
Transforming a Constituency Treebank
into a Dependency Treebank

Alexander Gelbukh, Sulema Torres, Hiram Calvo
Center for Computing Research, National Polytechnic Institute,

Av. Juan Dios Batiz s/n col. Zacatenco, 07738, DF, Mexico
gelbukh|@|gelbukh.com, likufanele|@|likufanele.com, sulema7|@|hotmail.com

Resumen: Presentamos una técnica heurística para convertir un corpus anotado sintácticamente
dentro del formalismo de constituyentes, a un corpus anotado dentro del formalismo de depen-
dencias. Particularmente comentamos sobre nuestra experiencia en convertir el corpus Cast3LB
del español. El método consiste en extracción de una gramática libre de contexto del corpus eti-
quetado, identificación automática del elemento rector en cada regla, y usando esta información
para la construcción del árbol de dependencias. Nuestras heurísticas identifican el elemento rec-
tor de las reglas con precisión de 99% y cobertura de 80%, con lo que el algoritmo identifica co-
rrectamente 92% de las relaciones de dependencias entre las palabras.
Palabras clave: Corpus anotados sintácticamente, constituyentes, dependencias, formalismos
gramaticales

Abstract: We present a heuristic technique for converting a constituency treebank into a de-
pendency treebank. In particular, we comment on our experience in converting the Spanish
treebank Cast3LB. We extract a context-free grammar from the treebank, automatically identify
the head in each rule, and use this information for constructing the dependency tree. Our heuris-
tics have 99% precision and 80% recall in identifying the head in the rules, which gives 92%
accuracy in identifying dependencies between words.
Keywords: Treebanks, constituency, dependency, grammar formalisms

1 Introduction
There are two main formalisms for representing
the syntactic structure of a sentence: constitu-
ency (or phrase structure) and dependency.
Both types of grammars use trees to represent
the structure of a phrase, though the meaning of
the nodes and links in the tree is different.

In the phrase structure grammar, the nodes
of the tree are text spans and the links stand for
inclusion relation, e.g.:

[[The old man]NP [loves [a young woman]NP]VP]S

or, in a graphical form:
 S

 VP

 NP NP

The old man loves a young woman

The nodes are labeled: NP stands for noun
phrase, VP for verb phrase, S for the whole
sentence.

In dependency tree, the nodes of the tree are
single words, so that a dependency is estab-
lished between a pair of words: one of the
words is the main or governing, and the other is
a subordinate (or dependant) of the first one.

The old man loves a young woman

or, in a graphical form:
loves

 man woman

 The old a young

Each but one word in the sentence has a
governing word. A dependency relation be-

Procesamiento del Lenguaje Natural, núm. 35 (2005), pp. 145-152 recibido 30-04-2005; aceptado 01-06-2005

ISSN: 1135-5948 © 2005 Sociedad Española para el Procesamiento del Lenguaje Natural

tween governor G and dependent D means,
roughly, that a word combination G D (or D G)
is meaningful and inherits the syntactic and
semantic properties of G (and not D): G D is a
G (and is not a D); D is said to modify G. In our
example, the combination old man is a kind of
man (and not a kind of old); man loves woman
is a kind of (situation of) love (and not, say, a
kind of woman). Unlike phrase structure tree, in
the dependency tree the arcs are (or can be)
labeled: old and young are attribute modifiers of
man and woman, respectively; man is the sub-
ject of loves.

Dependency representation greatly simpli-
fies certain tasks as compared with constituency
approach. For example:

– In lexicography, gathering statistics on
syntactic combinability of individual words
(read a book and hammer a nail vs. *read a
nail and *hammer a book) is trivial over
dependency representation: one just counts
the frequencies of arcs connecting the in-
stances of two given words in the corpus.
One of numerous applications of such sta-
tistics (Bolshakov, 2004; Bolshakov and
Gelbukh, 2001, 2003) is syntactic disam-
biguation: the tree with frequently com-
bined word pairs is preferred (Yuret, 1998;
Gelbukh, 1999). With phrase structure ap-
proach this is difficult to impossible.

– In information retrieval and text mining,
matching phrase or complex query with the
sentences in the corpus is, again, nearly
trivial over dependency tree: a query shirt
with long sleeves and red strips will easily
compare with a description A shirt of high-
quality silk with red wide vertical strips and
long blue sleeves in an e-commerce data-
base, but now with A red shirt with long
blue strips on the sleeves.

