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Resumen: La asignación de términos de un vocabulario controlado (habitualmente
un tesauro) a documentos en formato digital está abriendo la puerta a nuevas apli-
caciones. En este art́ıculo se comparan dos algoritmos avanzados para clasificación
de documentos: la selección adaptativa de clasificadores base binarios y el algoritmo
AdaBoost. Si bien ambos mostraron tiempos de respuesta similares, el primero
proporcionó los mejores resultados sobre la partición hep-ex del corpus HEP, respal-
dando dicho método como una solución robusta al multi-etiquetado para grandes
colecciones.
Palabras clave: clasificación automática de documentos, comparación de algorit-
mos, clasificación binaria, benchmark

Abstract: Assignment of labels from a controlled set of terms (usually a thesaurus)
to digital version of documents is opening a wide range of new applications, now
becoming powerful tools for digital libraries. In this paper we compare two different
and advanced approaches for multi-label text categorization: the adaptive selection
of binary base classifiers and the AdaBoost algorithm. Though both of them showed
similar response times on producing final labels, the use of adaptive selection of
binary classifiers performed better than AdaBoost on the hep-ex partition of the
HEP corpus, confirming this method as a robust solution for multi-label of large
collections.
Keywords: automatic text categorization, algorithms comparison, binary classifi-
cation, benchmark

1 Introduction

Multi-label text categorization has emerged
as the common way to obtain automated sys-
tems for document classification. It includes
those were plain text documents are indexed
with terms (also referred to as key-words or
descriptors) selected from a controlled vo-
cabulary. The integration of methods from
the Information Retrieval domain with Ma-
chine Learning algorithms has promoted this
area to a certain level of maturity, but the
vast field being covered, and the wide range
of components within a text categorization
system hold the interest of many researchers
from all around the world (Sebastiani, 2002).

Text categorization systems offer a large
number of benefits to information systems
in general and digital libraries in particu-
lar (Montejo-Ráez y Steinberger, 2004). Ad-
vances in automatic text categorization are of
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interest for current digital libraries, and the
present paper provides relevant information
for one of the most unknown but demanded
classification paradigms: multi-label classifi-
cation. For solving this task, two competitive
algorithms have been tested against a pure
multi-label collection.

2 Multi-label classification

In text categorization, three different classi-
fication paradigms can be identified:

• Binary classification. In this case,
the classifier has to decide between
two possible choices: YES/NO an-
swers or two disjoint classes. This is
the most common behaviour of well
known classifiers, like Support Vector
Machines (Joachims, 1998), PLAUM (Y.
et al., 2002), Bayesian Logistic Regres-
sion (Genkin, Lewis, y Madigan, 2004)
and many others.

• Multi-class classification. When the set
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of possible classes increases, but the
sample must be assigned to just one tar-
get class, we are facing a multi-class
classification problem. One approach
is to use binary classifiers and then re-
turn the class with the highest clas-
sification status value (CSV), that is,
the closest class. But it implies a ba-
sic premise: CSV must be comparable
(which is not always true). Another
choice is to use multi-class classifiers, like
TiMBL (Daelemans et al., 2004), to per-
form the task straightforward.

• Multi-label classification. Here, a given
document can be associated to a vari-
able number of classes at the same time,
so we have to decide not only if a class is
close enough to the document, but also
about the number of them to be selected.
Methods enabled for solving this clas-
sification case are not common, despite
the fact that multi-label classifiers can
be constructed from binary classifiers
(like in the case of the Adaptive Selec-
tion of Base Classifiers (Montejo-Ráez,
Steinberger, y Ureña-López, 2004)) or
generated using algorithms that rank all
classes according to a coherent value (as
in the case of the AdaBoost algorithm
(Schapire y Singer, 2000)).

In specialized domains, like Engineering
(INS, )), Biology (Vieduts-Stokolo, 1987)
or Physics (DESY, 1996), particular sets of
concepts have been arranged into groups,
and certain relations have been established
among them. These are the thesauri, well
known by librarians. This multi-labeling is
not easy to automate, mainly due to the
lack of data, the inaccuracy of human index-
ers, the lack of agreement on which keywords
should be selected according to each expert’s
criteria and, of course, the high imbalance
show by these assignments (Montejo-Ráez,
Steinberger, y Ureña-López, 2004).

