
An approach to Recognizing Textual Entailment and TE Search 
Task using SVM 

 

Una aproximación al RTE y a la Tarea de Búsqueda de Implicación Textual 
usando Máquinas de Soporte Vectorial 

Julio Javier Castillo 
Faculty of Mathematic Astronomy and Physics 

National University of Cordoba, Argentina 
cj@hal.famaf.unc.edu.ar 

 

Abstract: This paper shows a Recognizing Textual Entailment System, and a sub-system 
that address the Textual Entailment Search Task. This system employs a Support Vector 
Machine classifier with a set of 32 features, which includes lexical and semantic 
similarity for both two-way and three-way classification tasks. Additionally, we show an 
approach to dealing with the problem of searching entailment in a context of a set of 
documents that use co-reference analysis. 
Keywords:  Textual entailment, machine learning, lexical features. 

Resumen: En este trabajo se presenta un sistema de Reconocimiento de Implicación 
Textual, y un subsistema que permite atacar el problema de la búsqueda de implicaciones. 
El sistema utiliza un clasificador de Máquina de Soporte Vectorial con un conjunto de 32 
características, las cuales incluyen similaridad léxica y semántica para las tareas de 
clasificación de dos y tres vías. Adicionalmente, se presenta una aproximación inicial al 
problema de búsqueda de implicancias en  un conjunto de documentos que utiliza análisis 
de correferencias. 
Palabras clave: Implicancia Textual, aprendizaje automático, características léxicas. 
 

 
 

1 Introduction 
The objective of the Recognizing Textual 
Entailment Challenge is the task of determining 
whether the meaning of the Hypothesis (H) can 
be inferred from a text (T). 

In RTE5 the texts comes from a variety of 
sources and includes typographical errors and 
ungrammatical sentences.  

The RTE5 is based on only three application 
settings: QA, IE, and IR, in contrast to previous 
RTEs. There is a new Textual Entailment 
Search Pilot Task that is situated in the 
summarization application setting, where the 
task has the goal of finding all Texts in a set of 
documents that entails a given Hypothesis. 

In this paper, we present a system that 
addresses the textual entailment recognition 

main task and textual entailment search pilot 
task. The system applies a Support Vector 
Machine (SVM) approach to the problem of 
recognizing textual entailment. Our system, 
work almost exclusively with lexical features, 
with the aims of exploring more deeply how 
lexical information could help in the RTE task. 
Then, we use 31 lexical features and only 1 
semantic feature based on WordNet. These 
features are used to characterize the relationship 
between text and hypothesis for both training 
and test cases. 

The remainder of the paper is organized as 
follows: Section 2 describes the architecture of 
our system, whereas Section 3 shows the 
experimental evaluation and discussion of 
them. Finally, Section 4 summarizes the 
conclusions and lines for future work. 
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2  System Architecture 
This section provides an overview of our 
system, which is based on a machine learning 
approach for RTE. 

We use a supervised machine learning 
approach to train a SVM classifier over a 
variety of lexical and semantic metrics. Every 
output of the metrics is treated as a feature and 
used in the training step, taking the RTE3 
devset, RTE4 annotated set, and RTE5 devset 
as training datasets. In Figure 1 we present a 
brief overview of the system.  
 

 

Figure 1: General architecture of the system for 
RTE5. 

First, the <T,H> pairs are pre-processed with 
optional modules, as it is described later. 
Second, we compute 32 features that belong to 
two different categories: lexical and semantic 
metrics. Finally, we use a SVM classifier for 2-
way and 3-way classification tasks. 

Using a machine learning approach, we 
tested with SVM classifier in order to classify 
RTE-5 test pairs in three classes: entailment, 
contradiction or unknown.  

2.1. Preprocessing 
The Preprocessing module has three optional 
submodules, as needed by the different features:  
Tokenizer: The text-hypothesis pairs are 
tokenized with the tokenizer of OpenNLP 
framework. 

Stemmer:  Text-hypothesis pairs are 
stemmed with Porter’s stemmer1 (Lesk, 1986). 

Tagger: Text-hypothesis pairs are PoS 
tagged with the tagger in the OpenNLP2 
framework. 

We tested three runs differing only in the 
preprocessing stage. 

For RUN1 we use 800 pairs of the RTE3 
devset, 1000 pairs of the RTE4 testset and 600 
pairs of the RTE5 devset as training set. 
Therefore 2400 pairs are used for training 
purposes. The RUN1 is trained with the union 
of the following datasets: RTE3 devset + RTE4 
testset + RTE5 devset. 

On the other hand, RUN2 is trained with the 
union of these datasets: RTE3 devset + RTE4 
testset + RTE5 devset, but without SUM 
sample test pairs. Therefore, 2000 pairs are 
used as training set. 

