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Resumen: La combinación de múltiples clasificadores no supervisados proporciona
una v́ıa hacia la construcción de sistemas robustos de clasificación de documentos.
Este trabajo se centra en la combinación de clusterizadores difusos, proponiendo
para ello dos funciones de consenso basadas en las estrategias de votación posi-
cional de Borda y Condorcet. Los experimentos realizados sobre dos colecciones
de documentos revelan que las funciones de consenso propuestas son capaces de
obtener particiones por consenso de calidad comparable o superior a las obtenidas
por técnicas pertenecientes al estado del arte, aunque su complejidad computacional
es superior, lo que se debe al proceso de ranking impĺıcito en las técnicas de votación
posicional.
Palabras clave: Clustering de documentos, clustering difuso, clustering por con-
senso, votación de Borda, votación de Condorcet

Abstract: The combination of multiple clustering processes provides a means for
building robust document clustering systems. This work focuses on the consolida-
tion of fuzzy clusterings, proposing two consensus functions for soft cluster ensembles
based on the Borda and Condorcet positional voting strategies. Experiments con-
ducted on two document corpora reveal that the proposed soft consensus functions
are capable of yielding consensus partitions of comparable or superior quality to
those obtained by state-of-the-art clustering combiners, although their computa-
tional complexity is higher due to the ranking process inherent to positional voting
techniques.
Keywords: Document clustering, fuzzy clustering, consensus clustering, Borda vot-
ing, Condorcet voting

1 Introduction

The development and expansion of the in-
formation and communication technologies,
despite providing enormous quantities of in-
formation on a silver plate, pose a serious
challenge to human analytic capabilities, not
only by the large volumes of data available,
but also by its growing complexity. Provided
that a large proportion of such data comes in
the form of written text, it seems logical to
highlight the importance of automatic tools
that allow knowledge extraction from large
textual data repositories, regardless of their
domain (Hearst, 2006).

When it comes to extracting knowledge
from a given text collection, one of the pri-

mary tasks one thinks of is organization:
clearly, arranging the contents of a docu-
ment repository according to some meaning-
ful structure (or taxonomy) –whose shape can
vary widely, e.g. from parent-child hierarchi-
cal trees to network schemes or simple group
structures– helps to gain some perspective on
it. In fact, organizing information is one of
the most innate activities involved in human
learning (Anderberg, 1973). The increasingly
growing volumes of digital textual data avail-
able call for the development of tools capable
of organizing document collections in a fully
automatic manner, so that no expert super-
vision nor domain knowledge is required.

Regardless of the taxonomy’s layout, most
text corpora unsupervised organization tech-
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niques are typically based on classifying doc-
uments into groups (or clusters) according to
the degree of similarity of their contents —i.e.
their goal is to place documents dealing with
similar topics in the same group, while plac-
ing dissimilar documents in separate clusters.
This task, known as unsupervised classifi-
cation or clustering, allows to represent the
presumably high number of documents con-
tained in a text corpus by means of a smaller
number of clusters. The cluster-based data
model obtained may be of help, for example,
for simplifying browsing through large docu-
ment collections (Cutting et al., 1992) or for
refining ambiguous queries input to retrieval
systems (Käki, 2005).

However, the unsupervised nature of the
clustering problem poses a severe challenge at
the time of configuring a document clustering
system (Jain, Murty, and Flynn, 1999). In-
deed, the effectiveness of the clustering task
(i.e. the obtention of a meaningful parti-
tion of the text corpus subject to clustering)
relies heavily on optimal (or quasi-optimal)
decision-making with regard to the selection
of i) the number of clusters documents are
grouped into, ii) the way documents are rep-
resented, and iii) the clustering algorithm ap-
plied —see (Sevillano et al., 2007) for exper-
imental evidences on the effect of the two
last clustering indeterminacies on the qual-
ity of clustering processes results. Unfortu-
nately, these important decisions are often
made blindly unless deep domain knowledge
is available, an assumption that hardly holds
in practice1 (Hearst, 2006). Therefore, en-
trusting the obtention of the partition of the
document collection to a (possibly blindly
configured) single clustering system seems to
be a suboptimal way to proceed.

