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Resumen:   La conversión de letras a fonemas en inglés está siendo desarrollada para su futura 
integración en un sistema de síntesis de habla dentro del proyecto TC-STAR.  En este trabajo se 
describen los experimentos realizados usando dos técnicas diferentes de aprendizaje automático. 
Se ha considerado la predicción  de la pronunciación con y sin acento. Se analiza la influencia 
de los diferentes parámetros en la tasa de error en la conversión de letras a fonemas. También se 
estudia la distribución de la tasa de error en función de la longitud de las palabras ha sido 
obtenida. 
Palabras clave: letras en fonemas, alineado, x-grams, traductores de estados finitos, CART. 

Abstract:   Grapheme-to-phoneme conversion system for English is being developed for further 
integration into speech synthesis system within TC-STAR project. In this work we describe 
experiments performed using two different machine learning techniques. The pronunciation was 
predicted both for stressed and unstressed lexicon and the results were compared. Analysis of 
different parameters that may influence the error rate in grapheme-to-phoneme conversion was 
performed. The error rate as a function of the word length was studied. 
Keywords: grapheme-to-phoneme, alignment, x-grams, finite-state transducers, CART. 
 

1 Introduction 
Text-to-speech synthesis and continuous speech 
recognition are the two rapidly developing 
technologies that have many applications in 
many different areas of human life. It is 
impossible to have a good-working text-to-
speech system without having a tool that 
generates correct pronunciation from the 
orthographic transcription. 
     Because of the writing system  irregularities 
(absence of unambiguity between the phoneme 
and grapheme full sets, where, for example one 
letter may correspond to  two phonemes or to no 
sound at all) the grapheme-to-phoneme 
conversion is not an easy task, especially for 
languages like English or French where the 
relation between letters and sounds is not very 
clear.  
   To train a grapheme-to-phoneme conversion 
system most algorithms require an alignment 
between grapheme and phoneme strings. Many 
different approaches have been elaborated to 
automatically perform grapheme-to-phoneme 
alignment for the translation systems; however, 
in grapheme-to-phoneme conversion usually a 
dictionary aligned by hand-seeded rules is used 
to train a classifier.  

    Different methods for building automatic 
alignments have been proposed, among which 
there are one-to-one and many-to-many 
alignments. In one-to-one alignment each letter 
corresponds only to one phoneme and vice 
versa. To match grapheme and phoneme strings, 
an “empty” symbol is introduced into either 
string.  
     In many-to-many alignments a letter can 
correspond to more than one phoneme and a 
phoneme can correspond to more than one letter. 
     An example of one-to-one alignment model 
is the epsilon scattering model (ESM) where 
“epsilon” or “empty” phoneme is introduced to 
either both grapheme and phoneme strings or 
only to phoneme string (Pagel, Lenzo and Black, 
1998) Then the EM algorithm is applied to 
optimize their positions. 

An example of many-to-many alignment was 
proposed by Bisani and Ney (2003). In their 
model the main idea is that the both 
orthographic form and pronunciation for each 
word are determined by a common sequence of 
graphones which is a pair q= (g, φ) of letter and 
phonemes sequences, respectively (where 

** Φ×⊆∈ GQq ; and G is the letter alphabet 
and Φ is the inventory of phonemic symbols). 
For a given sequence of letters g ЄG* the 
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probability to find most likely phoneme 
sequence φ ЄΦ* is maximized.  

This paper reports on a data driven-approach 
to pronunciation modeling. To align graphemes 
and phonemes we chose to use automatic 
epsilon-scattering. The experiments were 
performed on stressed and unstressed lexicon of 
English, the grapheme-to-phoneme results, 
obtained by CART decision trees and x-gram 
based Finite-State Transducers were compared 
for these lexicons for both cases.  

2 Grapheme-to-phoneme methods 
2.1 Epsilon-scattering based alignment 
 As the alignment method we use automatic 
epsilon-scattering method to produce one -to-
one alignment. (Black, Lenzo and Pagel, 1998). 
For the cases when the number of letters is 
greater than that of phonemes we introduce, the 
“empty” phoneme symbol into phonetic 
representations to match the length of grapheme 
and phoneme strings.    First we add the 
necessary number of “empty” symbols, into all 
possible positions in phonetic representations for 
each word in the training corpus. In the Table 1 
we give an example of two of the possible 
alignment candidates for the word “meadows”. 

Let. M E A D O W S 
Phon. m E _ d o _ z 
Phon. _ _ m E d o Z 

  
 Table 1:  Some possible alignment candidates. 
 
