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Resumen: En este trabajo se investigan nuevas distancias entre fonemas y entre palabras que se 
han usado para predecir si dos palabras del vocabulario de un sistema de reconocimiento del 
habla se van a confundir o no. La distancia entre palabras se calcula a partir de un alineamiento 
entre las transcripciones fonéticas de las palabras sumando las distancias entre los fonemas 
alineados. Se propone una nueva solución donde la distancia entre fonemas usada para alinear 
no es la misma que la que se usa para calcular la distancia entre palabras. La primera está 
basada en conocimiento fonético. La segunda se obtiene a partir de los modelos acústicos de los 
fonemas con una nueva fórmula que proponemos. También se han usado dos tipos de 
alineamientos: con o sin inserciones y omisiones. Para evaluar la predicción se han calculado las 
tasas de falso rechazo y falsa aceptación y se ha obtenido un Equal Error Rate de menos del 2%. 
Palabras clave: Distancia entre fonemas, distancia entre palabras, predicción, confusión. 

Abstract: In this work we investigate new inter-phone and inter-word distances and we apply 
them to predict if two words of the lexicon of an Automatic Speech Recognition (ASR) system 
are likely to be confused. The inter-word distance is calculated from an alignment between the 
phonetic transcriptions of the words by adding the distances between the aligned phones. We 
bring a new solution in which the inter-phone distance used for computing the inter-word 
distance is not the same used to compute the phonetic alignment. The first one is calculated 
between the acoustic models of the phones with a new formula that we propose. The second one 
is based on phonetic knowledge. We also use two different kinds of alignments: either with or 
without insertions and deletions. In order to evaluate the performances, we introduce a classical 
false acceptance/false rejection framework and the prediction Equal Error Rate (EER) was 
measured to be less than 2%. 
Keywords: Inter-phone distance, Inter-word distance, confusability prediction. 
 
 
 
 
 

1 Introduction 
Distance measures between phones or between 
words are important in some applications of 
phonology, such as the alignment of phonetic 
sequences (Covington, 1996; Somers, 1999; 
Kondrak, 2000); or applications of Automatic 
Speech Recognition (ASR), such as the 
selection of the lexicon. In the literature we can 
find several proposals of distances between 
words in order to help to design the lexicon of 
an ASR system so that its words are as less 

confusable as possible (Tan et al., 1999; Roe 
and Riley, 1994; Pouységur, 2001). In this work 
we go a step further and we propose to classify 
the word pairs into two classes: confusable or 
not confusable, i.e., if they are likely to be 
confused by an ASR system or not. This 
approach provides a powerful tool since, if two 
words of the lexicon of an ASR system are 
confusable, it will warn the person who is 
designing it, giving him the possibility of 
changing one of them for a synonym. In this 
way, the application remains the same but the 
probability of confusion decreases. 



 

 

In order to do this classification, we 
calculate a distance between the phonetic 
transcriptions of the word pair and we classify 
it as confusable or not confusable using a 
threshold. This distance is based on a new 
algorithm where the phonetic transcriptions of 
the two words are aligned using Dynamic 
Programming (Wagner and Fischer, 1974) and, 
after, the inter-word distance is calculated as the 
sum of the distances between the aligned 
phones. The new proposal is that the inter-
phone distances used to do the alignment and 
the ones used to calculate the inter-word 
distance once the alignment is done, are not the 
same. The first one is based on phonetic 
knowledge, whereas the second one is obtained 
by calculating a new distance between the 
acoustic models (Hidden Markov Models) of 
the phones. We have evaluated the 
performances of these distances with two 
different kinds of alignments: either with or 
without insertions and deletions. 

In order to evaluate the performance, we 
introduce a classical false acceptance/false 
rejection framework for comparing a posteriori 
classification obtained by testing ASR systems 
with the a priori classification produced by the 
method. To obtain data to test is not a trivial 
problem since the confusability of two words 
depends on the whole system: the rest of the 
lexicon, the kind of used models, etc., but we 
make a proposal to solve it. 

The organization of this paper is as follows. 
In section 2 the new inter-phone distances are 
presented. In section 3 the two different kinds 
of alignments used in this work are described. 
In section 4 the classical DTW distance is 
reviewed and, the new distance, called Phonetic 
Acoustic Dissimilarity measure (PAD), and the 
classification procedure are introduced. In 
section 5 the experiments and the results are 
presented and, finally, section 6 concludes the 
paper. 

