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Resumen: En este trabajo se presenta el diseño de un sistema de Reocnocimiento
de Entidades para textos escritos en vasco. Para el desarrollo de dicho sistema se
han probado diferentes técnicas, algunas de ellas basadas en información lingúıstica
y otras en cambio aplicando diversos métodos de aprendizaje automático. Además
de presentar cada técnica por separado y sus correspondientes experiementos con
diferentes fuentes de información, proponemos también una serie de combinaciones
con diferentes metodos para obtener aśı un sistema más completo y robusto. Para
concluir, presentamos las conclusiones y reflexiones concluidas de todos estos exper-
imentos, especialmente válidas para aquellos sistemas que traten el reconocimiento
de entidades en textos escritos en otros idiomas que no sea el inglés.
Palabras clave: Reconocimiento de Entidades con nombre, conocimiento
lingúıstico, Aprendizaje automático, Métodos combinados

Abstract: This paper presents the conclusions reached from the development of
a system for Named Entity recognition in written Basque. In order to obtain this
recognizer we have worked with different types of classifiers, one of them based
on linguistic information and others constructed using machine learning methods.
Taking these classifiers as starting point, and once we explain the different attempts
done with each simple method using different information sources, we present the
experiments we did combining those single methods in order to improve the perfor-
mance and obtain a more robust system. Finally, we explain some conclusions and
lessons we have learned from all these experiments, especially useful when dealing
with named entity recognition in languages others than English.
Keywords: Named Entity Recognition, Linguistic Knowlege, Machine Learning
and Combined methods

1 Introduction and Related Work

Named Entity Recognition and Classification
(NERC) constitutes a very important task
in Natural Language Processing (NLP) and
specifically in tasks related to Information
Extraction.

As defined in the Message Understanding
Conference (MUC) (Chinchor, 1998), Named
Entity (NE) recognition consists on the iden-
tification and categorization of entity names

(person, organization and location), tempo-
ral expressions (dates and times), and some
types of numerical expressions (percentages,
monetary values and so on). Sometimes two
different subtasks are distinguished: Named
Entity Recognition (NER) which determines
the boundaries of the entities, and Named
Entity Classification (NEC) which assigns
the corresponding type of entity. When we
refer to NERC as a task, it involves the se-
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quential application of both NER and NEC
tasks. Among the different techniques used
to process these data, we find some systems
based on statistical methods, some based on
strictly linguistic methods that make use of
grammar rules (Magnini et al., 2002), and fi-
nally the ones that combine rules and statis-
tics (Mikheev et al., 1998). Some previous
work involving an analysis of the written text
is generally required before applying these
techniques. In the simplest cases, only tok-
enization is applied, but in other cases, mor-
phological analysis, disambiguation, and the
attachment of semantic features must also be
carried out.

The machine learning (ML) paradigm has
been very successful on this task and recently
language-independent shared tasks have been
evaluated with different systems using the
same corpus (Tjong, 2002) (Tjong & De
Meulder, 2003). Observing these workshops
we can say that Maximum Entropy, Ad-
aBoost or the combination of several meth-
ods achieve good results. The features used
are quite well-defined too, such as a window
with the previous and next words, including
information about spelling (mainly capital
letters), part-of-speech (PoS), affixes, chunk
tags and occurrence in gazetteers. Anyway,
results in CoNLL-2003 ”do not reveal a single
feature that would be ideal for NER ” (Tjong
& De Meulder, 2003).

The paper is structured as follows: Sec-
tion 2 presents the aims and design of the
project. Section 3 deals with the first step,
a linguistic recognizer based on a grammar
for the identification and a heuristic for the
classification. In section 4 we describe the
different experiments in order to obtain the
best possible tool using ML based methods.
In section 5 we present the experiments for
NERC, and finally, section 6 presents conclu-
sions and future work.

2 Experimental Context

The need of a NE recognizer for Basque
was observed in various projects of the IXA
Group (ixa.si.ehu.es). As it can be used as
a basic tool for future projects in Language
Engineering, we decided to build a system
for identifying and classifying NEs in written
Basque texts.

Basque has a very rich inflectional sys-
tem in which the article and the case marks
(corresponding to prepositions in other lan-

guages) are attached to the word stem (Ale-
gria et al., 1996). This also applies to proper
nouns (even to foreign ones). Thus, proper
nouns can occur in several forms e.g. the per-
son name Izaskun can occur in the form of
Izaskun, Izaskunek, Izaskuni, Izaskunentzat
and so on.

Although the forms Izaskunek, Izaskuni
and Izaskunentzat have a clear inflectional
case, this does not happen in the form Iza-
skun. Izaskun has two possible morphologi-
cal analysis: One with no-declension case and
the other with the absolutive case. This is
the case for ’Errusia’ in the sentence: ’Gaizki
egon da Errusia Jeltsin pean’ (Russia has not
been well governed by Jeltsin). As we read
this sentence we tend to think that ’Errusia
Jeltsin’ is one entity, as the absolutive case
is not visible, but actually we have two sep-
arate entities. So this non-visible absolutive
cases can create ambiguity when dealing with
entity recognition.