The two methods compared here have
been identified as promising solutions for the
automatizing of the indexing process of doc-
uments by keyword assignment. We will
briefly introduce them and then show the re-
sults obtained by applying these algorithms
on a benchmark set of multi-labeled docu-
ments.

2.1 AdaBoost

Boosting is a technique in machine learning
for combining classifiers in an iterative way
so that performance is improved. The final
classifier is composed by several weak classi-
fiers, which have been generated through the
learning process. A more formal definition
would describe if as follows:

Given:
(x1, y1), · · · , (xm, ym)
where xi ∈ X, yi ∈ Y = {−1,+1}

For t = 1, · · · , T :
Train weak learner and produce weak
hypothesis ht : X → {−1,+1}
Update some weights and parameters

Return final hypothesis H as combination
of h1, · · · , hT

AdaBoost is one example of these tech-
niques (Schapire y Singer, 2000). It works
by maintaining a distribution of weights (one
per sample) that is updated to force weak
learners concentrate on those samples whose
classification is “harder”. The AdaBoost al-
gorithm using Hamming distance for comput-
ing the loss is shown in figure 1. As we can
see, this algorithm (a) increases the weight
of miss-classified samples at each round, and
(b) the final hypothesis H is a weighted com-
bination of T weak hypothesis ht in function
of their error.

It is different to previous boosting algo-
rithms in that it is adaptive, since it depends
on error rates of each individual weak hy-
pothesis (hence its name). The benefits of
this algorithm are due to mathematical prop-
erties of the training error and the general-
ization error. The first one implies that Ad-
aBoost does not need a lower bound a priory
to work, since it is computed adaptively. The
second one, as proved by Schapire and his
colleagues, tells us about the independence
of T from the upper bound of the generaliza-
tion error, which makes the algorithm robust
against over-fitting.

Two variants of this algorithm were pro-
posed to deal with multi-class classifica-
tion: AdaBoost.MH, defined on the basis of
the Hamming loss minimization, and Ad-
aBoost.MR, which relies on ranking loss min-
imization. Whether we choose a loss to min-
imize or another, we have to design how
weak learners are generated. Schapire pro-
poses a very simple one for text classifica-
tion: each weak hypothesis just returns a real
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Given:
(x1, y1), · · · , (xm, ym)
where xi ∈ X, yi ∈ Y = {−1,+1}

Initialize D1(i) = 1/m
For t = 1, · · · , T :

· Train weak learner using distribution Dt

· Get weak hypothesis ht : X → {−1,+1}
with error:

Et = Pri∼Dt
[ht(xi) �= yi] =

=
∑

i:ht(xi)�=yi
Dt(i)

· Let βt = 1

2
ln(1−Et

Et
)

· Update D:

Dt+1(i) = Dt(i)

Zt
×

×
{

e−βt if ht(xi) = yi,

eβt if ht(xi) �= yi,
=

= Dt(i)exp(−βtyiht(xi))

Zt

where Zt is a normalization factor
so that D is a distribution

· Output final hypothesis:

H(x) = sign(
∑T

t=1
βtht(X))

Figure 1: AdaBoost.MH algorithm

value when a certain term appears and an-
other value if the term is not present in the
document. This value use to be the score Zt

in AdaBoost.MH and an approximation of Zt

in AdaBoost.MR (since there is no analytical
solution).

Results shown by Schapire and Singer on
the Reuters-21578 corpus (Schapire y Singer,
2000) promoted AdaBoost.MH outperform-
ing other algorithms like Rocchio, Näıve
Bayes and Sleeping Experts. Unfortunately,
in our opinion the Reuters-21578 collection
is not a very suitable collection for perform-
ing multi-label classification experiments due
to the low number of categories assigned to
each document (rather few, two or three cat-
egories per sample in rare cases). Similar re-
sults were found also on the Reuters-21578
collection (Weiss et al., 1999).