– In semantic analysis, transforming the de-
pendency tree in nearly any semantic repre-
sentation—such as conceptual graphs (So-
wa, 1984) or semantic network (Mel’čuk,
1998)—is much more straightforward. In
fact, HPSG builds a kind of dependency
tree to construct its minimal recursion se-
mantic representation (Sag et al., 2003).

However, most (tough not all) of existing
tools and resources are oriented to phrase-
structure representation, for which is (arguably)
simpler to build a parser.

In spite of apparent differences, both repre-
sentations share the bulk of information on the

syntactic structure—to such degree that they
can be combined (Sag et al., 2003) one can be
automatically derived from the other, given
some information is added that is present in the
second representation but absent in the first
one. Basically, phrase structure bears more
information on the word order within a struc-
tural unit, while a dependency structure bears
more information on inheritance of syntactic
properties within such unit.

In this work we show how the lacking in-
formation can be automatically added to a
phrase structure tree to convert it into a depend-
ency tree. Obviously, such conversion cannot
be completely accurate because the two repre-
sentations are (arguably) non-equivalent when
it comes to rarer grammatical constructions
such as non-projective constructions, e.g.:

the best poet of the world

In this paper we will ignore such details and
will be only concerned with, a bit quick-and-
dirty, conversion of the majority of the links.
Our main motivation in this work was the ap-
plication listed above, mainly the study of col-
locations statistics and its application for syn-
tactic disambiguation and word sense disam-
biguation.

The paper is organized as follows. Section 2
briefly introduces the corpus that was the base
for our experiments. Section 3 presents in detail
our transformation procedure and the heuristics
we used in the conversion of this specific cor-
pus. Section 4 discusses the experimental re-
sults, and Section 5 concludes the paper.

2 The Spanish Cast3LB Treebank
Cast3LB is a corpus of 100 thousand words
(approximately 3,700 sentences) created from
two corpora: the CLiCTALP corpus (75 thou-
sand words), a balanced and morphologically
annotated corpus containing literary, journalis-
tic, scientific, etc. language, and the corpus of
the EFE Spanish news agency (25 thousand
words) corresponding to year 2000.

The annotation process has been carried out
in two steps. In the first step a subset of the
corpus has been selected and annotated twice
by two different annotators. The results of this
double annotation process have been compared
and a disagreement typology in sense assigna-
tion has been established. After a process of
analysis and discussion, a handbook of annota-

A. Gelbukh, H. Calvo, S. Torres

146

tion has been produced, where the main criteria
to follow in case of ambiguity have been de-
scribed. In the second step, the rest of the cor-
pus has been annotated following the all words
strategy. The lexical items annotated are those
words with lexical meaning, i.e., nouns, verbs,
and adjectives (Navarro et al. 2003).

3 Transformation Procedure

The transformation procedure can be described
roughly as follows:

1. Extract the constituency grammar rules
from the Cast3LB Treebank;

2. Head Marking: Use heuristics to find the
head component of each rule;

3. Recursively use these information of the
heads to determinate which rules to find
which component will rise up in the tree.

We describe each of these steps below.

3.1 Extracting the Grammar

To extract the grammar from the Cast3LB Tree-
bank we used the following steps:

Simplification of the constituency treebank: The
Cast3LB Treebank divides tags in two parts.
The first one specifies the part of speech, for
example, clause, noun, verb, noun phrase, etc.
This for our purposes the most important part of
the tag. The second part specifies additional
features such as gender and number for noun
phrases, or the kind of subordinate clause.
These features can be elided to reduce the num-
ber of grammar rules without affecting the
transformation. For example, for a clause, the
Cast3LB Treebank uses: S (clause), S.F.C (co-
ordinate clause), or S.F.C.co-CD (object coor-
dinate clause). We mapped them all to a single
label, S. For nominal groups, Cast3LB uses
grup.nom (nominal group), grup.nom.fp (femi-
nine plural nominal group), grup.nom.ms (mas-
culine singular nominal group), grup.nom.co
(coordinate nominal group), etc.; we mapped
them to a single label grupnom. Figure 1 shows
a part of Cast3LB Treebank using the original
labels. Figure 2 shows the same part of
Cast3LB.

