
An approach to Recognizing Textual Entailment and TE Search
Task using SVM

Una aproximación al RTE y a la Tarea de Búsqueda de Implicación Textual
usando Máquinas de Soporte Vectorial

Julio Javier Castillo
Faculty of Mathematic Astronomy and Physics

National University of Cordoba, Argentina
cj@hal.famaf.unc.edu.ar

Abstract: This paper shows a Recognizing Textual Entailment System, and a sub-system
that address the Textual Entailment Search Task. This system employs a Support Vector
Machine classifier with a set of 32 features, which includes lexical and semantic
similarity for both two-way and three-way classification tasks. Additionally, we show an
approach to dealing with the problem of searching entailment in a context of a set of
documents that use co-reference analysis.
Keywords: Textual entailment, machine learning, lexical features.

Resumen: En este trabajo se presenta un sistema de Reconocimiento de Implicación
Textual, y un subsistema que permite atacar el problema de la búsqueda de implicaciones.
El sistema utiliza un clasificador de Máquina de Soporte Vectorial con un conjunto de 32
características, las cuales incluyen similaridad léxica y semántica para las tareas de
clasificación de dos y tres vías. Adicionalmente, se presenta una aproximación inicial al
problema de búsqueda de implicancias en un conjunto de documentos que utiliza análisis
de correferencias.
Palabras clave: Implicancia Textual, aprendizaje automático, características léxicas.

1 Introduction
The objective of the Recognizing Textual
Entailment Challenge is the task of determining
whether the meaning of the Hypothesis (H) can
be inferred from a text (T).

In RTE5 the texts comes from a variety of
sources and includes typographical errors and
ungrammatical sentences.

The RTE5 is based on only three application
settings: QA, IE, and IR, in contrast to previous
RTEs. There is a new Textual Entailment
Search Pilot Task that is situated in the
summarization application setting, where the
task has the goal of finding all Texts in a set of
documents that entails a given Hypothesis.

In this paper, we present a system that
addresses the textual entailment recognition

main task and textual entailment search pilot
task. The system applies a Support Vector
Machine (SVM) approach to the problem of
recognizing textual entailment. Our system,
work almost exclusively with lexical features,
with the aims of exploring more deeply how
lexical information could help in the RTE task.
Then, we use 31 lexical features and only 1
semantic feature based on WordNet. These
features are used to characterize the relationship
between text and hypothesis for both training
and test cases.

The remainder of the paper is organized as
follows: Section 2 describes the architecture of
our system, whereas Section 3 shows the
experimental evaluation and discussion of
them. Finally, Section 4 summarizes the
conclusions and lines for future work.

Procesamiento del Lenguaje Natural, Revista nº 44, marzo de 2010, pp 139-145 recibido 21-01-10 revisado 17-02-10 aceptado 05-03-10

ISSN 1135-5948 © 2010 Sociedad Española para el Procesamiento del Lenguaje Natural

2 System Architecture
This section provides an overview of our
system, which is based on a machine learning
approach for RTE.

We use a supervised machine learning
approach to train a SVM classifier over a
variety of lexical and semantic metrics. Every
output of the metrics is treated as a feature and
used in the training step, taking the RTE3
devset, RTE4 annotated set, and RTE5 devset
as training datasets. In Figure 1 we present a
brief overview of the system.

Figure 1: General architecture of the system for
RTE5.

First, the <T,H> pairs are pre-processed with
optional modules, as it is described later.
Second, we compute 32 features that belong to
two different categories: lexical and semantic
metrics. Finally, we use a SVM classifier for 2-
way and 3-way classification tasks.

Using a machine learning approach, we
tested with SVM classifier in order to classify
RTE-5 test pairs in three classes: entailment,
contradiction or unknown.

2.1. Preprocessing
The Preprocessing module has three optional
submodules, as needed by the different features:
Tokenizer: The text-hypothesis pairs are
tokenized with the tokenizer of OpenNLP
framework.

Stemmer: Text-hypothesis pairs are
stemmed with Porter’s stemmer1 (Lesk, 1986).