2.2 Adaptive selection of base

classifiers

In the Adaptive Selection of Base Classi-
fiers approach (Montejo-Ráez, Steinberger, y
Ureña-López, 2004) we basically train a sys-
tem using the battery strategy (many clas-
sifiers working together independently), but
(a), we allow tuning the binary classifier for

a given class by a balance factor, and (b) we
provide the possibility of choosing the best of
a given set of binary classifiers. Furthermore,
we intended to apply our classification sys-
tem to real time environments so that a gain
in classification speed was very important.
Therefore, the algorithm introduces the α pa-
rameter, resulting in the algorithm given in
figure 2. This value is a threshold for the min-
imum performance allowed to a binary classi-
fier during the validation phase in the learn-
ing process. If the performance of a certain
classifier is below the value α, meaning that
the classifier performs badly, we discard the
classifier and the class completely. By doing
this, we may decrease the recall slightly (since
less classes get trained and assigned), but we
potentially may decrease computational cost,
and increase precision. The effect is similar
to that of the SCutFBR (Yang, 2001). We
never attempt to return a positive answer for
rare classes. In (Montejo-Ráez, Steinberger,
y Ureña-López, 2004), it is shown how this fil-
tering saves us considering many classes with-
out significant loss in performance.

Input:
a set of training documents Dt

a set of validation documents Dv

a threshold α on the evaluation measure
a set of possible label (classes) L,
a set of candidate binary classifiers C

Output :
a set C ′ = {c1, ..., ck , ..., c|L|} of trained
binary classifiers

Pseudo code:
C ′ ← ∅
for-each li in L do

T ← ∅
for-each cj in C do

train-classifier(cj , li, Dt)
T ← T ∪ {cj}

end-for-each
cbest ← best-classifier(T , Dv)
if evaluate-classifier(cbest) > α

C ′ ← C ′ ∪ {cbest}
end-if

end-for-each

Figure 2: The one-against-all learning algo-
rithm with classifier filtering

For every classifier training, positive sam-
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ples are over-weighted by the fraction of neg-
ative samples over positive ones, that is, the
weight for positive samples (w+) is:

w+ = C−/C+

where

C− is the total number of negative samples
for the class

C+ is the total number of positive samples
for the class

As we can see, the more positive docu-
ments we have for a given class, the lower the
over-weight is, which makes sense in order to
give more weight only when few positive sam-
ples are available for that class. This method
was used previously (Morik, Brockhausen,
y Joachims, 1999) but they did not report
how much it improved the performance of
the classifier over the non-weighted scheme.
As we said, this w+ factor was used in our
experiments to over-weight positive samples
over negative ones, i.e. the classification er-
ror on a positive sample is higher than that
of a negative one.

Besides this, the S-cut approach was inte-
grated into the algorithm. The assignment of
a sample as positive can be tuned by specify-
ing the decision border. By default it is zero,
but it can be set using the S-Cut algorithm
(Yang, 2001). This algorithm uses as thresh-
old the one that gives the best performance
on an evaluation set. That is, once the clas-
sifier has been trained, we apply it against
an evaluation set using classification values
(e.g. the margin for SVM) as possible can-
didate thresholds. According to S-Cut defi-
nition, the threshold that reported the best
performance (the highest F1 in our case) is
used as decision boundary for that class.

3 The HEP collection

The HEP corpus1 is a collection of papers
related to High Energy Physics, and man-
ually indexed with DESY labels. These
documents have been compiled by Montejo-
Ráez and Jens Vigen from the CERN Docu-
ment Server2 and have motivated intensive

1The collection is freely available for academic
purposes from:
http://sinai.ujaen.es/wiki/index.php/HepCorpus

2http://cds.cern.ch

No. docs. Keyword
1898 (67%) electron positron
1739 (62%) experimental results
1478 (52%) magnetic detector
1190 (42%) quark
1113 (39%) talk
715 (25%) Z0
676 (24%) anti-p p
551 (19%) neutrino
463 (16%) W
458 (16%) jet

Figure 3: The ten most frequent main key
words in the hep-ex partition

study of text categorization systems in re-
cent years (Dallman y Meur, 1999; Montejo-
Ráez y Dallman, 2001; Montejo-Ráez, 2002;
Montejo-Ráez, Steinberger, y Ureña-López,
2004).