For this reason, our approach for obtain-
ing clustering results which are robust to

1Determining which is the ‘correct’ number of clus-
ters in a data set is a tricky question, as equally sat-
isfying (though substantially different) partitions of
the same data can be obtained with different num-
bers of clusters, depending on the scale at which it
is inspected (Chakaravathy and Ghosh, 1996). How-
ever, there exist several techniques for determining
the most suitable number of groups a document col-
lection should be clustered into, such as relative clus-
ter validity indices (Halkidi, Batistakis, and Vazir-
giannis, 2002) or optimization of criterion functions
such as the Bayesian Inference Criterion (Schwarz,
1978). In this work, we make the simplifying –though
not unusual– assumption that the desired number of
clusters is known.

these indeterminacies follows a strategy that
is rather the opposite: the document clus-
tering practitioner is encouraged to use all
the clustering systems at hand, compiling the
resulting clusterings into a cluster ensemble,
upon which a consensus clustering is derived
by means of the application of a consensus
function. The more similar the consensus
clustering is to the highest quality cluster en-
semble component, the greater robustness to
clustering indeterminacies is achieved. The
rationale of this approach is based on the
fact that if the distinct clustering systems
disagree, combining their outcomes may of-
fer additional information and discriminatory
power, thus obtaining a combined clustering
that is closer to a hypothetical true classifica-
tion (or ground truth) (Pinto et al., 2007). In
other words, consensus clustering constitutes
the unsupervised counterpart of supervised
classifier committees, as it also aims to im-
prove the quality of the component classifiers
by combination (Dietterich, 2000). However,
the inherent ambiguity of clusters identifica-
tion (due to the unsupervised nature of the
clustering problem) makes consensus cluster-
ing a more challenging task.

Most of the literature on consensus clus-
tering is focused on consolidating the out-
comes of multiple hard (or crisp) clustering
systems, i.e. those that assign each document
to a single cluster (Strehl and Ghosh, 2002;
Fred and Jain, 2005). In contrast, fewer ef-
forts have been conducted towards the combi-
nation of soft (or fuzzy) clustering processes,
that is, those associating each document to
each cluster to a certain degree (Dimitriadou,
Weingessel, and Hornik, 2002; Punera and
Ghosh, 2007). In our opinion, however, soft
consensus clustering is an alternative worth
considering, as crisp clustering is in fact a
simplification of fuzzy clustering (i.e. a hard
partition is always obtainable from a soft one
by simply assigning each document to the
cluster it is most strongly associated to) —a
simplification that may give rise to the loss
of valuable information, as a document may
belong to more than one thematic cluster.

Allowing for this fact, this paper presents
two consensus functions based on the Borda
and the Condorcet positional voting strate-
gies (Borda, 1781; Condorcet, 1785) for com-
bining the outcomes of multiple fuzzy clus-
tering systems. In this work, we describe our
proposals and compare them to several state-
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of-the-art soft consensus functions, both in
terms of their computational cost and the
quality of the consensus partitions they yield.

This paper is organized as follows: firstly,
section 2 defines the concept of soft clus-
ter ensembles, reviewing related work in the
area of soft clustering systems combination.
Next, section 3 presents a description of the
two proposed consensus functions. In section
4, the performance of our positional voting
based proposals is experimentally evaluated.
Finally, section 5 presents the conclusions of
this work.

2 Cluster ensembles and
consensus functions

As mentioned earlier, the goal of consensus
clustering is to merge the outcomes of l clus-
tering systems into a single consensus parti-
tion. The two key elements of this process
are the cluster ensemble E and the consen-
sus function F . The former is nothing but
the compilation of the partitions yielded by
the l clustering systems subject to combina-
tion, while the latter is the algorithm respon-
sible for generating the consensus partition
upon the cluster ensemble. Quite obviously,
the features of both the cluster ensemble and
the consensus function will vary depending
on whether a crisp or a fuzzy consensus clus-
tering scenario is considered. In the following
paragraphs, we formally define soft cluster
ensembles and enumerate some of the previ-
ous research efforts in the field of fuzzy clus-
terings combination.