Tagger: Text-hypothesis pairs are PoS
tagged with the tagger in the OpenNLP2
framework.

We tested three runs differing only in the
preprocessing stage.

For RUN1 we use 800 pairs of the RTE3
devset, 1000 pairs of the RTE4 testset and 600
pairs of the RTE5 devset as training set.
Therefore 2400 pairs are used for training
purposes. The RUN1 is trained with the union
of the following datasets: RTE3 devset + RTE4
testset + RTE5 devset.

On the other hand, RUN2 is trained with the
union of these datasets: RTE3 devset + RTE4
testset + RTE5 devset, but without SUM
sample test pairs. Therefore, 2000 pairs are
used as training set.

Finally, RUN3 is the result of applying three
Support Vector Machines: SVM_QA,
SVM_IR, and SVM_IE, trained over RTE3-DS
+ RTE4-TS +RTE5-DS. The SVM_QA is a
SVM that is trained only by using the pairs of
QA task over the datasets: RTE3 devset +
RTE4 testset + RTE5 devset.

In the same way, SVM_IR and SVM_IE are
trained only by using IR and IE pairs,
respectively.

The training set for RUN3 is composed by
600 QA-pairs, 700 IE-pairs, and 700 IE-pairs.
Table 1 shows the training set composition used
for every SVM.

Datasets Pairs Total Pairs
RTE3-DS_QA 200
RTE4-TS_QA 200
RTE5-DS_QA 200
Total QA pairs 600
RTE3-DS_IE 200
RTE4-TS_IE 300
RTE5-DS_IE 200
Total IE pairs 700
RTE3-DS_IR 200
RTE4-TS_IR 300

1 http://tartarus.org/~martin/PorterStemmer/
2 http://opennlp.sourceforge.net/

Julio Javier Castillo

140

RTE5-DS_IR 200
Total IR pairs 700

Table 1: Training set composition for QA, IR
and IE – SVM’s.

The motivation of the input features was
testing our system over a wide range of lexical
features and trying to determinate whether this
approach could improve our performance.

2.2. Features
We use a supervised machine learning approach
to train a classifier over a variety of lexical and
semantic metrics. Thus, we use the output of
each metric as a feature, and train a SVM
classifier. For this purpose, we use 32
features/metrics over Text (T) and Hypothesis
(H) as explained below. The first 12 features do
not require additional explanation.

(1) Percentage of Words of Hypothesis in the
text.

(2) Percentage of word of text in hypothesis.
(3) Percentage of bigrams of Hypothesis in

Text.
(4) Percentage of trigrams of hypothesis in

the text.
(5) TF-IDF Measure.
(6) Standard Levenshtein distance

(Levenshtein, 1966) (character based).
(7) Percentage of words of Hypothesis in the

text.
(8) Percentage of words of text in

Hypothesis (over stems).
(9) Percentage of bigrams of hypothesis in

the Text (over stems)
(10) Percentage of trigrams of Hypothesis in

Text (over stems).
(11) TF-IDF measure (over stems).
(12) Levenshtein distance (over stems).
(13) String similarity based on Levenshtein

distance using Wordnet as defined in (Castillo,
2008).

(14) Semantic similarity using WordNet
(Castillo et al. 2008).

(15) Longest common substring:

Given two strings, T of length n and H of

length m, the Longest Common Sub-string
(LCS) method (Levenshtein, 1966) will find the
longest strings which are substrings of both T
and H. It is founded by dynamic programming.

))(),(min(
)),((),(

HLengthTLength
HTMaxComSubLengthHTlcs 

In all practical cases, min(Length(T),

Length(H)) would be equal to Length(H) .
Therefore, all values will be numerical in the
[0,1] interval. Before performing LCS, texts
were tokenized and stemmed.