In these experiments we have used the
hep-ex partition of the HEP collection, com-
posed by 2,839 abstracts related to experi-
mental High-Energy Physics that are indexed
with 1,093 main keywords, with an aver-
age number of classes per document slightly
above 11. This partition is highly imbal-
anced: only 84 classes are represented by
more than 100 samples and only five classes
by more than 1,000. The uneven use is par-
ticularly noticeable for the ten most frequent
key words: In table 3 the left column shows
the number of positive samples of a key word
and the percentage over the total of samples
in the collection.

4 Experiments and results

Once that the collection and the two ap-
proaches studied have been introduced, it is
time to show the results obtained. For per-
forming these experiments we have used the
TECAT3 implementation of the adaptive se-
lection algorithm, and the BoosTexter4 code
for running the AdaBoost method.

About the plain text collection, we have
only used the abstract field of the meta-data
set in the hep-ex partition. The keywords
have been preprocessed to only consider first-
level ones (known in DESY thesaurus as pri-
mary keywords). Reactions and energy re-
lated keywords have not been considered, be-
cause they are actually very specialized enti-

3Available at http://sinai/wiki/index.php/TeCat
4Available at http://www.cs.princeton.edu/

~schapire/BoosTexter/
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ties that should be detected and recognized
from the full-text version. Abstracts have
been processed as follows:

• Punctuation was removed

• Every character was lower-cased

• Stop words were removed

• The Porter stemming algorithm (Porter,
1997) was applied

• Resulting stems were weighted according
to the TF.IDF scheme (Salton, Wong, y
Yang, 1974)

For the evaluation of experiments, ten-fold
cross validation (Kohavi, 1995) was used in
order to produce statistically relevant results
that do not depend on the partitioning of the
collection into training, evaluation and test
sets. Extensive experiments have shown that
this is the best choice to get an accurate es-
timate. The measures have been computed
by macro-averaging per document (that is,
they are computed for every document and
then averaged). These measures are precision
and recall. The F1 measure (van Rijsbergen,
1975)) is used as an overall indicator based
on the two former ones and is the reference
chosen when filtering is applied. Final val-
ues are computed using macro-averaging on
a per-document basis, rather than the usual
micro-averaging over classes. The reason is,
again, the high imbalance in the collection. If
we average by class, rare classes will influence
the result as much as the most frequent ones,
which will not provide a good estimate on the
performance of the multi-label classifier over
documents. Since the goal of this system is
to be used for automated classification of in-
dividual documents, we considered to be far
more useful to concentrate on these measure-
ments for our evaluation of the system. More
details about these concepts can be found in
(Sebastiani, 2002), (Lewis, 1991) and (Yang
y Liu, 1999).

BoosTexter offers three possible versions
of the algorithm: Real AdaBoost.MH, which
uses real values for the classification sta-
tus value (CSV) of every weak learner and
Hamming loss as bound error, Discrete Ad-
aBoost.MH with discrete values as class de-
cisions (CSV), and Discrete AdaBoost.MR
with discrete CSV and designed for ranking
correct classes on the top. In figure 4a we can
notice how they differ in performance when

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

re
ca

ll

precision

Real AdaBoost.MH
Discrete AdaBoost.MH
Discrete AdaBoost.MR

(a) AdaBoost versions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

m
ea

su
re

n-top

precision
recall

F1

(b) Effects of scoring

Figure 4: Behaviour of the AdaBoost algo-
rithm on the hep-ex partition

considering scoring (each point is obtained
considering a given number of classes per doc-
ument), that is, when ranking all classes by
their classification status value and selecting
the ones with the highest rank. From this
graph the main conclusion is that the Real
AdaBoost.MH algorithm widely outperforms
discrete versions. In figure 4b the effect of
assigning a given number of classes to the
document is drawn. When 10 classes are
considered, all measures meet at the same
value, and it is also evident the obvious be-
haviour for precision and recall depending on
the number of classes assigned.