In this work, we assume that the text col-
lection under analysis contains n documents,
and that the l clustering systems subject to
combination partition the corpus into k clus-
ters. Hence, a soft cluster ensemble E is
formally defined as a kl × n real valued ma-
trix resulting from the vertical concatenation
of l matrices Λi of size k × n. The ith of
these matrices (which is referred to as the
ith component of the cluster ensemble E)
is the outcome of the ith fuzzy clustering
system subject to combination. Thus, the
(a,b)th entry of matrix Λi represents the de-
gree of association between the ath cluster
and the bth document according to the ith
clusterer. For convenience, let us define Λi

in terms of its columns, represented by vec-
tors λij (∀i = 1, . . . , l and ∀j = 1, . . . , n) (see
equation 1).

E =

⎛
⎜⎜⎝

Λ1

Λ2
...

Λl

⎞
⎟⎟⎠ where Λi =

(
λi1 λi2 . . . λin

)

(1)
As far as the derivation of consensus func-

tions for combining fuzzy clustering systems
is concerned, the most relevant research ef-
forts found in the literature are the voting-
merging algorithm (Dimitriadou, Weingessel,
and Hornik, 2002) or the consensus func-
tions based on hypergraph partitioning and
information-theoretic k-means (Punera and
Ghosh, 2007). However, some consensus
functions originally designed for combining
crisp partitions, such as evidence accumu-
lation (Fred and Jain, 2005), can be easily
adapted for consolidating soft partitions (see
(Sevillano, Aĺıas, and Socoró, 2007)).

3 Soft consensus functions

In this section, two consensus functions for
soft cluster ensembles based on positional
voting methods are proposed. For starters,
their rationale is described next.

Recall that each soft clustering system
outputs the degree of association of each of
the n documents to all the k clusters (in
the shape of a k × n matrix Λi, ∀i ∈ [1, l]).
Therefore, the problem of combining the out-
comes of multiple soft clustering processes by
means of voting strategies requires interpret-
ing the contents of Λi as the preference of
the ith clustering system (which is regarded
as a voter) for each cluster (or candidate).
The voting procedure is responsible for con-
solidating the l voters’ preferences, obtain-
ing, as a result of an election, the preferences
for each cluster regarding the classification
of each document. For this reason, voting
methods capable of dealing with voters’ pref-
erences constitute the basis of our consensus
functions.

However, care must be taken at voting
time, as the degree of association between
documents and clusters may be directly or
inversely proportional to the strength of this
association (e.g. the elements of Λi may in-
distinctly be cluster membership probabili-
ties or distances to cluster centroids, depend-
ing on the nature of each one of the l cluster-
ing systems subject to combination). For this
reason, our consensus functions make use of
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positional voting strategies, which are based
on ranking the candidates (i.e. the clus-
ters) according to the degree of confidence
expressed by the voters (clustering systems)
—thus, problems in scaling the voters confi-
dence scores are avoided, although fine-grain
information regarding preference differences
between candidates is ignored (van Erp, Vu-
urpijl, and Schomaker, 2002).

Nevertheless, prior to the application of
any voting strategy on soft cluster ensembles,
there is a crucial problem to be solved. Due
to the unsupervised nature of the clustering
problem, clusters (i.e. candidates) are am-
biguously identified. Therefore, it is neces-
sary to perform a cluster alignment (or dis-
ambiguation) process between the l compo-
nents of the cluster ensemble before voting
(see section 3.1). Notice that this is not an
issue of concern when applying voting strate-
gies on supervised classifier ensembles, as cat-
egories are univocally defined in that case.

3.1 Cluster disambiguation

As just pointed out, the symbolic nature of
cluster labels makes that a single clustering
solution can be expressed by multiple equiv-
alent representations. For instance, the two
crisp clusterings λ1 = [1 1 1 2 2 2 3 3 3] and
λ2 = [3 3 3 1 1 1 2 2 2] represent exactly the
same partition of a toy corpus containing
n = 9 documents into k = 3 clusters. This
clusters ambiguity also affects soft cluster-
ing, as any permutation of the rows of a soft
clustering matrix Λ gives rise to an equiva-
lent fuzzy partition. Quite obviously, cluster
identification ambiguity becomes a problem
when voting is to be conducted among the l
clustering solutions compiled in a cluster en-
semble E. This calls for the application of a
technique capable of solving the cluster re-
labeling problem —an instance of the clus-
ter disambiguation problem in which a one to
one correspondence between clusters is con-
sidered (as in this work all the clusterings in
the ensemble are assumed to have the same
number of clusters, namely k).