Regarding the structure and the nature of
the elements of Basque named entities, the
following aspects can be underlined, some of
which are shared by other languages:

• Many family names and even first names
can be common nouns or adjectives. For
example the adjective ’zabala’ (’wide’) is
a common surname.

• A lot of location names can be person
surnames too. In the Basque Country,
people have been given the name of their
birthplace or living place (house or quar-
ters) for centuries.

• Interferences from dialectal uses and
from spelling rules in neighbouring lan-
guages are also frequent. The late stan-
dardization process of Basque and its
wide dialectal use may cause the same
name to be used in different forms e.g.
’Etxeberria’ and ’Etxebarria’. In addi-
tion to this, it is not strange to find
Basque names in Basque texts written
with Spanish or French spelling rules
e.g. ’Echeverria’, ’Echevarria’ or ’Echev-
erria’.

• Obviously, the use of foreign names is
also essential, for example, in news re-
ports. Foreign acronyms are especially
frequent since it takes longer to adapt
these neologisms to Basque. For in-
stance, ISDN/RDSI or DNA/ADN may
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appear in Basque written texts either in
English or in Spanish, depending on the
author.

2.1 Resources

According to (McDonald, 1996), there are
two kinds of data that should be taken into
account in order to identify and classify the
possible NEs: internal evidence and external
evidence. The former is provided by the ex-
pression itself and its elements, and the latter
by the context in which it occurs.

In order to exploit the information pro-
vided by the entity itself and its elements
as much as possible, we have used a lemma-
tizer/tagger for Basque (Ezeiza et al., 1998).
This tool performs the tokenization, the mor-
phosyntactic analysis and the PoS disam-
biguation on a text, so it allows us work not
only with the shallow information of words
but also with specific linguistic information.
This kind of information is very useful for
both NER and NEC task, specially when we
are dealing with an agglutinative language
such as Basque.

We have used two types of lists as ex-
ternal information: trigger word lists and
gazetteers. While the former provide the in-
formation about the words around the en-
tity, the latter concentrate on some typical
classification of the entities. We borrowed
some gazetteers for different categories (Per-
son (PER), Organization (ORG) and Loca-
tion (LOC)) from Euskaldunon Egunkaria, a
newspaper entirely written in Basque, and
the gazetteer for PER was enriched with in-
formation taken from the census of the lo-
cal government. Thus, we obtained a PER
gazetteer with about 121,503 instances, a
LOC list with 1,444 instances and an ORG
one with 973.

The trigger word list used in the first ap-
proaches was extracted from a small news
corpus on economics at the beginning of the
project. But as we were going ahead, we ob-
served that this information was not enough
and we relied on WordNet (WN) information
in order to enrich it. For that purpose, we
used the work developed in (Magnini et al.,
2002). Concretly, as WN synsets represent
exactly the same word for every language,
we borrowed the synset lists of trigger words
from the work mentioned above, and we used
EuskalWordNet1 to obtain the corresponding

1WordNet for Basque.

Basque forms. With this approach we in-
creased trigger words of PER category from
29 to 3,825, LOC category trigger words from
71 to 895 and finally ORG category trigger
words from 11 to 594.

The approach made using WN was not
only used for trigger words, we also tried to
enrich the information of gazetteers using it,
but the results were not as good as with trig-
gers. We only obtained 174 new instances for
PER, 103 for ORG, while the new instances
for LOC were 322.

2.2 Project Design

The main goal of our system is to recog-
nize expressions referring to Persons, Loca-
tions, Organizations and Others. Numeri-
cal and temporal expressions are already cap-
tured by the lemmatizer/tagger used in the
pre-process. The problem of nested named
entities will not be solved in this work, but it
would be considered on further works.

When we faced the task we considered two
possibilities:

• to tag a corpus directly by hand and to
construct the tool using exclusively ML
techniques.

• to build a linguistic tool which will help
us tag a corpus.

Although ML techniques offer robustness
and good results, we finally decided to build
a linguistic recognizer, bearing in mind that:

• it can offer good results too.

• it can be combined with ML based meth-
ods and they can be complementary.

• the linguistic features defined for this
method can be useful for further steps.

• the necessary linguistic pre-process has
already been carried out.

• it permits a semiautomatic way to an-
notate the corpus for evaluation (and
for supervised learning with the ML
methods), making this task simpler and
faster.

So the project was designed in four steps.
Firstly, we developed a tool based on lin-
guistic information. Secondly, we generated

http://sisx03.si.ehu.es/cgi-bin/privat-synset-
mysql/wei2.editsynset.perl
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semi-automatically annotated corpus (hand-
reviewed). Thirdly, we trained different ML
techniques on these corpus in order to obtain
the best possible recognizer. And finally, the
recognizers obtained were combined so as to
improve the results, of both identification and
classification.