In order to reduce the number of patterns of
the resulting grammar, we also simplified the

 (S clause
 (S.F.C.co-CD clause
 (S.F.C clause
 (sn-SUJ noun phrase
 (espec.fp specifier
 (da0fp0 Las el)) determiner The feminine plural the
 (grup.nom.fp nominal group
 (ncfp000 reservas reserva) noun reserves reserve
 (sp prepositional phrase
 (prep preposition
 (sps00 de de)) preposition of of
 (sn noun phrase
 (grup.nom.co nominal group
 (grup.nom.ms nominal group
 (ncms000 oro oro)) noun gold gold
 (coord coordinate
 (cc y y)) coordinate and and
 (grup.nom.fp nominal group
 (ncfp000 divisas divisa))))) noun currencies currency
 (sp prepositional phrase
 (prep preposition
 (sps00 de de)) preposition from from
 (sn noun phrase
 (grup.nom nominal group
 (np00000 Rusia Rusia)))))) noun Russia Russia
 (gv verb phrase
 (vmis3p0 subieron subir)) verb raised to_raise
 (sn-CC noun phrase
 (grup.nom nominal group
 (Zm 800_millones_de_dolares
 800_millones_de_dolares))))

number 800_millions_of_dollars
 800_millions_of_dollars

Figure 1. A sentence with original labels from 3LB Treebank (‘The reserves of gold and currency from
Russia rose 800 million of dollars’).

Transforming a Constituency Treebank into a Dependency Treebank

147

tagging of the Cast3LB Treebank by eliminat-
ing all punctuation marks.

Pattern extraction. To extract all the rules of
the grammar, each node with more than one
child is considered as the left part of a rule, and
its children are the right part of the rule. For
example, the patterns extracted from Figure 3
are shown in Figure 4. Here grupnom is nomi-
nal group, coord is coordinate, sp is preposi-
tional phrase, prep is preposition, sn is noun
phrase, n is noun, espec is specifier, S is clause
and gv is verb phrase. A clause (S) can be com-
posed by noun phrase (sn), verb phrase (gv) and
noun phrase (sn).

3.2 Marking the Head
After extracting all patterns which form the
grammar, the head of each pattern is automati-
cally marked using simple heuristics. We de-
note the dead of a rule with @ symbol. The
heuristics we use are as follows:

1. If the rule contains only one element (or
only one its element can be a head, see
heuristics 10, 11) then it is the head, e.g.:

grupnom ← @n

2. If the pattern contains one coordinate (co-
ord) then it is the head, e.g.:

grupnom ← grupnom @coord grupnom
S ← @coord sn gv sn

3. If the pattern contains two or more coordi-
nates, then the first one is the head, e.g.:

S ← @coord S coord S
Sp ← @coord sp coord sp

4. If the pattern contains a verb phrase (gv)
then it us the head, e.g.:

S ← sn @gv sn
S ← sadv sn @gv S Fp

5. If the pattern contains a relative pronoun
(relatiu), then this is the head, e.g.:

sp ← prep @relatiu
sn ← @relatiu grupnom

6. If the pattern contains a preposition (prep)
as its first element followed by only one
element whichever it is, then the preposi-
tion is the head, e.g.:

sp ← @prep sn
sp ← @prep sp

7. If the pattern contains an infinitive verb
(infinitiu) then it is the head, e.g.:

S ← @infinitiu S sn
S ← conj @infinitiu
S ← neg @infinitiu sa

8. If the pattern contains a present participle
(gerundi) then it is the head, e.g.:

S ← @gerundi S

9. If the pattern contains a main verb (vm)
then it is the head, e.g.:

gv ← va @vm
infinitiu ← va @vm

10. If the pattern contains an auxiliary verb
(va) and any other verb then the auxiliary
verb is never the head, e.g.:

gv ← va @vs

11. If the pattern contains a specifier (espec),
as its first element, then it is never the
head, e.g.:

sn ← espec @grupnom
sn ← espec @sp

12. For patterns with noun phrase (grupnom)
as father node, if the pattern contains a
noun (n) then it is the head, e.g.:

grupnom ← s @n sp
grupnom ← @n sn
grupnom ← s @n S

(sp
 (prep
 (@sps00 de de))
 (sn
 (grupnom
 (grupnom
 (@n oro oro))
 (coord
 (@cc y y))
 (grupnom
 (@n divisas divisa)))))

Figure 2. Nodes that only have one leaf marked as heads.

A. Gelbukh, H. Calvo, S. Torres

148

13. For patterns with noun phrase (grupnom)
as father node, if the pattern contains a
noun phrase (grupnom), it is the head, e.g.:

grupnom ← @grupnom s
grupnom ← @grupnom sn

14. For patterns with specifier (espec) as father
node, if the pattern contains a definitive ar-
ticle (da) then it is the head, e.g.:

espec ← @da di
espec ← @da dn

15. If the pattern contains a qualificative adjec-
tive (aq) and a prepositional phrase (sp),
then the adjective is the head, e.g.:

S ← sadv @aq sadv
sa ← sadv @aq sp sp

 If the above heuristics do not allow to un-
ambiguously determine the head, we choose the
first element that can be the head (cf. see heu-
ristics 10, 11).
 The order of application of the heuristic
rules is important. For example, if we apply
rule 2 in the pattern: S ← coord sn gv sn Fp, the

head would be gv, instead of marking the cor-
rect head coord. For this to occur, Rule 1
should have been applied first.
 There are cases for which there is no con-
sensus in the dependency grammar community
as to the selection of heads (such as coordina-
tion, relative constructions, etc.). We do not
attempt here to contribute linguistic arguments
in these issues, and the above heuristics reflect
just one of possible linguistic options.