(16) Block distance.
(17) Chapman length deviation.
(18) Chapman mean length.
(19) Cosine similarity.
(20) Dice similarity.
(21) Euclidean distance.
(22) Jaccard similarity.
(23) Jaro.
(24) Jaro Winkler.
(25) Matching coefficient.
(26) Monge Elkan distance (Agichtein, et

al., 2008).
(27) Needleman Wunch distance.
(28) Overlap Coefficient.
(29) QGrams distance.
(30) Smith-Waterman distance.
(31) Smith-Waterman with gotoh.
(32) Smith-Waterman with gotoh windowed

affine.

The features 1 to 5, 7, and 16 to 32, were

treated as bags of words. On the other hand,
features 8 to 12 were treated as bags of stems.
The features 16 to 32 were calculated using
SimMetrics3 Library over string T and H, and
following the traditional definition for every
one of them.

2.3. Textual Entailment Search Pilot

Task
In order to move towards more realistic
scenarios and start testing RTE systems against
real data, textual entailment search is proposed.
So, Textual Entailment Search Pilot task has the
goal of analyzing the potential impact of textual
entailment recognition on a real NLP
application task.

The Textual Entailment Search task consists
of finding all the sentences in a set of
documents that entails a given Hypothesis. The
systems must find all the entailing sentences
(Ts) in a corpus of 10 newswire documents
about a common topic. So, the main difference

3 http://sourceforge.net/projects/simmetrics/

An approach to Recognizing Textual Entailment and TE Search Task using SVM

141

with respect to the main task is that in the
Entailment Search task both Text and
Hypothesis have to be interpreted in the context
of the corpus.

In this proposal, we show a textual
entailment search subsystem based on
coreference analysis. The assumption is that
using coreference analysis we will be able to
recognize true and false entailments in the
context of the corpus where T and H belongs to.
As coreference tool we use OpenNlp toolkit.

Our system has an extension to deal with
Textual Entailment Search problem. It is a new
module that performs the following algorithm:

1) Appends a Hypothesis hi to the document

Dj.
2) Computes a coreference analysis over all

documents Dj.
3) Identifies all coreferences that refer to the

same entity.
4) Takes the longest reference and replaces

all occurrences in the document.
5) Repeats for every Topic, Document and

Text.

The following example shown as an entity
will be replaced by an equivalent entity adding
redundant information. The example was
extracted from the RTE Search Pilot Devset.

[French President Jacques Chirac, 16]

[Chirac, 16]

Where the first string represents the noun
phrase that is being referenced and the second
number is a unique reference id in the whole
document.

Thus, the algorithm selects “French
President Jacques Chirac” and replaces all
references with the same id, using this noun
phrase. Sometimes, the result won’t be a correct
syntactically sentence. However, it will be
human understandable. We expect that the
overall sense of the sentence won’t be changed.

Also, it is important to note that the previous
algorithm, in some cases, could transform the
hypothesis. For example, the hypothesis 28 in
the testset is transformed as:

H28: “Bobby Fischer faced deportation to
the United States.”

H28-modified: “Fischer, an outspoken critic
of the U.S government, faced deportation to the
United States.”

So, from a semantic point of view, the H28
provides more information but is equivalent for
our textual entailment task because we replace
the same entity in all occurrences in the
document.

Once this process is performed, every
<T,H> pair of a document is taken and fed into
the system, such as explained before, following
the RUN1 preprocessing procedure, but with
outputs True/False.

2.3.1. Features used in Textual Entailment
Search Task
In the Textual Entailment Search Task we use
only four features numbered, which are (12),
(13), and (14) and (15), as explained before.

We choose only a limited set of features, due
to computational constrains; this is because
processing all coreferences for all documents it
is a very slow process.

The motivation of the input features:
Levenshtein distance (12) is motivated by the
good results obtained as a measure of similarity
between two strings. Using stems, this measure
improves the Levenshtein over words. The
lexical distance feature (13) based on
Levenshtein distance is interesting because
works to sentence level. Semantic similarity
using WordNet (14) is interesting because of
the capture of the semantic similarity between T
and H to sentence level. Longest common
substring (15) is selected because it is easy to
implement and provides a good measure for
word overlap.

