation
is depicted in figure 3.

ShowCase 2: Direct user Query Again,
this example shows how the Dialogue Mana-
ger would translate a direct query from the
user, but in this case the question is related
to the properties of a known device, as exem-
plified in figure 4:

ShowCase 3: Reference resolution (un-
derspecification) Next, a more sophisti-
cated situation is described. The user gives a
command so the Dialogue Manager asks the
Knowledge Manager which device the User is
referring to. The result of this query implies
that the command was ambiguous, so the Di-
alogue Manager asks the User for more de-
tails. The scenario is shown in figure 5. This
functionality is implemented as an expecta-
tion of the Dialogue Manager (José Fran-
cisco Quesada, 2000).

Figure 4: Direct User Query 2

Figure 5: Reference Resolution

6 Conclusions and future work

This paper describes a proposal for integra-
tion of OWL ontologies within dialogue sys-
tems. A domain-independent OAA agent is
described, allowing its use for any ontology,
easing therefore the portability of the system.
Its integration with a real Dialogue Manager
has been shown using Delfos and an In-Home
ontology has been detailed. The paper also
includes real showcases that exemplify the
use of the agent both for question-answering
and for reference resolution.

In addition of the implementation of
this agent, a tool to generate grammars
from OWL ontologies has been implemented,
which ensures the coherence between the
Knowledge resource and the NLU (Natural
Language Understanding) module of the Di-

159

Integrating OWL Ontologies with a Dialogue Manager



alogue Manager. A detailed description of
this tool can be found in (Guillermo Pérez,
2006).

In later versions of the Knowledge Ma-
nager, some improvements will be included:
mainly extending the coverage of OWL lay-
ers (now limited to Lite) and augment-
ing the expressivity by allowing filters for
the Range queries. Other steps to be
taken include migrating from RDQL to
the newer SPARQL (www.w3.org/TR/rdf-
sparql-query/) and checking our approach
with other pre-defined ontologies.

References

[Annika Flycht-Eriksson2000] Annika Flycht-
Eriksson, Arne Jonsson. 2000. Dialogue
and domain knowledge management in di-
alogue systems. In 1st SIGdial workshop
on Discourse and dialogue, october.

[Arne Jonsson2003] Arne Jonsson, Mag-
nus Merkel. 2003. Some issues in
dialogue-based question-answering. In
Working Notes from AAAI Spring
Symposium.

[Dahlback and Jonsson1999] Dahlback, Nils
and Arne Jonsson. 1999. Knowledge
sources in spoken dialogue systems. In
Eurospeech ’99.

[David Martin1999] David Martin,
Adam Cheyer, Douglas Moran. 1999.
The open agent architecture: A frame-
work for building distributed software
systems. 13:91–128.

[David Traum1999] David Traum, Johan Bos,
Robin Cooper Staffan Larsson Ian Lewin
Colin Matheson Massimo Poesio. 1999.
A model of dialogue moves and informa-
tion state revision. Deliverable 2.1, Trindi
Project.

[Eric Nyberg2003] Eric Nyberg, Teruko Mita-
mura, James P. Callan Jaime G. Carbonell
Robert E. Frederking Kevyn Collins-
Thompson. 2003. The javelin question-
answering system at trec 2003: A multi-
strategy approach with dynamic planning.
In Twelfth Text REtrieval Conference.

[Gabriel Amores1997] Gabriel Amores, José
Francisco Quesada. 1997. Epis-
teme. Procesamiento del Lenguaje Natu-
ral, 21:1–16.

[Gabriel Amores2001] Gabriel Amores, José
Francisco Quesada. 2001. Dialogue moves
for natural command languages. Proce-
samiento del Lenguaje Natural, 27:89–96.

[Guillermo Pérez2006] Guillermo Pérez,
Gabriel Amores, Pilar Manchón
David González. 2006. Generating
multilingual grammars from owl ontolo-
gies.

[Iryna Gurevych2003] Iryna Gurevych,
Robert Porzel, Elena Slinko Norbert
Pfleger Jan Alexandersson Stefan Merten.
2003. Less is more: using a single
knowledge representation in dialogue
systems. In Human Language Technology
Conference, HLT-NAACL 2003 workshop
on Text meaning, pages 14–21.

[José Francisco Quesada2000] José Fran-
cisco Quesada, Gabriel Amores. 2000.
Dialogue moves in natural command
languages. Deliverable 1.1, Siridus
Project.

[José Francisco Quesada2002] José Fran-
cisco Quesada, Gabriel Amores. 2002.
Knowledge–based reference resolution for
dialogue management in a home domain
environment. In Mary Ellen Johan Bos
and Colin Matheson, editors, Proceedings
of the sixth workshop on the semantics
and pragmatics of dialogue (Edilog), pages
149–154, 4-6th September.

[Joseph Polifroni2002] Joseph Polifroni,
Grace Chung. 2002. Promoting porta-
bility in dialogue management. In
ICSLP2002.

[Pilar Manchón2006] Pilar Manchón,
Carmen del Solar, Gabriel Amores
Guillermo Pérez. 2006. In Generat-
ing Multilingual Grammars from OWL
Ontologies.

[Stephanie Seneff1998] Stephanie Seneff,
Ed Hurley, Raymonf Lau Christine
Pao Philipp Schmid Victor Zue. 1998.
Galaxy-ii: A reference architecture for
conversational system development. In
ICSLP1998.

[Tilman Beckerm2006] Tilman Beckerm, Pe-
ter Poller, Nate Blaylock Staffan Larsson
Oliver Lemon Guillermo Pérez Jan Schehl.
2006. Talk status report: Software infras-
tructure. Deliverable 5.1s2, Talk Project.

160

Gabriel Amores, Guillermo Pérez, Pilar Manchón, Fernando Gómez y Jesús González