2 Inter-Phone distances 
In this section we present two different kinds of 
inter-phone distances: one is calculated from 
the acoustic models of the phones, and the other 
one is based on phonetic knowledge. 
 
2.1 Inter-Phone Distance Between 
Acoustic Models 
One way to obtain a measure of distance 
between two phones is to calculate the distance 

between its acoustic models (Tan et al., 1999). 
Since in modern ASR systems the acoustic 
units are usually modelled by Hidden Markov 
Models (HMM) (Rabiner, 1989), in this paper 
we propose the following distance measure 
between the HMMs of two phones: 
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where Q is an alignment between the states 
of the HMMs of the phones p1 and p2, P(Q) is 
the probability of Q, L is the length of the 
alignment, q1i and q2i are states of the models 
that are aligned according to Q, 

iqN
1

and 
iqN

2
are 

the Gaussian distributions associated to the 
states q1i and q2i, and DN(·) is a measure of 
distance between the two Gaussian 
distributions. The numerator is a weighted sum 
of the average distance between the Gaussians 
of the aligned states for each alignment Q. 
Bahlmann and Burkhardt (2001) calculated this 
average distance between Gaussians for each Q 
and chose the minimum one. On the other hand, 
we sum all these average Gaussian distances 
weighted by the probability of the alignment. 
Since only a subset of the possible alignments 
is used, the denominator is introduced in order 
to normalise by the probability of the subset of 
alignments. In this work, we used the 
alignments associated to the possible paths in a 
grid of dimension M1xM2, where M1 and M2 are 
the number of states of the models as shown in 
Fig. 1. This subset avoids alignments where 
there are loops in states of the two models at the 
same time. 
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(q14,q24) = (3,3) 

 
 

Fig. 1 Subset of alignments used to calculate the 
inter-HMM distance. The bold line shows one of 
these alignments. The values of q1i and q2i are the 
aligned states according to the path in bold. 
 

The models used to obtain a dissimilarity 
value between the phones with the proposed 
measure have one Gaussian per state. This does 



 

 

not imply that the real ASR systems must have 
one Gaussian per state. We considered several 
monomodal Gaussian distances such as 
Euclidean, Mahalanobis, Kullback-Leibler, 
Bhattacharyya and Jeffreys-Matusita [4,5]: 

 
Euclidean distance: 
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Bhattacharyya distance: 
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Jeffreys-Matusita distance: 
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Kullback-Leibler distance: 
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Mahalanobis distance: 
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where µi and Σi are the mean vector and the 
covariance matrix of the Gaussian Ni 
respectively. 

 
2.2 Inter-Phone Distance Based on 
Phonetic Knowledge 
Another way to obtain a distance between two 
phones is to use the knowledge of their 
phonetic characteristics (Covington, 1996; 
Somers, 1998; Kondrak, 2000). 

Before the definition of this distance, we 
have divided the phones into groups according 
to their characteristics. In this study we have 
worked with French words, and in this language 
the main groups are: 

( )

( )
















=

ConsonantNasal
Stop
Fricative
Liquid
Glide

VVowel

pg

 

                 (7) 

where g(p) is the group the phone p belongs 
to. With this classification of the phones, we 
have defined three different inter-phone 
distances based on phonetic knowledge: 
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where 0<σ<γ<β<α are constant values. 
The distance d(1)

PK(p1,p2) is the simplest one 
and gives a high distance if two phones are 
different and 0 if they are equal. The distance 
d(2)

PK(p1,p2) is similar but gives a medium 
distance if the phones are different but belong 
to the same group. On the other hand the 
distance d(3)

PK(p1,p2) gives low distances if both 
phones are vowels and higher distances if at 
least one of the phones is not a vowel. As it will 
be explained in section 4, these distances are 
used to align phonetic transcriptions. Therefore, 
different alignments are obtained depending on 
the used distance. 