Finally, RUN3 is the result of applying three 
Support Vector Machines: SVM_QA, 
SVM_IR, and SVM_IE, trained over RTE3-DS 
+ RTE4-TS +RTE5-DS. The SVM_QA is a 
SVM that is trained only by using the pairs of 
QA task over the datasets: RTE3 devset + 
RTE4 testset + RTE5 devset.  

In the same way, SVM_IR and SVM_IE are 
trained only by using IR and IE pairs, 
respectively.  

The training set for RUN3 is composed by 
600 QA-pairs, 700 IE-pairs, and 700 IE-pairs. 
Table 1 shows the training set composition used 
for every SVM. 
 
 

Datasets Pairs Total Pairs 
RTE3-DS_QA   200  
RTE4-TS_QA   200  
RTE5-DS_QA 200  
Total QA pairs   600 
RTE3-DS_IE   200  
RTE4-TS_IE   300  
RTE5-DS_IE 200  
Total IE pairs   700 
RTE3-DS_IR  200  
RTE4-TS_IR   300  

                                                        
1 http://tartarus.org/~martin/PorterStemmer/ 
2 http://opennlp.sourceforge.net/ 
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RTE5-DS_IR 200  
Total IR pairs   700 

Table 1: Training set composition for QA, IR 
and IE – SVM’s. 

The motivation of the input features was 
testing our system over a wide range of lexical 
features and trying to determinate whether this 
approach could improve our performance. 
 
2.2. Features 
We use a supervised machine learning approach 
to train a classifier over a variety of lexical and 
semantic metrics. Thus, we use the output of 
each metric as a feature, and train a SVM 
classifier. For this purpose, we use 32 
features/metrics over Text (T) and Hypothesis 
(H) as explained below. The first 12 features do 
not require additional explanation. 

(1) Percentage of Words of Hypothesis in the 
text.  

(2) Percentage of word of text in hypothesis. 
(3) Percentage of bigrams of Hypothesis in 

Text. 
(4) Percentage of trigrams of hypothesis in 

the text. 
(5) TF-IDF Measure. 
(6) Standard Levenshtein distance 

(Levenshtein,  1966) (character based). 
(7) Percentage of words of Hypothesis in the 

text. 
(8) Percentage of words of text in 

Hypothesis (over stems). 
(9) Percentage of bigrams of hypothesis in 

the Text (over stems) 
(10) Percentage of trigrams of Hypothesis in 

Text (over stems). 
(11) TF-IDF measure (over stems). 
(12) Levenshtein distance (over stems). 
(13) String similarity based on Levenshtein 

distance using Wordnet as defined in (Castillo, 
2008). 

(14) Semantic similarity using WordNet 
(Castillo et al. 2008). 

(15) Longest common substring:  
 
Given two strings, T of length n and H of 

length m, the Longest Common Sub-string 
(LCS) method (Levenshtein, 1966) will find the 
longest strings which are substrings of both T 
and H. It is founded by dynamic programming. 
 

))(),(min(
)),((),(

HLengthTLength
HTMaxComSubLengthHTlcs   

 
In all practical cases, min(Length(T), 

Length(H)) would be equal to Length(H) . 
Therefore, all values will be numerical in the 
[0,1] interval. Before performing LCS, texts 
were tokenized and stemmed. 
 

(16) Block distance. 
(17) Chapman length deviation. 
(18) Chapman mean length. 
(19) Cosine similarity. 
(20) Dice similarity. 
(21) Euclidean distance. 
(22) Jaccard similarity. 
(23) Jaro. 
(24) Jaro Winkler. 
(25) Matching coefficient. 
(26) Monge Elkan distance (Agichtein, et 

al., 2008). 
(27) Needleman Wunch distance. 
(28) Overlap Coefficient. 
(29) QGrams distance. 
(30) Smith-Waterman distance. 
(31) Smith-Waterman with gotoh. 
(32) Smith-Waterman with gotoh windowed 

affine. 
 
The features 1 to 5, 7, and 16 to 32, were 

treated as bags of words. On the other hand, 
features 8 to 12 were treated as bags of stems. 
The features 16 to 32 were calculated using 
SimMetrics3 Library over string T and H, and 
following the traditional definition for every 
one of them. 

 
2.3. Textual Entailment Search Pilot 

Task 
In order to move towards more realistic 
scenarios and start testing RTE systems against 
real data, textual entailment search is proposed. 
So, Textual Entailment Search Pilot task has the 
goal of analyzing the potential impact of textual 
entailment recognition on a real NLP 
application task. 