3.3 Using the marked heads for the
transformation

The transformation algorithm uses recursively
the information of the patterns marked with
heads to determine which components will rise
up in the tree. This means to disconnect the
head from its brothers and to place it in the
position of father node.

In order to understand more clearly the al-
gorithm, we describe it in detail:

Figure 3. Patterns to be extracted from the sentence ‘The reserves of gold and currency from Russia rose in

800 millions of dollars’

grupnom ← grupnom coord grupnom
sp ← prep sn
grupnom ← n sp sp
sn ← espec grupnom
S ← sn gv sn

Figure 4. Extracted patterns of the sentence “The reserves of gold and currency from Russia rose in 800
millions of dollars”

Transforming a Constituency Treebank into a Dependency Treebank

149

1. Traverse the constituency tree in depth
from left to right, beginning from the root
and visiting the children nodes recursively.

2. For each pattern in the tree, search the
rules to find which element is the head.

3. Mark the head in the constituency tree.
Disconnect it from its brothers and place it
in the position of father node.

The algorithm finishes when a head node is
risen up as root. To illustrate an example, con-
sider the following figures.

Figure 5 shows a constituency tree that will
be transformed into a dependency tree. Re-
member that nodes that only have one leaf were
marked in the extraction grammar.

 Following the algorithm, the first pattern to
be found is: grupnom ← grupnom coord grup-
nom, where grupnom is a nominal group and
coord is a coordinate.

We look in the rules and found that the
head of these patterns is the coordinate (coord).
We mark the head in the constituency tree and
disconnect it by putting it in the position of the
father node.

The algorithm follows its execution until
the root node is raised. The resulting Depend-
ency tree is shown in Figures 6 and 7.

4 Experimental Results
The algorithm found 2663 grammar rules. From
those, 339 (12%) are repeated more than 10

Figure 5. Constituency tree. ‘The reserves of gold and currency from Russia raised 800 million of dollars’

Figure 6. Resulting dependency tree with labels.

A. Gelbukh, H. Calvo, S. Torres

150

times and 2324 (88%) less than 10 times. The
twenty most frequent rules with their respective
number of occurrences are:

 12403 sn ← espec grupnom
 11192 sp ← prep sn
 3229 grupnom ← n sp
 1879 grupnom ← n s
 1054 sp ← prep S
 968 grupnom ← n S
 542 gv ← va vm
 535 grupnom ← s n
 515 S ← infinitiu sn
 454 grupnom ← n s sp
 392 grupnom ← n sn
 390 grupnom ← grupnom coord grupnom
 386 sn ← sn coord sn
 368 grupnom ← s n sp
 356 gv ← vm infinitiu
 343 S ← S coord S Fp
 315 S ← S coord S
 276 sp ← prep sn Fc
 270 grupnom ← n sp sp
 268 S ← infinitiu sp

4.1 Identifying Heads in the Rules
The heuristics covered, i.e., thus automatically
labeled, 2210 (79.2%) of all extracted grammar
rules.

We randomly selected 300 of them and
marked them manually. Comparison showed
that all but two (99.9%) marks coincided. Fig-

ure 8 shows the rules that not matched. These
two rules not matched because the heuristic
rules do not consider these cases.

Considering the comparison statistics, we
believe that at least 95% of the automatically
marked rules of Cast3LB are correctly marked.

4.2 Construction of Dependency Trees
We have followed the evaluation scheme pro-
posed by Briscoe et al. (2002), who suggest
evaluating parsing accuracy based on gram-
matical relations between lemmatized lexical
heads. This scheme is suitable for evaluating
dependency parsers and constituency parsers as
well, because it considers relations in a tree
which are present in both formalisms, for ex-
ample [Det car the] and [DirectObject drop it].
For evaluation we extract triples from the de-
pendency trees found by our method and com-
pare it with manually extracted triples from the
same Cast3LB treebank.