3 Alignment between Phonetic 
Transcriptions 
Once we have an inter-phone distance, in order 
to calculate a distance between the phonetic 
transcriptions of two words, we first need to 
align them. Let W1={p1i} and W2={p2j}, with 
i=1,…,I and j=1,...,J, be the phonetic 
transcriptions of the two words to compare. The 
values I and J are the lengths of the phonetic 
transcriptions and p1i and p2j are their phones. 
Let us consider an i-j grid, shown in Fig. 2, 
where W1 and W2 are developed along the i-axis 
and the j-axis respectively. A path through the 
grid is written as F={c(1),c(2)...c(K)}, and it 
represents an alignment between the two 
transcriptions. The generalised element of the 
path is c(k) and it consists of a pair of 
coordinates in the i and j directions. The i and j 
coordinates of the kth path element are i(k) and 
j(k) respectively. 
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The path F fulfils the following conditions 
(Sakoe and Chiba, 1978): 

 
1) Monotonic conditions: 
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2) Continuity conditions: 
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3) Boundary conditions 
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Fig 2. Example of a path F in the grid, and the steps 
c(k). Each path defines an alignment between the 
phonetic transcriptions. 
 

We have used two different kinds of 
alignments. How an alignment is defined by the 
path F is different for each one. These kinds of 
alignments are described in the following 
sections. 

 
3.1 Alignment with Only Substitutions  
This is the classical alignment used in DTW 
(Sakoe and Chiba, 1978), where only 
substitutions are allowed. We denote this kind 
of alignment as OS (Only Substitutions). When 
using this alignment each element c(k) indicates 
that the phones p1i(k) and p2j(k) are aligned. For 
example the OS alignment defined with the 
path of Fig. 2 is the following one: 

p21 p22 p23 p24

p11 p11 p12 p13  
The OS alignment is the one used in previous 

works (Tan et al., 1999) and it implies that one 
phone of a phonetic transcription can be aligned 
with more than one phone of the other phonetic 
transcription. But phones of the same 
transcription are always different. This is the 
reason why we also use the ID alignment, 
explained in the following section. 

 

3.2 Alignment  with Substitutions 
Insertions and Deletions 
This kind of alignment is usually used in the 
alignment of phonetic or DNA sequences 
(Waterman and Eggert, 1987), and it allows 
insertions and deletions. We denote it as ID 
alignment. When using this kind of alignment 
the alignment is defined by the path F as 
follows: 

- if i(k)=i(k-1)+1 and j(k)=j(k-1)+1 then 
p1i(k) and p2j(k) are aligned. 

- if i(k)=i(k-1)+1 and j(k)=j(k-1) then p1i(k) is 
aligned with the null character (symbol of an 
insertion or an omission) 

- if i(k)=i(k-1) and j(k)=j(k-1)+1 then p2j(k) is 
aligned with the null character. 

 
The ID alignment defined with the path of 

Fig. 2 is the following one: 
p21 p22 p23 p24

p11 − p12 p13  
If the ID alignment is used the inter-phone 

distances have to be extended to cover pairs 
consisting of a phone and the null character, 
which corresponds to the operation of insertion 
or deletion. The inter-phone distance calculated 
from the acoustic models for the ID alignment 
is as follows: 
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where dHMM_ is the distance between a phone 
and the null character. We have chosen the 
following value: 
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where P is the total number of phones. The 
value of the equation (16) is the average of the 
distance between all the phones. 

We have to do the same with the inter-phone 
distance based on phonetic knowledge: 
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where dPK_>α is the distance between a 
phone and the null character, and n can be 1, 2 
or 3, any of the distances of the equations (8), 
(9) or (10). 

c(1)=(1,1) 
c(2)=(1,2) 
c(3)=(2,3) 
c(4)=(3,4) 

p21 p22 p23 p24

(0,0)

p11

p12

p13



 

 

4 Inter-Word Distances 
The proposed application of this work is to 
predict if two words are likely to be confused 
by an ASR system, i.e, if they are confusable or 
not. In order to do this, a distance is calculated 
between the two words and, if the distance is 
lower than a threshold, the word pair is 
considered confusable: 

( )
( )




⇒>
⇒≤

ConfusableNotThresholdWWD
ConfusableThresholdWWD

 , if
, if

21*

21*  

where D*(W1,W2) is a distance between two 
words, that can be any one of the proposed in 
the following two sections. 

 
4.1 Dynamic Time Warping  
Based on the alignments definitions and the 
inter-phone distances presented in the previous 
sections, a distance between two words is 
defined as follows (Sakoe and Chiba, 1978): 
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The weighting function w(k) introduced into 
the overall distance measure is used to 
normalise for the path length. In this work we 
have used the following weighting function 
(Sakoe and Chiba, 1978): 

( ) ( ) ( ) ( ) ( )11 −−+−−= kjkjkikikw       (19) 

This implies that: 
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With this weighting function the 
denominator of equation (18) is constant and, 
therefore, independent of the path F. 