The Textual Entailment Search task consists 
of finding all the sentences in a set of 
documents that entails a given Hypothesis. The 
systems must find all the entailing sentences 
(Ts) in a corpus of 10 newswire documents 
about a common topic. So, the main difference 

                                                        
3 http://sourceforge.net/projects/simmetrics/ 
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with respect to the main task is that in the 
Entailment Search task both Text and 
Hypothesis have to be interpreted in the context 
of the corpus. 

In this proposal, we show a textual 
entailment search subsystem based on 
coreference analysis. The assumption is that 
using coreference analysis we will be able to 
recognize true and false entailments in the 
context of the corpus where T and H belongs to. 
As coreference tool we use OpenNlp toolkit. 

Our system has an extension to deal with 
Textual Entailment Search problem. It is a new 
module that performs the following algorithm: 

 
1) Appends a Hypothesis hi to the document 

Dj.     
2) Computes a coreference analysis over all 

documents Dj. 
3) Identifies all coreferences that refer to the 

same entity. 
4) Takes the longest reference and replaces 

all occurrences in the document.   
5) Repeats for every Topic, Document and 

Text. 
 

The following example shown as an entity 
will be replaced by an equivalent entity adding 
redundant information. The example was 
extracted from the RTE Search Pilot Devset. 

 
[French President Jacques Chirac, 16] 

[Chirac, 16] 
 

Where the first string represents the noun 
phrase that is being referenced and the second 
number is a unique reference id in the whole 
document. 

Thus, the algorithm selects “French 
President Jacques Chirac” and replaces all 
references with the same id, using this noun 
phrase. Sometimes, the result won’t be a correct 
syntactically sentence. However, it will be 
human understandable. We expect that the 
overall sense of the sentence won’t be changed.  

Also, it is important to note that the previous 
algorithm, in some cases, could transform the 
hypothesis. For example, the hypothesis 28 in 
the testset is transformed as: 
 

H28: “Bobby Fischer faced deportation to 
the United States.” 

H28-modified: “Fischer, an outspoken critic 
of the U.S government, faced deportation to the 
United States.” 

So, from a semantic point of view, the H28 
provides more information but is equivalent for 
our textual entailment task because we replace 
the same entity in all occurrences in the 
document. 

Once this process is performed, every 
<T,H> pair of a document is taken and fed into 
the system, such as explained before, following 
the RUN1 preprocessing procedure, but with 
outputs True/False. 
 
2.3.1. Features used in Textual Entailment 
Search Task 
In the Textual Entailment Search Task we use 
only four features numbered, which are (12), 
(13), and (14) and (15), as explained before.  

We choose only a limited set of features, due 
to computational constrains; this is because 
processing all coreferences for all documents it 
is a very slow process. 

The motivation of the input features: 
Levenshtein distance (12) is motivated by the 
good results obtained as a measure of similarity 
between two strings. Using stems, this measure 
improves the Levenshtein over words. The 
lexical distance feature (13) based on 
Levenshtein distance is interesting because 
works to sentence level. Semantic similarity 
using WordNet (14) is interesting because of 
the capture of the semantic similarity between T 
and H to sentence level. Longest common 
substring (15) is selected because it is easy to 
implement and provides a good measure for 
word overlap. 
 

3 Experimental Evaluation and 
Discussion of Results 
3.1. Results: RTE5 main task  
 
Our results for RTE5 testset for two-way and 
three-way classification task are summarized in 
Table 2. 

In this table, we compare our results with 
those obtained by a selected set of systems that 
submitted their results to Textual Analysis 
Conference 2009, which is a common 
framework of evaluation. Thus, the high score 
and low score of the RTE5 participants and 
ablation test are shown below. 
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RTE Systems Acc - 

2way 
Acc - 
3 way 

Best System Score 0.7350 0.6833 
Median Score 2-way 0.6117 --- 

X1_abl-1 0.5517 0.53 
RUN1 0.5517 0.5217 
RUN2 0.545 0.52 

Median Score 3-way --- 0.52 
RUN3 0.5483 0.5183 

Low Score 0.50 0.4383 

Table 2: Results obtained with two-way and 
three-way classification task for RTE5 testset. 

We note that, RUN1 consists of 2400 pairs, 
RUN2 consists of 2000 pairs, and for RUN3 
consists of 600 QA-pairs, 700 IR-pairs and 700 
IE-pairs. This suggests that RUN1 reaches our 
best performance, because RUN1 has more 
samples <T,H> as training set, despite of the 
fact that includes SUM samples pairs. 
However, RUN2 and RUN3 do not have a 
significant difference with respect to RUN1. 

For both two-way and three-way task, a 
slight and not statistical significant difference 
of 0.34% and 0.67% between the best and worst 
RUN is found. The performance, in all runs, 
was clearly above those low scores; however, 
our results are far from the best system score.  