A triplet is a dependency relation between a
father node with a children node and the type of
their relation. For example, the dependency
triplets extracted from the phrase The old man
loves the young lady are:

love SUBJ man
man DET the
man ADJ old

 love OBJ lady
lady DET the
lady ADJ young

The algorithm extracted 65,997 dependency

Automatically marked Manually marked
infinitiu <-- van0000 vmp00sm sps00 @infinitiu infinitiu <-- van0000 @vmp00sm sps00 infinitiu
S.F.C.co-CD <-- conj.subord S.F.C @coord S.F.C S.F.C.co-CD <-- @conj.subord S.F.C coord S.F.C

Figure 8. Rules that not matched.

Figure 7. Resulting dependency tree without labels.

Transforming a Constituency Treebank into a Dependency Treebank

151

triples from the whole Cast3LB treebank.
For evaluation, we randomly selected 35

sentences from the treebank and manually
converted them to dependency trees, which
gave 399 dependency triples. Then we applied
our procedure to these sentences. Since for a
sentence of n words there must be (n – 1) trip-
lets, our procedure also output 399 triplets, of
them, 368 (92%) coinciding with those manu-
ally identified. Extrapolating this statistics, we
infer that more than 90% (some 60,000) of the
dependency triples that we extracted from
Cast3LB Treebank are correct.

5 Conclusions
Dependency representation of syntactic struc-
ture has important advantages in certain appli-
cations, such as nearly everything related to
lexicalization and lexicography. However, the
majority (though not all) of existing tools and
resources, such as parsers, grammars, and tree-
banks, are oriented to constituency approach.

We have presented a simple unsupervised
technique that allows automatically transform-
ing constituency trees into dependency trees.
The technique uses certain simple heuristics
that depend on the specific tagset used in the
given treebank or grammar. Our technique does
not deal with difficult or arguable phenomena
in dependency syntax, but still recovers the
bulk of dependency relations. Such a bit quick-
and-dirty results are quite usable in most practi-
cal applications.

This allows for reuse of existing parsers or
treebanks for the applications that require de-
pendency structures.

Acknowledgements
The work was done under partial support of
Mexican Government (SNI, CONACyT, CGPI-

IPN, COFAA-IPN, PIFI-IPN). Cast3LB is part
of the 3LB project financed by the Science and
Technology Ministry of Spain, 3LB, (FIT-
150500-2002-244 and FIT 150500-2003-411).
We thank Jordi Atserias for useful discussions
and help.

References
Bolshakov, Igor A. A Method of Linguistic Steganogra-

phy Based on Collocationally-Verified Synonymy. In-
formation Hiding 2004, Lecture Notes in Computer
Science, 3200 Springer-Verlag, 2004, pp. 180–191.

Bolshakov, Igor A., Alexander Gelbukh. A Large Data-
base of Collocations and Semantic References: Inter-
lingual Applications. International J. of Translation,
V.13, No.1–2, 2001, pp. 167–187.

Bolshakov, Igor A., Alexander Gelbukh. On Detection of
Malapropisms by Multistage Collocation Testing.
NLDB-2003, 8th Int. Conf. on Application of Natural
Language to Information Systems. Bonner Köllen Ver-
lag, 2003, pp. 28–41.

Briscoe, Ted, John Carroll, Jonathan Graham and Ann
Copestake. 2002. Relational evaluation schemes. In:
Proceedings of the Beyond PARSEVAL Workshop at
the 3rd International Conf. on Language Resources
and Evaluation, Las Palmas, Gran Canaria, 4–8.

Gelbukh, Alexander. Syntactic disambiguation with
weighted extended subcategorization frames. Proc.
PACLING-99, 1999, pp. 244–249.

Mel’čuk, Igor A. Dependency Syntax: Theory and Prac-
tice. State University Press of New York, 1988.

Navarro, Borja, Montserrat Civit, M. Antonia Martí,
R. Marcos, B. Fernández. Syntactic, Semantic and
Pragmatic Annotation in Cast3LB. Shallow Processing
of Large Corpora (SProLaC), a Workshop on Corpus
Linguistics, Lancaster, UK, 2003.

Sag, Ivan, Tom Wasow, and Emily M. Bender. Syntactic
Theory. A Formal Introduction (2nd Edition). CSLI
Publications, Stanford, CA, 2003.

Sowa, John F. Conceptual Structures: Information Proc-
essing in Mind and Machine. Addison-Wesley Publish-
ing Co., Reading, MA, 1984.

Yuret, Deniz. Discovery of Linguistic Relations Using
Lexical Attraction, PhD thesis, MIT, 1998.

A. Gelbukh, H. Calvo, S. Torres

152