3 The Linguistic Tool

The linguistic version, named Eihera, is the
result of the first step. It consists of a
grammar for identification and its rules are
based on the morphological information pro-
vided by the lemmatizer/tagger and a heuris-
tic that uses internal and external evidence
for classification.

3.1 Identification

XFST (Xerox Finite State Transducer)
(Beesley & Karttunen, 2003) is the tool used
to develop the grammar for the identification
of entities. It allows us to define both the
structure of entity names (organization, lo-
cation and person names) and the rules for
their identification.
3.1.1 Main elements of the grammar
We find entity names and trigger words
among the main elements of our grammar.
Although we will not consider the latter ones
relevant for the identification of the entities,
they will be helpful for classification.

Most of the words in named entity expres-
sions are capitalized in Basque, as it happens
in English and in Spanish. That is why the
main feature of the whole entity is the use
of capital letters. But there are other fea-
tures that should be taken into account, for
instance the category and subcategory of the
elements and their inflection.

The entity elements can be divided into
these main category/subcategories: IZE
(common noun), IZB (proper noun), LIB (lo-
cation/organization proper noun), ADJ (ad-
jective), SIG (acronym) and BST (particle2).

The elements in the entity must be written
in capitals except the cases of some BST. For
the identification of entities we make a dis-
tinction among non-case elements, elements
in genitive, and others, because the first two
can indicate the continuation of the entity,
while other cases point out the boundary of
the entity.

2BST stands for particles that occur in some enti-
ties borrowed from Spanish, such as ’de’ in Santiago
de Compostela

3.1.2 Main patterns
Two patterns of named entities are distin-
guished in the grammar: entities containing
a single element (Europa(n)3 LOC) and enti-
ties composed of more than one element (Eu-
ropako Banku Zentral(e)a(n)4 ORG).

For entities consisting on a single element,
the element must be a proper noun (IZB
PoS tag, which will be assigned at the pre-
process by the lemmatizer/tagger), a loca-
tion/organization proper noun (LIB) or an
acronym (SIG). Words with other PoS tag
will not be considered as candidate for this
kind of entities. There is no restriction re-
lated to declension. The element can bear
any case when it is declined because elements
with no-declension case are also accepted.
For example, “EHU”5 is an acronym with
no-declension case. “Bilbon”6 is a location
name declined in the inesive. Both will be
considered single entities.

The entities with more than one element
follow a more complex pattern in both PoS
tags and declension restrictions. The last ele-
ment of the entity and the rest of the elements
are different. While the last element can bear
any case, the other elements have more de-
clension restriction. They can only be de-
clined in genitive. Regarding the PoS, more
tags are accepted. In addition to PoS tags
accepted by single-element entities, elements
can also be common nouns (IZE), adjectives
(ADJ) or some special particles (BST).

Examples of the second pattern are:

• Europako (LIB PoS tag element + ko
LOCATION-GENITIVE affix7) Banku
(IZE + non declension case) Zentralean
(ADJ+ ean INESIVE declension affix)8

• Alex (IZB) de (BST) la (BST) Iglesiak
(IZB + k ERGATIVE affix)9

Those two patterns described above, de-
limit the structure of the entities we have to
deal with. When we apply them in a text
and when both of them can be applied, the

3In Europe
4At the European Central Bank
5University of the Basque Country
6Bilbo is a location name + ’n’ inesive declension

affix which adds some conceptual information to the
element. The complete meaning of the entity is ’in
Bilbo’

7European or From Europe
8At the European Central Bank.
9Alex de la Iglesia, a spanish cinema director.
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longest element sequence that matches them
will be marked as entity candidate. That is
the only way XFST allows us to work without
any pre-defined word sequence length, and
that is why we decided not to treat nested
named entities in this first approach.

3.2 Classification

For the classification, we apply a heuris-
tic that uses simple trigger words list and
gazetteers.

Apart from these sources, the heuristic
makes use of linguistic information provided
by the entity itself, in the following way:

Step 1:
The identified entities are matched up to

the ones in the gazetteers, and when coinci-
dences occur they are assigned the category
of the corresponding gazetteer. If no matches
are found, the process goes to

Step 2:
The heuristic selects the elements in the

entity one by one: first it selects the last el-
ement and then it goes leftwards analyzing
their declension and PoS. Depending on the
information it gets, different weights are as-
signed to the classification categories. For ex-
ample, if the element has been tagged with
IZB, then person’s weight will be increased
while location and organization categories
will not be changed, because it is more prob-
able that the whole entity refers to a person
when proper noun elements appear in it, than
to a location. In case there is any genitive
among the elements, a further analysis is ap-
plied. For instance, in Europako Banku Zen-
tralean10, Europako has genitive declension,
so we only consider the elements Banku Zen-
tralean for classification. This is due to the
fact that Basque is a head-final language.

Therefore, the heuristic considers the
words to the left until it finds a genitive and
when it finds one, this and every element pre-
ceding it will not be relevant for the weight
assignment.