3 Experimental Evaluation and
Discussion of Results
3.1. Results: RTE5 main task

Our results for RTE5 testset for two-way and
three-way classification task are summarized in
Table 2.

In this table, we compare our results with
those obtained by a selected set of systems that
submitted their results to Textual Analysis
Conference 2009, which is a common
framework of evaluation. Thus, the high score
and low score of the RTE5 participants and
ablation test are shown below.

Julio Javier Castillo

142

RTE Systems Acc -

2way
Acc -
3 way

Best System Score 0.7350 0.6833
Median Score 2-way 0.6117 ---

X1_abl-1 0.5517 0.53
RUN1 0.5517 0.5217
RUN2 0.545 0.52

Median Score 3-way --- 0.52
RUN3 0.5483 0.5183

Low Score 0.50 0.4383

Table 2: Results obtained with two-way and
three-way classification task for RTE5 testset.

We note that, RUN1 consists of 2400 pairs,
RUN2 consists of 2000 pairs, and for RUN3
consists of 600 QA-pairs, 700 IR-pairs and 700
IE-pairs. This suggests that RUN1 reaches our
best performance, because RUN1 has more
samples <T,H> as training set, despite of the
fact that includes SUM samples pairs.
However, RUN2 and RUN3 do not have a
significant difference with respect to RUN1.

For both two-way and three-way task, a
slight and not statistical significant difference
of 0.34% and 0.67% between the best and worst
RUN is found. The performance, in all runs,
was clearly above those low scores; however,
our results are far from the best system score.

The RUN1 was trained using full RTE3
devset + RTE4 testset + RTE5 devset. Our best
performance was achieved with RUN1, and it
was 55.17% and 52.17% of accuracy, for two
and three way, respectively. The accuracy of
this run for two-way task is placed 5% below of
median score. On the other hand, it is placed
2.17% over the median score for three way task.
Thus, we conclude that this lexical approach is
very preliminary and need to be improved on
several ways.

An ablation test is a procedure that consists
of “disconnecting” one module (using a
knowledge resource) of the system, in order to
asses the contribution of that module to the
overall accuracy of the system.

The ablation tests are very important
because allows collecting data to better
understanding of the impact of the knowledge
resources used by RTE systems and evaluating
the contribution of each resource to systems
performance.

We performed an ablation test of "Wordnet"
resource. It is implemented by removing two

features from the feature vector and working
with 30 features. Wordnet resource has been
ablated from RUN1. First, features 13 and 14
were removed of the feature vector, and then
rerunning the system on the test set. The results
obtained are named as “X_abl-1” and shown in
Table 2.

Interestingly, the ablation of these two

features does not produce modification on two-
way classification task and produces a very
slight and not statistical significant increase on
three-way task of 0.83%. In addition, removing
the feature 14 (the only one that deals with
semantic similarity) does not impact on the
overall classification.

Table 3 shows the results obtained on RTE
two-way and three-way classification task for
every RUN and subtask. Always the IR subtask
yields the best results, maybe because this
dataset is the easier subtask to predict.

Table 3: Accuracy results divided
 by task and run.

Finally, we note that interestingly using four
SVM, one for each task, we obtain similar
results but using only 700 <T,H> pairs.

3.2. Results: Textual Entailment Search

Task
We use Search Task Development Set (ST) and
RTE3+ST as training set.

We take all true cases and automatically
generate false cases based on the development
set in order to build a balanced training set.

Table 4 summarizes our results for Textual
Entailment Search Task. The high score and
low score of RTE5 participants in TAC 2009
are shown below all together.

RTE
Sys-
tems

RUN

1-
3w

RUN

1 -
2w

RUN

2 -
3w

RUN

2 -
2w

RUN
3 -
3w

RUN

3 -
2w

IR 0.65 0.69 0.63 0.67 0.63 0.65

IE 0.41 0.44 0.41 0.44 0.45 0.48
QA 0.5 0.52 0.52 0.54 0.48 0.53

An approach to Recognizing Textual Entailment and TE Search Task using SVM

143

RTE Systems F- Measure Precision Recall

High Score 0.4559 --- ---
RUNs Median

Score
0.3012 --- ---

RUNnew 0,287 0,214 0,395
RUN1 0.1816 0.1016 0.855

Low Score 0.0955 --- ---

Table 4: Result submission for Textual
Entailment Search Pilot Task.