Such a probabilistic initialization gives us 
number of all possible imperfect alignments. 
Our goal is to maximize the probability that 
letter g matches phoneme ϕ   and therefore 
choose the best alignment from the possible 
candidates. It is done by applying the 
expectation maximization algorithm (EM) 
(Dempster, Laird and Rubin, 1977). The EM 
associated with joint grapheme/phoneme 
probabilities. Under certain circumstances the 
EM guarantees an increase of the likelihood 
function at each iteration until convergence to a 
local maximum.  

2.1.1 Stress assignment 

In this work we have used the phonetic alphabet 
that is called SAMPA 
(http://www.phon.ucl.ac.uk/home/sampa/americ
an.htm).  

The total number of the phoneme symbols 
involved in the SAMPA for American English is 
Np=41. As we use different phonemes for 
accented and unaccented vowels, to perform 
training and test on the accented dictionary we 
have added Na=17, accented vowel symbols and 
an “empty” phoneme, “_”. As an example, in 
Table 2 the word “abilities” is shown together 
with its two phonetic representations: with stress 
and without stress. In the stressed version the 
digit “1” is added to identify the stressed vowel. 
In this example one “empty” symbol was 
introduced to match the strings.  

 
Let. A B I L I T I E S 
Str. 
Phon. 

@ B I1 l @ t i _ z 

Unstr. 
Phon. 

@ B I l @ t i _ z 

Table 2: Alignment of the graphemes and 
phonemes including the “empty” symbol. The 
digit 1 is the stress marker. 

2.2 CART 
Deriving the pronunciation automatically by 
using decision trees, such as Classification and 
Regression Trees, or CART is a commonly used 
technique in grapheme-to-phoneme conversion. 
Pagel, Lenzo and Black (1998) have introduced 
the CART decision-trees into pronunciation 
prediction. As the input vectors, the graphemic 
sliding window, containing three letters on the 
left and three letters on the right of each center 
letter was considered. The advantage of using 
CART method is that it produces compact 
models. The model size is defined by the total 
number of questions and leaf nodes in the 
generated tree. 

 
2.3 Finite State Transducers 
In this next approach we chose the 
pronunciation that maximizes   
 { }( / )arg m ax p g

ϕ
ϕ  (1), 

where ϕ  is the sequence of phonemes, 
including the “empty” phoneme, and g is the 
sequence of letters. 

To solve the maximization problem we use a 
Finite state transducer, which is similar to 
(Galescu and Allen, 2001). The equation (1) can 
be expressed as 

 { ( , )} / ( ) { ( , )}arg max arg maxp g p g p g
ϕ ϕ

ϕ ϕ=  (2). 
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This can be estimated, using standard n-gram 
methods.  

In the training, first the alignment is 
performed. Then we define the graphonesγ , as 
the pair consisting of one letter and one 
phoneme (includingε ) 

( )1 1 1
1 1 1

1 1

( , ) , / , ( / )
N N

i i i
i i i

i i

p g p g g pϕ ϕ ϕ γ γ− − −

= =

= =∏ ∏ , (3) 

where N is the number of  letters in the word. 
This can be estimated using n-grams, but the 
symbols are not words, but the “graphones”, i.e. 
pair (letter, phoneme) found in the aligned 
dictionary.  

N-grams can be represented using a Finite-
state automaton: for each history h we define a 
state and for each new graphone ,l l lgγ ϕ< >  we 
create an edge, with the label  ,l lg ϕ< >   and 
weight it with the probability ( / )lp hγ . 

For example, for the word “aligned” we 
create the following graphone sequence: 

<start> (A,a) (L,l) (I,aI) (G,_) (N,n) (E,_) 
(D,d)  <end> 

Fig. 1 shows some states and edges for the 
bigram-based FSA (in practice all of the training 
data is used to estimate probability). 

 

L, l

I, aI
p(I,aI/L,l)

I,i
p(I,i/L,l)

<I/i>, p(I,i/L,l)<I,aI>, p(I,aI/L,l)

 
 
Figure 1: A Finite-state automaton 
 
The FSA allows to compute the probability 

p(γ ), but this requires an alignment. In order to 
solve the equation (2) we derive a finite state 
transducer in a straightforward way: the labels 
attached to the FSA are split: the letter becomes 
an input and the phoneme becomes an output. 
Fig. 2 shows the results of this after applying it 
to Fig. 1. 

Note that the FST is not deterministic. For 
instance, from the state labeled as (L,l) there are 
two possible edges for the same input letter  “I”. 