Step 3:
If there is some trigger word identified

together with the entity, it is selected and
searched for in the corresponding list of trig-
ger words. In case some of them matches the
corresponding list, the weight for assigning
its category increases.

Step 4:

10In the European Central Bank.

The heuristic finds out which category has
obtained higher weight and assigns it to the
entity.

3.3 Results

Since we have made a distinction between
identification and classification when we de-
signed Eihera, this distinction is also reflected
in the evaluation process.

In a test corpus of 931 entities, Eihera
identifies 951 from which 805 are correct. Re-
sults are summarized in Table 1.

Precision Recall F-score
Eihera 84.65 86.10 85.37
Table 1: Results for Eihera in NER

We revised 100 incorrect NEs, randomly
selected, in order to find causes of errors. As
shown in Table 2, half of the identification
errors (35%+29%) are due to external input
reasons such as typographic errors, capital-
ization errors, and so on, that frequently ap-
pear in newspaper articles; thus, they would
not occur in accurately written texts. Most of
the remaining errors could be corrected with
the improvement of the tagger.

Reason Percentage
Errors in capital letters 35%
Bad analyses in pre-process 29%
Errors in the input format 22%
Nested NEs 8%
Others 6%
Table 2: Source of errors in identification

Results are poorer in classification than in
identification but they can not be considered
bad results. It classifies 679 expressions with
the correct category out of 931 entities in the
test corpus, so it obtains 72.93% precision.

As it was planned in the design, we will
see in the next section how the system be-
comes more robust and better results can be
obtained when ML techniques are used.

4 Experiments with ML Methods

The corpus obtained by applying Eihera on
articles from Euskaldunon Egunkaria was
hand-reviewed and then BIO tagged11. We
divided it in the following way in order to use
it for ML techniques: 46,227 words and 3,817

11B-begin of entity, I-intermediate, O-out of entity
for NER task and LOC, PER, ORG and OTH for
classification.
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entities were used for the training corpus and
15,960 words and 931 entities for testing12.

We considered Weka a good choice for ML
experiments (Whitelaw & Patrick, 2003), be-
cause, apart from being a free software with
GPL license, it is also a very flexible tool that
allows us to experiment with different meth-
ods.

In order to compare the results to the state
of the art in the task, we trained Abionet
(Carreras et al., 2003) with our corpus. This
method, based on the AdaBoost algorithm
was one of the best methods in both CoNLL-
2002 and CoNLL-2003 for NERC in several
languages.

Our work with these tools has been fo-
cused on the selection and tunning of fea-
tures.

A language independent system13, based
on multiple orthographic tries which are com-
bined with a Hidden Markov model frame-
work (Whitelaw & Patrick, 2003) has been
also used for the NER task. Although this
tool achieves poorer results than the methods
mentioned before, we thought that a different
approach could help to improve the results
when combining methods.

Once we have learned from the training
corpus and tagged the test corpus, the eval-
uation can be carried out. We always assign
one and only one category to each entity ex-
pression. That is why only one measure (pre-
cision) can be estimated for NEC and there
are some measures for NER:

• Average precision, recall and F-score for
all the BIO categories.

• Precision, recall and F-score for B and
I categories, since they are the target of
the system.

• Precision, recall and F-score of the iden-
tified entities calculated as in CoNLL.

The last measure is the most useful in order
to compare different methods and languages.
So this will be the one shown in the evalua-
tion tables.

4.1 Identification

There are many variants when using Weka to
train a NER classifier. Now we will present
the features and methods which best perform
for an agglutinative language such as Basque.

12The same test-corpus is used in all experiments.
13We will refer to it as Sydney in the tables.

4.1.1 Features
Based on the related work and the relevant
information in the grammar, different fea-
tures were proposed and tested using ML
methods.

The key-features we have applied are the
following (similar results were obtained with
all the methods): word, lemma, PoS, de-
clension case, capitalized word, capitalized
lemma, word in capitals, and lemma in capi-
tals.

Other features, such as the explicit indica-
tion of punctuation signs, were excluded be-
cause they did not improve the results.

A [-3,+3] window was applied, so 56 fea-
tures per word were obtained (8 features in 7
words).

Some systems in CoNLL-2003 use external
information in order to extract capitalization
features, but we think that the information
of the capitalized lemmas obtained from the
pre-process is equivalent.

4.1.2 Methods
We considered the following: for the first at-
temps on Named Entities recognition at the
ML area: Naive Bayes (NB), C4.5 and Sup-
port Vector Machines (SVM)14 from Weka,
and AdaBoost from Abionet (Carreras et al.,
2003). We knew that some of them per-
formed well for the task we were dealing with
and all of them seemed to be quite simple to
use.