To solve the cluster re-labeling problem we
make use of the Hungarian method2 (Kuhn,
1955), a technique that, given a pair of clus-
tering solutions with k clusters each, is ca-
pable of finding, among the k! possible clus-
ter permutations, the one that maximizes the

2In this work, we have employed the implementa-
tion of the Hungarian algorithm of (Buehren, 2008).

overlap between them in O(k3) time.
Given a cluster ensemble E containing l

soft clusterings, the cluster disambiguation
process consists in, taking one of them as a
reference, apply the Hungarian method se-
quentially on the remaining l−1 components.
As a result, a cluster aligned version of the
cluster ensemble is obtained, and voting can
be readily conducted on it.

3.2 Positional voting

In this work, we employ two positional vot-
ing strategies for deriving the consensus clus-
tering solution. Both voting methods, called
Borda and Condorcet voting –which date
from the French revolution period– were de-
vised for addressing the shortcomings of sim-
ple majority voting between more than two
candidates (Borda, 1781; Condorcet, 1785),
and they constitute the core of the two con-
sensus functions described next.

3.2.1 BordaConsensus
The Borda voting method computes the
mean rank of each candidate over all vot-
ers, re-ranking them according to their mean
rank. This process results in a grading of
all the k clusters with respect to each of
the n documents, which is embodied in a
k × n Borda voting matrix BE. Such grad-
ing process is conducted as follows: firstly,
for each document (election), clusters (candi-
dates) are ranked according to their degree of
association with respect to it (from the most
to the least strongly associated). Then, the
top ranked candidate receives k points, the
second ranked cluster receives k − 1 points,
and so on. After iterating this procedure
across the l cluster ensemble components, the
grading matrix BE is obtained. The whole
process is described in algorithm 1. Notice
that the Rank procedure orders the clusters
from the most to the least strongly associ-
ated to each document, yielding a ranking
vector r which is a list of the k clusters or-
dered according to their degree of association
with respect to the document under consider-
ation (i.e. its first component, r(1), identifies
the most strongly associated cluster, and so
on). Thus, the Rank procedure must take into
account whether the scalar values contained
in λab are directly or inversely proportional
to the strength of association between docu-
ments and clusters.

Notice that the higher the value of the
(i,j)th entry of BE, the more likely the jth
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Input: Soft cluster ensemble E
containing l fuzzy clusterings
Λi (∀i = 1 . . . l)

Output: Borda voting matrix BE

Data: k clusters, n documents
Hungarian (E)
BE = 0k×n

for a = 1 . . . l do
for b = 1 . . . n do

r = Rank (λab);
for c = 1 . . . k do

BE (r (c) , b) =
BE (r (c) , b) + (k − c + 1);

end
end

end

Algorithm 1: Symbolic description of the
soft consensus function BordaConsensus.
Hungarian and Rank are symbolic represen-
tations of the cluster disambiguation and
cluster ordering procedures, respectively,
while the vector λab represents the bth col-
umn of the ath cluster ensemble component
Λa, r is a clusters ranking vector and 0k×n

represents a k × n zero matrix.

document belongs to the ith cluster. Thus,
normalizing each column of matrix BE (e.g.
dividing each element by its column’s L1-
norm or applying a softmax normalization)
transforms it into a cluster membership prob-
ability matrix. Moreover, assigning each doc-
ument to the cluster it is most strongly asso-
ciated to –breaking ties randomly– yields a
crisp consensus clustering λc.

3.2.2 CondorcetConsensus
Although often deemed as a multi-step un-
weighed voting algorithm, the Condorcet vot-
ing method can also be regarded as a po-
sitional voting strategy, as it employs the
voters’ preference choices between any given
pair of candidates (van Erp, Vuurpijl, and
Schomaker, 2002). In particular, this voting
method performs an exhaustive pairwise can-
didate ranking comparison across voters, as-
signing one point to the winner of each one of
these one-to-one confrontations. The result
of this process is the Condorcet score matrix
CE, the (i,j)th element of which indicates
how many candidates does the ith candidate
beat in one-to-one comparisons in the jth
election (where candidates are clusters and
an election corresponds to the clusterization

Input: Soft cluster ensemble E
containing l fuzzy clusterings
Λi (∀i = 1 . . . l)