The RUN1 was trained using full RTE3 
devset + RTE4 testset + RTE5 devset. Our best 
performance was achieved with RUN1, and it 
was 55.17% and 52.17% of accuracy, for two 
and three way, respectively. The accuracy of 
this run for two-way task is placed 5% below of 
median score. On the other hand, it is placed 
2.17% over the median score for three way task. 
Thus, we conclude that this lexical approach is 
very preliminary and need to be improved on 
several ways. 

An ablation test is a procedure that consists 
of “disconnecting” one module (using a 
knowledge resource) of the system, in order to 
asses the contribution of that module to the 
overall accuracy of the system. 

The ablation tests are very important 
because allows collecting data to better 
understanding of the impact of the knowledge 
resources used by RTE systems and evaluating 
the contribution of each resource to systems 
performance.  

We performed an ablation test of "Wordnet" 
resource. It is implemented by removing two 

features from the feature vector and working 
with 30 features. Wordnet resource has been 
ablated from RUN1. First, features 13 and 14 
were removed of the feature vector, and then 
rerunning the system on the test set. The results 
obtained are named as “X_abl-1” and shown in 
Table 2. 

 
Interestingly, the ablation of these two 

features does not produce modification on two-
way classification task and produces a very 
slight and not statistical significant increase on 
three-way task of 0.83%. In addition, removing 
the feature 14 (the only one that deals with 
semantic similarity) does not impact on the 
overall classification. 

Table 3 shows the results obtained on RTE 
two-way and three-way classification task for 
every RUN and subtask. Always the IR subtask 
yields the best results, maybe because this 
dataset is the easier subtask to predict. 

 
 

Table 3: Accuracy results divided 
 by task and run. 

Finally, we note that interestingly using four 
SVM, one for each task, we obtain similar 
results but using only 700 <T,H> pairs. 
 
3.2. Results: Textual Entailment Search 

Task 
We use Search Task Development Set (ST) and 
RTE3+ST as training set.   

We take all true cases and automatically 
generate false cases based on the development 
set in order to build a balanced training set. 

Table 4 summarizes our results for Textual 
Entailment Search Task. The high score and 
low score of RTE5 participants in TAC 2009 
are shown below all together. 
 
 

 
RTE 
Sys-
tems 

 
RUN 

1- 
3w 

 
RUN

1 - 
2w 

 
RUN

2 - 
3w 

 
RUN

2 - 
2w 

 
RUN
3 - 
3w 

 
RUN

3 - 
2w 

IR 0.65 0.69 0.63 0.67 0.63 0.65 

IE 0.41 0.44 0.41 0.44 0.45 0.48 
QA 0.5 0.52 0.52 0.54 0.48 0.53 
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RTE Systems F- Measure Precision Recall 

High Score 0.4559 --- --- 
RUNs Median 

Score 
0.3012 --- --- 

RUNnew 0,287 0,214 0,395 
RUN1 0.1816 0.1016 0.855 

Low Score 0.0955 --- --- 

Table 4: Result submission for Textual 
Entailment Search Pilot Task. 

 
Also, we performed additional experiments 

testing 3 machine learning algorithms: Decision 
Trees, SVM, and Multilayer Perceptron. We 
show only the best results, which were obtained 
by using RTE3+ST as training set and SVM as 
classifier. This RUNnew is shown in the 
Table4. 

In the TAC 2009, eight teams submitted a 
total of 20 runs to this task. The RUN1 is 
clearly above the system with low score, and 
the RUNnew is placed slightly in the Median 
Score of the RUNs. 
Despite our very simple approach, we think that 
several improvements could be done in order to 
improve the F-score of the system, refining the 
before algorithm and using syntactic features 
and more semantic information. 
 

4 Conclusion and Future Work 
In this paper we use a set of lexical features and 
try to determine how lexical information helps 
in the textual entailment semantic task. We 
show our RTE system that performs two-way 
and three-way textual entailment. The best 
results are obtained on the three-way task. We 
present we address the Recognizing Textual 
Entailment main track, and also we describe an 
initial approach to the textual entailment search 
task. 

As conclusion, we need more balanced 
feature set using not only lexical features, but 
also syntactic and semantic features, in order to 
improve the accuracy of the system. 
Additionally, we need to compute correlations 
between all features in order to avoid 
“redundant information” at the moment of 
characterizing the RTE task. 

On the other hand, our approach to Textual 
Entailment Search is very simple and 
preliminary, and need to be improved by using 
knowledge resources and more in depth 
coreference analysis.  

Future work is oriented to experiment with 
additional lexical, syntactic and semantic 
similarities features and to test the 
improvements they may yield.  
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