Precision Recall F-score
NB 46.08 54.76 50.05
Sydney 74.74 77.54 76.12
SVM 85.02 81.93 83.44
C4.5 86.74 82.57 84.60
Eihera 84.65 86.10 85.37
Abionet-BIO 15 89.22 85.88 87.52
Abionet 89.81 85.78 87.75
Table 3: NER results of different methods

When we selected NB and C4.5 we knew
they were not the best performing meth-
ods for the identification task; however, we
wanted to test them with a double goal: to
compare the results with the ones obtained

14SVM is a binary classifier but in Weka is extended
to handle multi-class using pair-wise classification.

15Abionet-BIO represents the result obtained in
Abionet without using BIO-tags of previous words.
This measure is taken because this features can not
be used in NB, C4.5 and SVM, because their imple-
mentation does not permit it.
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with Abionet, and to have different recogniz-
ers to combine.

Aditionaly, the University of Sydney eval-
uated their language independent system on
our corpus.

The results of the different systems are
shown in Table 3.

Some conclusion can be drawn:

• SVM does not overcome the results of
C4.5 and it needs a very long time for
training.

• The results obtained by C4.5 are 3%
lower than the results of Abionet, which
represents not only state of the art for
English and Spanish as it was proved
in CoNLL02 competition, but also for
Basque as we have just seen in our ex-
periments’ results.

• The performance of the linguistic system
(Eihera) is poorer than Abionet but bet-
ter than the others.

4.1.3 Selection of features
The selection of a set of features can improve
the results. The use of words and/or lem-
mas was a challenge that we had studied in
documents’ classification and we considered
interesting to test it on NE identification. A
lemma can concentrate information of several
words (specially in agglutinative languages),
but they lose other kind of information (de-
clension, time, ...).

w+l words lemmas
NB 50.05 50.02 62.36
C4.5 84.60 84.59 84.94
SVM 83.44 84.25 83.38

Table 4: NER results (F-score) with words
and/or lemmas

In the evaluated version we took advan-
tage of both words and lemmas but this
seemed not to be a good option for feature
selection. So, we tested the results with only
words, only lemmas and compare them to the
previous results got by using both. The re-
sults for F-score are in Table 4.

Looking at the table, we can conclude that
the use of only lemmas improves the results
fairly in Naive Bayes. This improvement
applies only to precision, which raises from
46.08 to 72.6 using Bayes, and only from 50
to 62.36 in F-score. Using C4.5 the gain is
weaker (only in precision too).

4.1.4 Selection of instances
Another technique used to improve the re-
sults is to try to set a better sampling, dis-
carding errors and avoiding overfitting. As
a consequence of this selection, the learning
process can become faster too16.

We thought that the O category may un-
balance the corpus. Researches in the MIT
(Mikheev et al., 1999) show the negative ef-
fect of classes with sample of different quan-
tity of instances using Naive Bayes. In the
NER task this effect can be even worse be-
cause, although the system classifies BIO cat-
egories, the evaluation is only done over cor-
rectly classified entities. In fact the I category
shows less performance than the others. That
is why we decided to remove some examples
of words that were not part of the entities,
and to analyse the results. A simple heuris-
tic can discard, with very high confidence,
words that do not belong to entities. In our
case, the elimination of all words with non-
capital letters, except for nouns, conjunctions
and BST tagged words rules out almost half
of the instances (the number of instances falls
from 46,227 words to 22,264 in the training
corpus), while only 0.4% of the entities are
left out. We have the same proportion in the
test corpus.

There are two possible ways of discarding
words:

• applying the feature-extracion window
so as to obtain the examples, after re-
moving the words.

• removing the examples after applying
the feature-extraction window.

F-score(whole) F-score(short)17

NB 50.05 62.10
C4.5 84.60 84.30
SVM 83.44 84.45

Table 5: Effect of reducing the examples us-
ing both words and lemmas in NER

The second strategy provides better re-
sults (about 3% better precision and recall)
since there is richer information about the
context of words.

16This is very important in methods like SVM since
they are very sensitive to changes in the number of
examples.

17The results are slightly better (about the 0,2%)
because the number of correct entities are 935 but
after the selection only 931 appear in test corpus.
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Results on F-score and time are shown in
Table 5 and 6. The former considers words
and lemmas and the latter considers only
lemmas.

Further conclusions can be extracted from
these figures:

• The reduction of the training-set
achieves good results with Naive Bayes
and SVM. In the last case, the results
are now similar to those obtained using
C4.5. This behaviour might be due to
the small size of the training corpus.

• The training time is drastically reduced,
and, since time is a limiting factor for
experiments, this can be considered an
interesting feature for SVM.

These results are still 3% poorer than the
ones obtained with Abionet, the winner in
CoNLL02 for Spanish and Dutch.

F-score(whole) F-score(short)
NB 62.36 69.68
C4.5 84.94 84.74
SVM 83.38 84.36

Table 6: Effect of reducing the examples us-
ing only lemmas in NER

4.1.5 Combining methods for the
identification

Combining methods is another strategy to
improve the results. We had the option of
combining the same method with different
features and training sets, or combining dif-
ferent kinds of methods.