Output: Condorcet voting matrix CE

Data: k clusters, n documents
Hungarian (E)
for b = 1 . . . n do

M = 0k×k

for a = 1 . . . l do
r = Rank (λab);
for c = 1 . . . k do

M (r(c), r(c + 1, . . . , k)) =
M (r(c), r(c + 1, . . . , k)) + 1

end
end
for c = 1 . . . k do

CE (c, b) = Count(
M(c, 1 . . . k) ≥ l

2

)
end

end

Algorithm 2: Symbolic description of the
soft consensus function CondorcetConsen-
sus. Hungarian and Rank are symbolic
representations of the cluster disambigua-
tion and cluster ordering procedures, re-
spectively, while the vector λab represents
the bth column of the ath cluster ensemble
component Λa, r is a clusters ranking vec-
tor and 0k×k represents a k×k zero matrix.

of a document).

Algorithm 2 presents a description of the
CondorcetConsensus consensus function. As
in BordaConsensus, the Rank procedure must
take into account whether the scalar values
contained in λab are directly or inversely pro-
portional to the strength of association be-
tween documents and clusters. In each elec-
tion, the (i,j)th entry of the square matrix
M (usually referred to as the Condorcet sum
matrix) counts the number of times the ith
cluster is preferred over the jth one. The
Count procedure is used for counting the
number of elements of the cth row of matrix
M that are greater or equal than l

2 , which
means that at least half of the voters pre-
ferred one candidate over another. Quite ob-
viously, the Condorcet score matrix CE can
also be converted into a cluster membership
matrix or transformed into a crisp consensus
clustering λc.
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4 Experiments

4.1 Document collections

The experiments presented in this paper
have been conducted on the miniNewsgroups
(miniNG for short) and BBC text corpora.

The miniNG document collection3 is a re-
duced version of the 20 Newsgroups text data
set that contains n = 2000 articles posted in
Usenet, each belonging to one of k = 20 pre-
defined thematic classes (e.g. sci.electronics,
rec.sport.baseball or talk.politics.mideast).
The removal of stop words and of terms ap-
pearing in less than 5 documents gives rise
to a bag-of-words representation of each arti-
cle on a d = 6679 dimensional tfidf -weighted
term space.

The BBC document corpus has been ob-
tained from the online repository of the Ma-
chine Learning Group of the University Col-
lege Dublin4. It consists of n = 2225 doc-
uments from the BBC news website corre-
sponding to stories in k = 5 thematic ar-
eas (business, entertainment, politics, sport
and tech). The original documents’ represen-
tation used a 9636 dimensional term space
which was reduced to d = 6767 real-valued
attributes after removing those terms with a
document frequency smaller than 5.

Additional document representations have
been created by applying the following well-
known feature extraction techniques: Princi-
pal Component Analysis, Independent Com-
ponent Analysis, Non-negative Matrix Fac-
torization and Random Projection. Besides
providing diversity as far as data representa-
tion is concerned, these techniques are also
employed with dimensionality reduction pur-
poses. The reduced dimensionality of the re-
sulting feature space is referred to as r, and
it takes values in the interval (3, d). Table 1
summarizes the main attributes of both text
corpora.

4.2 Cluster ensembles generation

As regards the creation of the soft cluster en-
semble components, we have employed the
fuzzy c-means and the k-means clustering al-
gorithms. Whereas the former is fuzzy by
nature, the latter is not. However, some im-
plementations of the k-means algorithm are
capable of returning document to cluster cen-
troid distances, which indeed constitute an

3Available at http://kdd.ics.uci.edu/databases/
20newsgroups/20newsgroups.html

4Available at http://mlg.ucd.ie/content/view/21/

miniNG BBC
Number of 2000 2225documents n
Number of 20 5classes k

Original term space 6679 6767dimensionality d
Reduced term space [50:20:390] [3:50:500]dimensionality r

Table 1: Description of the two document
collections employed in this work. The no-
tation [a:b:c] denotes a sweep from a to c in
steps of b

indicator of the degree of association of doc-
uments to clusters. For the sake of greater al-
gorithmic diversity, variants of k-means using
the Euclidean, city block, cosine and correla-
tion distances have been employed. As men-
tioned earlier, the desired number of clusters
k to be found by these clustering algorithms
has been set equal to the real number of cat-
egories in each collection.