L, l

I, aI I, i

I/i, p(I,i/L,l)p(I,aI/L,l), I/aI

 
 

Figure 2: A Finite-state transducer 
 
To find the pronunciation we have to solve 

equation (3). This is equivalent to finding the 
path of the FST with maximum probabilities. 
The input letters limit the number of edges 
which can be followed. The best path is found 
using the dynamic programming algorithm. 
      In order to derive correct pronunciation we 
use the flexible length x-gram model (Bonafonte 
and Mariño, 1996). The x-gram model assumes 
that the number of conditioning grapheme-
phoneme pairs depends on each particular case. 
The main idea of the x-gram model lies in 
applying of a merging-state algorithm which 
allows us to reduce the number of states. The 
two criteria for merging were used. Firstly, the 
merging is applied if the number of times of a 
given history <qi-m,,,,qi> appearance on the 
training data with lexicon size J, is less than a 
threshold, kmin (where qi is a grapheme-phoneme 
pair). The probability to such grapheme-
phoneme pairs is derived by smoothing. Then 
the states are merged if their distributions 
p=p(q/qi-m,…qi) and m=p(q/qi-m+1,…qi)   have a 
small enough difference in the  information. The 
measure of the difference is the divergence D 
defined as 

1

( )( // ) ( ) log
( )

J

j

p jD p m p i
m j=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (4) 

Choosing the proper values of the thresholds  
kmin and D , one can significantly reduce the 
number of states without decreasing of model 
goodness.  

3 Experimental results 
LC-STAR (www.lc-star.com) has created 
dictionaries in 13 languages.  In this work we 
have used the LC-STAR dictionary of American 
English, kindly provided by NSC (natural 
Speech Communications) for the development 
of speech-to-speech translation demonstrator 
within LC-STAR project.  
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   We have performed experiments using the 
epsilon scattering method to align the lexicon 
combined with CART and FST to predict the 
correct pronunciation  

First, the system was trained and tested using 
the CART tree-based phoneme prediction. The 
LC-STAR dictionary contains 50 thousand 
words; it was randomly split into ten equal parts. 
Ninety per cent of the dictionary was used to 
train the system, ten percent of which was used 
to perform the evaluation; other ten per cent 
were used to test the system.  

 
3.1.  Conversion using CART and 
influence of the decision tree parameters 
on the error rate 
 
For different parameters of CART decision tree 
the phoneme and word error rate have been 
plotted in Fig. 3a and Fig. 3b. Figure 3a shows 
the error rate as the function of the value of 
minimum amount of the entropy gain, necessary 
to justify the further tree expansion. The Fig. 3b 
shows these error rates for different values of 
maximum tree depth. If we set this parameter to 
be very small, the word error rate tends to be 
very high.  
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Figure 3a: Phoneme and word error rates (%) 

as a function of minimum entropy gain needed 
for further expansion of the tree. 
 

The parameters that give us the best results 
were found to be 0.001 for the entropy gain and 
7 for the tree depth. These values coincide with 
those obtained by Black, Lenzo and Pagel 
(1998). 
    Below we present the results obtained for the 
stressed and unstressed dictionary (see Table 3). 
The data presented in the first row were obtained 
for the phonetic transcription including the 
stress marks; a misplaced stress mark was 
counted as an error. The second row shows the 
percentage of correct phonemes, 
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     Figure 3b: Phoneme and word error rates (%) 
as a function of  the maximum tree depth. 
 
and words in comparing with the correct 
phonetic transcription for the unstressed lexicon. 

 
 Phon. Words 
with stress 90.13 51.04 
w/o stress 93.02 65.48 

 
Table 3: Percentage of correct phonemes, and 

words for stressed and unstressed dictionary 
using CART. 

 
The results can be improved by removing the 

ambiguous abbreviations and non-standard 
words, see Table 4.  

 
 Phon. Words 
with stress 91.29 57.8 
w/o stress 93.93 68.32 

 
Table 4: Percentage of correct phonemes, and 

words for stressed and unstressed dictionary 
using CART, after the removal of long non-
standard words and abbreviations from the 
corpus. 

 
As we can see from the Tables 3 and 4, the 

system performs significantly better on the 
unstressed lexicon, especially if we take into the 
consideration the percentage of the words 
correct obtained from the experiment. 

 
3.2 Grapheme-to-phoneme conversion 
using FST 

 
It is important to analyze how the parameters of 
the x-gram models may affect on the error rates. 
In order to clarify this, we performed 
experiments for different values of the 
parameters n and D in x-gram model, n is the 
maximum possible length conditional 
probability history. 
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The Fig. 4a shows error rate percentage as 
the function of the n. 
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Figure 4a: Phoneme and word error rates (%) 

as a function of  n.  
 