On the other hand, TECAT has been run
with four possible configurations where two
different algorithms (Rocchio and PLAUM)
have been studied in order to show how scor-
ing affects performance. The configurations
are as follows:

• Rocchio (all). The linear Rocchio algo-
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Figure 5: Results using scoring for studied
methods

rithm is used as base classifier (Lewis et
al., 1996) with S-cut thresholding (Yang,
2001)

• Rocchio (scoring). The assignment is
performed taking the n-top classes. We
have tried with a variable number of
them (n) and found that 10 achieves a
good compromise between precision and
recall. In fact, the average number of
classes per document in the hep-ex par-
tition is 11,06.

• PLAUM (all). This perceptron is used
as base classifier, in this configuration all
positive values returned by the classifier
are assigned, so no selection by rank is
done.

• PLAUM (scoring). Finally, as for Roc-
chio, here we select top classes by rank-
ing their classification status values.

Here the system knows beforehand how
many classes are assigned to every doc-
ument.
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Figure 6: (a) results over F1 measure when
using scoring, and (b) overall view of different
approaches

Results obtained were very clear: TECAT
outperforms Boostexter on any situation. In
figures 5a and 5b values of precision and re-
call respectively reached by all the studied
approaches are represented. Straight lines
are values obtained for those algorithms that
do not consider scoring (so the assignment
of the class is decided according to a thresh-
old on the CSV). Though highest values on
these measures are reached by scoring strate-
gies, the overall performance measured on the
F1 value tells us that non-scoring strategies
are better in general (see figure 6a), except
in the case of the PLAUM algorithm with a
fixed number of classes equal to 10.
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5 Conclusions and open issues

From results above, we can summarize some
empirical conclusions:

• Scoring is not a desirable approach for
multi-label text categorization of HEP
related corpora. We can see how the
Rocchio algorithm obtains a much better
precision and recall when each classifier
takes the decision of whether to assign
the associated class or not, i.e. when we
compute a different Scut on each class.

• In the case of PLAUM, only scoring with
a number of 10 classes is a better choice
than non-scoring assignment. But this
implies the study of the best number of
classes, so that number may not be that
good for other collections. In general, we
would suggest also in this case the use of
selection by thresholding (CSVs over 0
in the case of PLAUM).

• AdaBoost is able to perform multi-label
classification on the HEP collection, but
its performance has been reported to be
significantly worse than that offered by
the adaptive strategy.

Among the possible lines that we should
follow in the future, we have identified two
interesting topics:

• Set a different cut (threshold) for each
class using AdaBoost may improve the
multi-label classification. This can be
done not as part of the AdaBoost algo-
rithm, since an approach like the Scut
threshold can only be computed using a
validation set.

• Adaptive selection of base classifiers are
not better than AdaBoost at the same
level, that is, the adaptive selection is
an strategy for binary classifiers integra-
tion focused on multi-label categoriza-
tion. Therefore, it is possible to inte-
grate AdaBoost as base classifier into
the adaptive selection algorithm and to
study if this improves current results.

Both approaches are similar in that both
algorithms integrate base classifiers (known
as weak learners in boosting). The behaviour
of AdaBoost with more accurate classifiers,
like SVM (Li, Wang, y Sung, ), should be
studied. Anyhow, the adaptive selection is a

very interesting and cheap strategy for classi-
fiers integration oriented to solve multi-label
assignments.
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Montejo-Ráez, A. y D. Dallman. 2001.
Experiences in automatic keyword-
ing of particle physics literature.
High Energy Physics Libraries We-
bzine, (issue 5), November. URL:
http://library.cern.ch/HEPLW/5/papers/3/.

Montejo-Ráez, A y R. Steinberger. 2004.
Why keywording matters. High Energy
Physics Libraries Webzine, (Issue 10), De-
cember.
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