Applying these five clustering algorithms
on distinct document representation has
given rise to soft cluster ensembles of size
l = 365 for the miniNG collection and l = 285
for the BBC corpus. Furthermore, in or-
der to obtain a representative analysis of the
consensus functions performance, besides us-
ing the cluster ensemble of size l, we have
also generated cluster ensembles of sizes � l

20�,
� l

10�, � l
5� and � l

2� (where �x� denotes the ap-
plication of the floor function on x), which
are created by randomly picking a subset
of the original cluster ensemble components.
For each distinct cluster ensemble, ten inde-
pendent runs of each consensus function are
executed so as to obtain reliable results.

4.3 Compared consensus functions

In the upcoming experiments, BordaCon-
sensus (BC) and CondorcetConsensus (CC)
have been compared to several state-of-the-
art consensus functions. This comparison is
conducted against i) one of the pioneering
soft consensus functions, called VMA (for
Voting Merging Algorithm), which is based
on solving the cluster correspondence prob-
lem on pairs of cluster ensemble components,
and simultaneously applying a weighted ver-
sion of the sum rule confidence voting method
(Dimitriadou, Weingessel, and Hornik, 2002),
and ii) the soft versions of four consen-
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sus functions originally designed for com-
bining crisp clusterings, namely the CSPA,
HGPA and MCLA hypergraph-based consen-
sus functions (Strehl and Ghosh, 2002), and
the evidence accumulation (EAC) consensus
function (Fred and Jain, 2005) —see (Sevil-
lano, Aĺıas, and Socoró, 2007; Punera and
Ghosh, 2007) for details on their derivation.

4.4 Consensus functions
evaluation

Both the computational cost of the compared
consensus functions and the quality of the
consensus clustering solutions they yield is
evaluated. With regard to the former as-
pect, the CPU time required for their execu-
tion under Matlab 7.0.4 on a Dual Pentium
4/3GHz/1 GB RAM computer is measured.

As far as the evaluation of the quality
of the consensus partitions is concerned, de-
spite the proposed consensus functions out-
put fuzzy consensus clusterings, we have
compared their hardened version λc with re-
spect to the ground truth γ of each document
collection in terms of normalized mutual in-
formation φ(NMI) (see equation 2).

φ(NMI)(γ, λc) =
2
n

k∑
l=1

k∑
h=1

nh,l logk2

(
nh,l n

n
(γ)
h n

(λc)
l

)

(2)

where n
(γ)
h is the number of documents in

cluster h according to γ, n
(λc)
l is the number

of documents in cluster l according to λc, nh,l

denotes the number of documents in cluster h
according to γ as well as in group l according
to λc, n is the number of documents in the
corpus, and k is the number of clusters into
which documents are clustered according to
λc and γ (Strehl and Ghosh, 2002).

The reason for using this evaluation
scheme is threefold: firstly, a fuzzy ground
truth is not available for these data sets,
so fuzzy consensus clusterings cannot be di-
rectly evaluated. Secondly, provided that
the CSPA, HGPA, MCLA and EAC consen-
sus functions output hard consensus cluster-
ings, fair consensus function comparison re-
quires converting the soft consensus cluster-
ings output by VMA, BC and CC to crisp
consensus labelings λc —which simply boils
down to assigning each document to the clus-
ter it is more strongly associated to. And
thirdly, φ(NMI) is theoretically well-founded,
unbiased, symmetric with respect to λc and
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miniNG
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EAC
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Figure 1: φ(NMI) vs. CPU time mean ± 2-
standard deviation regions of the soft con-
sensus functions on the miniNG corpus

γ, plus being normalized in the [0, 1] inter-
val —the higher the value of φ(NMI), the
more similar λc and γ are (Strehl and Ghosh,
2002).

4.5 Experimental results

Figure 1 shows a quality (φ(NMI) with respect
to the ground truth) vs. time complexity
(CPU running time measured in seconds) di-
agram that describes, in a summarized man-
ner, the performance of the seven soft con-
sensus functions compared on the miniNG
text collection. For each consensus function,
the depicted scatterplot corresponds to the
region limited by the mean ± 2-standard de-
viation curves corresponding to the magni-
tude associated to each axis. Moreover, so
as to compare the quality of the consensus
clusterings to that of the soft cluster ensem-
ble components, the dashed horizontal lines
appearing in figure 1 correspond to the lower
quartile (Q1), median (Q2), and upper quar-
tile (Q3) of the φ(NMI) values of the latter.