Both error rates monotonically decrease as 

the n increases.  
This implies that n=5 is the optimal 

parameter of the n-gram model for the given 
corpus.  In Fig. 4b we plotted the error rate as a 
function of the divergence threshold in the x- 
gram model. 
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   Figure 4b: Phoneme and word error rates (%) 
as a function of the divergence threshold D.   
 

The results presented in Fig. 4 imply that 
allowing a significant decrease of the states 
number the x-gram model gives good results 
even for high enough value of the divergence 
threshold. The results presented in Fig. 4a and 
4b give the total percentage of errors in the 
grapheme-to-phoneme conversions. The error 
rates practically do not change in the range of 
the parameters: n≥5 and 0≤D<0.2. Thus, in the 
model frameworks there is no possibility to 
decrease the error rate by increasing n or 
decreasing D.  

The best parameters for this dictionary were 
chosen to be n=5 and D=0.01. 

The results obtained by FST are given in 
Table 5. From Table 5 one can see that the 

results obtained for the unstressed lexicon are 
significantly higher as we have seen before for 
CART.  Our goal is to predict phonemes and 
stress together as it is very important for speech 
synthesis, while for recognition it may be 
sufficient to predict only phonetic transcription.  
 
 Phon. Subst. Ins. Del. Word 
with 
stress 

91.07 5.21 0.94 2.79 67.91 

w/o 
stress 

93.63 3.30 0.51 2.15 75.66 

 
Table 5: Percentage of correct phonemes, 

insertions, deletions and substitutions for 
stressed and unstressed dictionary using FST, 
after the removal of long non-standard words 
and abbreviations from the corpus.   

4 Error rate versus word length 
 It is interesting to know the error distribution 
versus the word length.  For experimental data 
for the dictionary “without stress” (the second 
row of Table 2) we plotted the probability 
distribution function of errors, f(l)=Ner(l)/N0 as a 
function of the grapheme number per  word, 
(where Ner(l) is the number of errors in l-lettered 
words, and N0=∑Ner(l) is the total number of 
errors in the given experiment). This plot is 
shown in Fig. 5 (open squares).  
   As it is seen from Fig. 5 the erroneous 
pronunciation is most likely generated for words 
consisting of 9 letters. However, one should 
keep in mind that in English the word frequency 
is a non-monotonic function of the word length. 
It was recently shown that in English the word 
frequency obeys the distribution e.g. see 
(Sigurd, Eeg-Olofsson, and van de Weijer, 
2004) with the maximum at l=3. In Fig. 5 this 
distribution is shown by the circle-marked line. 
Another word distribution by the length for the 
British English Pronunciation dictionary was 
taken from (Damper and Marchand, 2005).  
There, the average word length is 8.87 letters 
with a standard deviation of 2.58 letters.   In Fig. 
5 these distributions are shown by the lines with 
filled symbols. The difference between two 
distributions is that in Sigurd et al, the 
distribution is given for running words, while 
Damper   and   Marchand, (2005) have counted 
the distribution for the BEEP dictionary, after 
deleting the words with length three and under. 
In the light of these distributions one can expect 
that  the probability of conversion errors in 
practice should be lower, as the long words in  
spoken language are rarer than in the dictionary. 
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    Figure 5:  Probability distribution function of 
errors versus the grapheme number per word 
(open squares). The line with filled circles 
represents the distribution for running words; 
and the line with filled triangles is the 
distribution for words in a lexicon in English. 
 
 5 Conclusions 
 
The performed experiments show that 
grapheme-to-phoneme results depend on many 
parameters as well as on the choice of machine-
learning technique used to perform conversion. 
The results were obtained for both accented and 
unaccented lexicon, using epsilon-scattering 
method to perform alignment and combining it 
with CART and FST classifiers. 
    The FST performed better on both stressed 
and unstressed dictionary. We have analyzed 
different factors that may influence errors rate 
in grapheme-to-phoneme conversion. The 
obtained error distribution (see Fig. 5) indicates 
that 9-letter long words mainly contribute to the 
total error rate if the optimal model parameters 
are chosen for training of the system. An 
optimal grapheme-to-phoneme alignment 
method has the same importance as the 
classification method selection and it could 
give a significant performance improvement in 
the tasks of speech synthesis and speech 
recognition.  
    The problem of the currently used one-to-
one alignment and inserting of the “empty” 
symbols is that some alignments produced are 
completely artificial and do not specify the 
pronunciation, moreover the reasonable 
alignment may not be unique (Damper and 
Marchand, (2005). Black, Lenzo and Pagel 
(1998) have concluded that the choice of the 
decision-tree learning technique does not 
influence on the results as much as the 
alignment algorithm, used to align the lexicon.  
    In the future we are planning to work to 
compare different alignment methods 
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