Also, we performed additional experiments

testing 3 machine learning algorithms: Decision
Trees, SVM, and Multilayer Perceptron. We
show only the best results, which were obtained
by using RTE3+ST as training set and SVM as
classifier. This RUNnew is shown in the
Table4.

In the TAC 2009, eight teams submitted a
total of 20 runs to this task. The RUN1 is
clearly above the system with low score, and
the RUNnew is placed slightly in the Median
Score of the RUNs.
Despite our very simple approach, we think that
several improvements could be done in order to
improve the F-score of the system, refining the
before algorithm and using syntactic features
and more semantic information.

4 Conclusion and Future Work
In this paper we use a set of lexical features and
try to determine how lexical information helps
in the textual entailment semantic task. We
show our RTE system that performs two-way
and three-way textual entailment. The best
results are obtained on the three-way task. We
present we address the Recognizing Textual
Entailment main track, and also we describe an
initial approach to the textual entailment search
task.

As conclusion, we need more balanced
feature set using not only lexical features, but
also syntactic and semantic features, in order to
improve the accuracy of the system.
Additionally, we need to compute correlations
between all features in order to avoid
“redundant information” at the moment of
characterizing the RTE task.

On the other hand, our approach to Textual
Entailment Search is very simple and
preliminary, and need to be improved by using
knowledge resources and more in depth
coreference analysis.

Future work is oriented to experiment with
additional lexical, syntactic and semantic
similarities features and to test the
improvements they may yield.

5 References

Giampiccolo, D. , Magnini B., Dagan I. and
Dolan B. 2007. The Third PASCAL
Recognizing Textual Entailment Challenge
in Proceedings of the Workshop on Textual
Entailment and Paraphrasing, pages 1–9,
Prague.

Castillo, J. and Alonso L. 2008. An approach
using Named Entities for Recognizing
Textual Entailment. TAC 2008,
Gaithersburg, Maryland, USA.

Lesk, M. 1986. Automatic sense
disambiguation using machine readable
dictionaries: How to tell a pine cone from a
ice cream cone. In SIGDOC.

Gusfield, Dan. 1999. Algorithms on Strings,
Trees and Sequences: Computer Science and
Computational Biology. CUP.

Levenshtein, V. 1966. Binary Codes Capable of
Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707.

Inkpen, D., Kipp D. and Nastase V. 2006.
Machine Learning Experiments for Textual
Entailment. Proceedings of the second RTE
Challenge, Venice-Italy.

Dolan, Bill, Quirk C. and Brockett C. 2004.
Unsupervised construction of large
paraphrase corpora: exploiting massively
parallel news sources. In COLING ’04:
Proceedings of the 20th international
conference on Computational Linguistics,
page 350, Association for Computational
Linguistics. Morristown, NJ, USA.

Zanzotto, F., Pennacchiotti F. and Moschitti A.
2007. Shallow Semantics in Fast Textual
Entailment Rule Learners. In Proceedings of
the Third Recognizing Textual Entailment
Challenge, Prague.

De Marneffe, M. et al. 2006. Manning.Learning
to distinguish valid textual entailments. In
Proceedings of the Third Recognizing
Textual Entailment Challenge, Italy.

Julio Javier Castillo

144

Castillo, J. 2009. A Study of Machine Learning
Algorithms for Recognizing Textual
Entailment.RANLP2009, Borovets,
Bulgaria.

Agichtein, E. et al. 2008. Combining Lexical,
Syntactic, and Semantic Evidence for
Textual Entailment Classification. TAC
2008, Gaithersburg, Maryland, USA..

An approach to Recognizing Textual Entailment and TE Search Task using SVM

145