Precision Recall F-score
Sydney 74.74 77.54 76.12
C4.5 86.74 82.57 84.60
C4.5-lemma 85.73 84.17 84.94
Eihera 84.65 86.10 85.37
Abionet 89.81 85.78 87.75

Table 7: NER results of each method

The last choice is the most attractive be-
cause we already have three different kinds of
methods that offer quite good results:

• A Language independent method (Syd-
ney).

• A Linguistic method (Eihera).

• ML based methods (C4.5 and SVM from
Weka, and AdaBoost from Abionet).

The results achieved with each method are
shown in Table 7. We also tested different
combinations of methods using simple voting.
The most important results are described in
Table 8.

Pr. Rc. F-sc
Syd.,C4.5,C4.5-lem 85.59 84.28 85.42
C4.5,C4.5-lem,Eih. 86.65 84.71 85.67
Syd.,C4.5-lem,Eih. 88.71 87.38 88.04
Syd.,C4.5,Eih. 89.49 87.38 88.42
Abio.,Syd.,C4.5 90.72 85.78 88.18
Abio.,Syd.,Eih. 90.08 87.38 88.71
Abio.,C4.5,Eih. 90.47 87.27 88.84

Table 8: NER results combining methods us-
ing voting

These results confirm the hypothesis that
results can be improved when combining dif-
ferent kinds of recognizers. We get a slight
improvement when combining the same kind
of recognizers; however, combining the three
kinds of methods (Sydney, Eihera and C4.5)
more improvement and better results than
the state of the art single method (Abionet)
are obtained (88.42 vs. 87.75).

All results increase when Eihera is added,
which confirms that exploiting linguistic in-
formation in a specific way, as using rules,
helps identifying some structures that ma-
chine learning algortihms are not able to cap-
ture. As it was expected, the best results
are obtained when Abionet is included in
the combination, by joining the three meth-
ods that produced the best results separately.
However, the best recall (87.38) and the best
precision (90.72) are obtained with Sydney,
although this gets worse results when tested
individually. This means there is a small
overlapping in the decisions taken by Sydney
identification system with regard to the other
systems.

4.2 Classification

When we started working in the NEC task,
we knew which were the best performing
methods for NER. So only the best perform-
ing methods in NER will be used for NE clas-
sification task.

We also used new information sources and
these have been useful as we will see in the
evaluation.

4.2.1 Features
We have extracted some attributes based
on the heuristic of Eihera. We have word,
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lemma, PoS, and declension case of each com-
ponent of the entity as internal evidence.
Those attributes are also extracted from the
words surrounding the entity (a window of [-
2,+2] in the experiments) in order to use con-
textual information. We used the informa-
tion obtained from different gazetteers and a
list of trigger words as external evidence.

While in the linguistic tool we have only
used the gazetteers borrowed from the Eu-
skaldunon Egunkaria newspaper (the PER
list enriched with the census of the local gov-
ernment) and a small list of trigger words,
we have used the ones enriched with Word-
Net information for ML experiments too.

To sum up, the number of attributes rises
from about 80 to 120 when WordNet infor-
mation is applied, because various attributes
have to be added in the input for each con-
sulted list in order to represent that external
evidence. And so as number of lists increase,
attributes increase linearly.
4.2.2 Methods
The methods we have tested for the classi-
fication task are C4.5 and SVM from Weka
and AdaBoost implementation of Abionet.

Comparing NEC experiments with NER
ones, C4.5 and SVM work better than Ad-
aBoost, which was the state of the art for
identification task. The results are shown in
Table 9, and the main conclusion we can draw
from them is that the ORG category is the
most difficult to classify. Comparing them to
LOC category the difference is approximately
of 10% F-score.

ORG LOC PER ALL
C4.5 71.25 81.22 78.82 75.93
SVM 69.18 79.81 76.95 74.43
Abio. 68.82 77.61 76.55 72.93
Eih. 67.28 76.49 77.68 72.93
C4.5+WN 71.66 82.70 79.01 76.69
SVM+WN 69.43 78.83 77.65 74.43
Abio.+WN 65.65 77.11 76.76 71.75

Table 9: NEC results in F-score measure for
each category

The classification of all categories was bet-
ter When we applied WordNet knowledge in
C4.5. In the case of SVM the performance
was exactly the same on average but not for
each category. In contrast to both, Abionet
worked worse. But doing an exhaustive anal-
ysis for each category we saw that the re-
sults obtained for PER and LOC are better

or similar using WordNet, respectively, while
for ORG the performance decreases signifi-
cantly.

We can verify in these results that Ei-
hera is again close to the rest of sophisticated
methods used.
4.2.3 Selection of features
On some occasions the results can be im-
proved selecting appropriate features. How-
ever, this time we have applied this technique
not only with that purpose, but also to de-
termine which are the most relevant features
for the NEC task.

We experimented omitting gazetteer
and/or trigger words information with C4.5
and Adaboost methods (results are shown
in Table 10) and we saw that the results
decrease significantly when the omission of
gazetteers was applied, while only a slight
decrease happened when omitting trigger
words.