The analysis of figure 1 reveals that the
BC and CC consensus functions yield con-
sensus clusterings of higher quality than most
of the soft cluster ensemble components, be-
sides reaching higher φ(NMI) scores than all
the state-of-the-art consensus functions em-
ployed —in fact, crossed pairwise t-tests indi-
cate that the observed inter-consensus func-
tions φ(NMI) differences are statistically sig-
nificant at a >99% confidence level.

From a computational complexity per-
spective, the proposed consensus functions
are only faster than EAC. Notice that VMA
is clearly the fastest alternative, due to the si-
multaneity of the cluster disambiguation and
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Figure 2: φ(NMI) vs. CPU time mean ± 2-
standard deviation regions of the soft con-
sensus functions on the BBC corpus

voting processes in this consensus function.
The results of the soft consensus cluster-

ing experiments conducted on the BBC cor-
pus are depicted in the φ(NMI) vs. CPU time
diagram of figure 2. Notice that VMA is
again the fastest consensus function. The
proposed consensus functions (BC and CC)
are slower than MCLA and HGPA, the latter
being also slower than CSPA, while the for-
mer is faster. All the pairwise running time
differences measured are statistically signifi-
cant at a 95% level.

As regards the quality of the consensus
clustering solutions obtained, the BordaCon-
sensus and CondorcetConsensus clustering
combiners deliver pretty good performances,
being i) far better than EAC and HGPA, ii)
notably better than MCLA, iii) statistically
equivalent to VMA, and iv) only inferior to
CSPA.

5 Conclusions

The BordaConsensus and CondorcetConsen-
sus consensus functions constitute pioneer-
ing efforts as far as the use of positional
voting methods in fuzzy consensus cluster-
ing is concerned. As mentioned earlier, this
type of voting naturally lends itself to the
combination of soft clusterings of different
natures, as it avoids scaling voters’ confi-
dence scores. However, the application of
voting methods for combining clustering sys-
tems is not new: for instance, unweighed
voting strategies (van Erp, Vuurpijl, and
Schomaker, 2002) such as plurality and ma-
jority voting have been applied for deriving
consensus clustering solutions on hard clus-
ter ensembles (Dudoit and Fridlyand, 2003;

Fischer and Buhmann, 2003). To our knowl-
edge, the only voting-based consensus func-
tion for soft cluster ensembles is the Voting-
Merging Algorithm (VMA) of (Dimitriadou,
Weingessel, and Hornik, 2002), which em-
ploys a weighted version of the sum rule for
confidence voting. All these algorithms use
the Hungarian method for solving the cluster
correspondence problem, as our proposals do.

The comparative performance analysis of
the two proposed consensus functions has re-
vealed that they constitute a feasible alterna-
tive for conducting consensus clustering on
soft cluster ensembles, as they are capable
of yielding consensus partitions of compara-
ble or superior quality to those obtained by
state-of-the-art clustering combiners. An ad-
ditional appealing feature of our proposals is
that they naturally deliver fuzzy consensus
clustering solutions, which makes all sense in
a soft clustering scenario —a fact other recent
consensus functions for soft cluster ensembles
do not consider (Punera and Ghosh, 2007).

As regards the computational complexity
comparison, the execution of BC and CC –
specially the latter– is more costly than most
of the implemented state-of-the-art consen-
sus functions. This is due to the sequen-
tial application of the cluster disambiguation
and the voting processes that, added to the
transformation of document to cluster associ-
ations into rankings, increases the execution
time of our proposals. For this reason, we
plan to apply the simultaneous cluster align-
ment plus voting strategy employed by the
VMA consensus function in BordaConsen-
sus and CondorcetConsensus, as we consider
that will surely reduce their execution time
without significantly reducing the quality of
the consensus clusterings obtained. Further-
more, we also intend to i) evaluate alterna-
tives to the Hungarian cluster disambigua-
tion method, as far as their impact on the
quality of the consensus clusterings and on
the computational complexity is concerned,
and ii) develop versions of the BC and CC
consensus functions capable of consolidating
fuzzy partitions with distinct number of clus-
ters.
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