If we focus on each possible classifica-
tion category, and we test methods without
gazetteer information results of LOC enti-
ties remain similar, but the performance of
PER and ORG categories decreases in 10%
for C4.5 and in 2% for SVM.

Thus, we can conclude that trigger words
are helpful for the NEC task but they are
not crucial, while information of gazetteers is
very relevant. Their influence would be more
or less evident depending on the robustness
of the method. Looking at our results it is
clear that Abionet is more robust than C4.5
in this aspect.

ORG LOC PER ALL
C4.5 71.25 81.22 78.82 75.93
C4.5-tr 70.95 81.08 78.89 75.83
C4.5-gz 61.02 75.41 68.35 67.13
Abio. 68.82 77.61 76.55 72.93
Abio.-tr 67.69 76.99 76.50 72.28
Abio.-tr-gz 65.53 76.99 73.11 70.67

Table 10: NEC results with selection of fea-
tures in F-score measure

4.2.4 Combining methods
We have seen in the NER task that results
improve when combining methods, so we ap-
plied the same approach in this task.

We used different strategies for doing the
combinations using classifiers obtained from
Eihera, C4.5, SVM and Abionet. In all exper-
iments we applied 3 different classifiers and a
simple voting decision.
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Firstly, we combined different classifiers
constructed with the same method but us-
ing different information sources (trigger
words/gazetteers/WordNet). The result is
exactly the same obtained with the best sin-
gle classifier used in this combination.

Then, we combined classifiers obtained
from different methods. In two experiments
(rows 2 and 3 in Table 11) we applied models
constructed using similar information sources
and another one using information from fea-
ture selection (4th row in Table 11).

When we combine C4.5 using WordNet in-
formation with SVM and Abionet, the results
are the same as the ones obtained when only
C.45+WN is applied. Nevertheless, when
combining that classifier with the linguistic
tool and Abionet (rows 3 and 4) the perfor-
mance increases.

Observing the results obtained combining
C4.5+WN and Eihera with different Abionet
classifiers (with or without external infor-
mation), we can see that omitting external
evidence is still reflected on lower results.
In those experiments LOC and PER results
remain similar while ORG performance de-
creases. But in this case the difference is
lower than in the results of simple methods
(2% loss vs 0.75% loss). Table 11 describes
the evaluation in detail.

Precision
C4.5+WN/C4.5-tr/C4.5 76.69
C4.5+WN/SVM/Abio. 76.69
Abionet/Eihera/C4.5+WN 78.73
Abio.-tr-gz/Eih./C4.5+WN 77.98

Table 11: NEC results combining methods

We wanted to know which was the influ-
ence of Eihera in those experiments. For that
purpose we chose the best combination (3rd
row in Table 11), we tested it without Eihera
and we achieved 5% lower results.

In order to find an explanation to this
performance, we analysed information used
in each system. On the one hand, Eihera
uses explicitly the syntactic structure of the
whole entity based on morphological infor-
mation.On the other hand, ML methods are
provided with the same morphological infor-
mation, but it seems that they are not able to
extract that structure. So the improvement
caused by adding Eihera might be oriented
by the information provided by this syntactic
structure, as it was mentioned for identifica-

tion.

5 NERC system

We have presented NER and NEC tasks as
separate works, but if we want a Named En-
tities recognizer, we have to apply both. In
this section we will present the results we ob-
tained when we apply NER and NEC sequen-
tially with different methods and combina-
tions.

Note that if we apply NEC in the out-
put of NER task, classifiers will treat not
only the correctly identified entities, but also
some uncompleted expressions and some oth-
ers which are captured as entities although
they are not. So the performance goes down
both in precision and recall.

NERC =>NER|NEC Pr. Rc. F-sc.
Eih.|Eih. 62.14 63.48 62.80
C4.5|C4.5+WN 67.97 64.98 66.44
Abio.|Abio. 66.62 63.90 65.24
Abio.|C4.5+WN 71.19 68.20 69.62
Syd.+C4.5+Eih.|
Abio.+Eih.+C4.5+WN 71.69 69.92 70.79
Abio.+Syd.+C4.5|
Abio.+Eih.+C4.5+WN 73.07 69.38 71.18
Abio.+C4.5+Eih.|
Abio.+Eih.+C4.5+WN 72.50 70.24 71.35

Table 12: NERC experiments

We can distinguish two different kinds
of NERC experiments: some systems con-
structed applying simple methods for both
NER and NEC tasks, and others obtained
combining different classifiers.

The results of Eihera in Table 12 reveal
that the information used is not enough to
construct a robust NERC system. Apply-
ing the best classifiers obtained from Abionet
and C4.5 independently the performance in-
creases. We did not only achieve better re-
sults using one for NER and the other for
NEC, but we can also consider them the base-
line.

In order to continue improving our results
we tried constructing more complex systems.
For that purpose we chose the best classi-
fiers constructed for each task and the per-
formance increased in almost 8% with regard
to Eihera, and in 5% with the rest. We made
a detailed analysis based on categories (see
Table 13 for the results of the best combina-
tion) and it was confirmed that ORG is the
most difficult category for recognition, with
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10% lower performance than the others. So
in the future new information sources must
be studied and used in order to correct this
phenomenon and construct a robust system
for all categories.

Precision Recall F-score
PER 77.90 73.38 75.13
LOC 75.83 79.68 77.71
ORG 65.49 63.48 64.47

Table 13: The results of the best combination
for each category(Abionet, C4.5 and Eihera
for NER, and Abionet, Eihera and C4.5+WN
for NEC)

We have said that Eihera’s information is
not good enough for a robust NERC system
but note that the best results are obtained
by using the linguistic tool in NER and NEC
combinations. So, although not enough by
itself, the information is very useful.

In order to compare Basque with other
laguanges, we will take Abionet as reference
not only because its performance in Basque
is familiar for us, but also because this sys-
tem is one of the best systems presented in
both CoNLL0218 and CoNLL0319 competi-
tions. In fact, it was the winner in CoNLL02
for Spanish and Dutch, while in CoNLL03 it
got the 5th position for English and German.

We achieved a 65.24% F-score applying
Abionet for NERC in Basque, while using Ei-
hera we reached a 62.8% F-score. So there
is a difference of around 2.5% between both
systems

The state of the art in CoNLL03 (Florian
et al., 2003) combines 4 classifiers, obtaining
a 3% better performance than Abionet for
English and German.

We used 3 different methods for the ex-
periments we carried out for Basque. In this
case, we reached around 5% better perfor-
mance than Abionet.

So, although we have not applied some of
the state of the art methods of the CoNLL03
competition, and considering Abionet a good
reference, we can say that our results for
NERC task with Basque are comparable with
the ones obtained with languages others than
English, and that it seems we are following
the right way.

18http://cnts.uia.ac.be/conll2002/
19http://cnts.uia.ac.be/conll2003/

6 Conclusions and Future Work

We have presented the methodology and the
results of a NE recognizer for Basque. The
contribution of this work can be divided into
two main areas: on the one hand it can be
used for information extraction and retrieval
in Basque written texts, and more concretly
for those who work with Basque named en-
tities recognition; and on the other hand it
can be useful for named entities recognition
in general.

We tried different feature sets for Basque
NE recognition, and although we cannot say
that we have found the ideal feature set for
this task, we have found the very relevant
ones while we avoided some others.

In general, we have shown that a linguis-
tic tool can be very useful in NERC task
at any language, because it allows us sim-
plifying the annotation, learning about fea-
tures and getting a good tool to be combined
with ML-based methods for both identifica-
tion and classification of named entities.

We want to emphasize the relevance of
the linguistic features, among the ones used
in our experiments. While lemmas are suffi-
cient for NER, in NEC it is necessary to add
also inflectional cases to obtain a good per-
formance.

Observing the experiments done to select
examples for NER, we can conclude that the
selection can be useful for both speeding the
training and improving the results.

We have also observed that the errors in
the pre-process have a significant impact on
the coverage of the recognizer. Thus, we want
to lay stress on the improvement of the lem-
matizer/tagger.

We have tried increasing the size of both
trigger and gazetteer lists using WN. We have
experimented the different methods and tech-
niques with and without that enrichment.
And observing the performances, we can con-
clude that WordNet seems to be very help-
ful for entity contextualization using trig-
ger words list, but providing the whole en-
tity classification with only a gazetteer access
seems to be not so useful.

Anyway, in the near future we also want to
approach different research lines in order to
improve this recognizer. One of them these
approaches is to measure the effect of the
gazetteer size, trying different sizes starting
from scratch, as proposed in (Mikheev et al.,
1999).
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About corpus, we think that the train-
ing corpus is not big enough to reach rel-
evant conclusions about the performance of
ML techniques applied to Basque. So we will
also test the performance of the recognizer on
different sizes of the training set.

A priori the test corpus we have used is
quite small and it seems not to be a sig-
nificant set. But, we used both separated
train/test corpus methodology and cross-
validation for our first machine learning ex-
periments’ evaluations, and we saw that two
methodologies’ results were very similar. So
in spite of its small size, the test corpus
seems to be a good sampling set to work
with, and we can say that there is no overfit-
ting on the training set. On the other hand,
since results reveal that only test and cross-
validation methodologies are equivalent and
have the same significance for our test set, we
decided to only apply test corpus evaluation
methodology for further evaluations.

Finally, we want to improve the individual
performance of each entity class. For that
purpose we will try to develop class-expert-
classifiers, selecting appropriate feature sets
and learning methods for each one. Another
approach we want to experiment is the use of
more complex voting methods.

In a further future, we want to have a
multilingual named entity recognizer and we
have already started doing first approaches.
Taking Basque-English and Basque-Spanish
comparable bilingual corpus as source, we are
designing a system capable of translating en-
tities based on (Al-Onaizan et al., 2002) re-
lated work.
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