The equation (18) means that the distance 
between two words is the minimum weighted 
summation of the distances between the aligned 
phones, for all the possible OS alignments 
between the phonetic transcriptions of the 
words 

This distance is based on the OS alignment 
defined in section 3. If we want to use the ID 
alignment we only have to replace the distance 
dHMM(p1,p2) with dID-HMM(c(k)) in (18). 

We call this distance DTW, OS-DTW or ID-
DTW depending on the used alignment, 
because it is usually used in the Dynamic Time 
Warping technique. 

 
4.2 Phonetic Acoustic Dissimilarity 
Measure 
The DTW technique searches the alignment that 
minimizes the accumulated distance. This may 
cause two words that are not confusable to have 
a low dissimilarity value when it should be 
high. For this reason in this paper we propose a 
modification of DTW that we call Phonetic 
Acoustic Dissimilarity measure (PAD). The 
difference between them is that, when using the 
PAD measure, the alignment is based on 
phonetic information, not in acoustic 
information. The acoustic information is only 
used to calculate the accumulated distance once 
the alignment is done. The PAD measure with 
the OS alignment is calculated as follows: 
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where i∗(k) and j∗(k) are the coordinates of 
the alignment F* = {c* (1), c* (2)…c* (K)}. This 
alignment is: 
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and n can be 1, 2 or 3, any of the distances 
of the equations (8), (9) or (10). This alignment 
can be efficiently found by Dynamic 
Programming. We can see that here, the inter-
phone distance used to obtain the alignment 
between the phonetic transcriptions is not the 
same that the one used to calculate the inter-
word distance. The first one is based on 
phonetic knowledge, and the second one is 
obtained from the acoustic models of the 
phones, as we have explained in section 2. With 
this modification we can define d(n)

PK(c(k)) so 
that we use an alignment that we consider 
correct to calculate the inter-word distance, 
rather than the alignment that gives the lower 
inter-word distance as in DTW. 

The distance of the equation (21) is based on 
the OS alignment. We can use the ID alignment 
instead of the OS alignment with the PAD 
measure in the same way that we have done 
with the DTW distance. We only have to 
replace dHMM(p1,p2) with dID-HMM(c(k)) in 
equation (21), and d(n)

PK(p1,p2) with             



 

 

d(n)
ID-PK(c(k)) in the equation (22), and we 

obtain the ID-PAD distance. 

5 Experiments and Results 

5.1 Experimental Setup 
In order to evaluate the performances of this 
method, we introduce a classical false 
acceptance/false rejection framework for 
comparing a posteriori classification obtained 
by testing ASR systems with the a priori 
classification produced by the method. We 
constructed two kinds of ASR systems: one to 
detect the confusable word pairs, and the other 
to detect the not confusable word pairs: 

 
NCD Systems (No Confusability 

Detection): 223 systems, each one with 
only one word in its vocabulary and a 
garbage model to reject out-of-
vocabulary data. Each system has been 
tested with the 223 words. 

CD System (Confusability Detection): One 
system with 841 words and a garbage 
model, tested with the 841 words. 

If one of the NCD systems, with only the 
word A in its vocabulary, is tested with another 
word B and they are never confused, it means 
that they are very different and, therefore, they 
are not confusable. On the other hand, if they 
are sometimes confused, it only means that B is 
more similar to A than to the garbage model, 
not necessarily that A and B are similar. 
Therefore, with this kind of systems we can 
only determine if two words are not confusable 
in general. 

If we test the CD system with several 
utterances of a word A, and a word B is never 
recognized, we cannot say that A and B are not 
confusable, we can only say that A is more 
similar to some of the other words of the 
vocabulary than to B. On the other hand, if they 
are sometimes confused, we can assure that 
they are quite confusable. Therefore, with this 
system we can detect confusable word pairs. 

The vocabulary of the CD and NCD systems 
consisted of French isolated words such as 
numbers, cities, commands, etc. Each word was 
pronounced by 700 speakers in average. The 
speech signal was sampled at 8 kHz and 
parameterized using MFCCs. The feature 
vectors consisted of 27 coefficients: the frame 
energy, 8 MFCCs, and the first and second time 

derivatives. The models of the words were 
constructed by concatenating context dependent 
HMMs of the phones with one Gaussian per 
state. By testing these systems the following 
three groups of word pairs are obtained: 

 
Low Probability of Confusion (LPC): 

21506 word pairs which were never 
confused when the NCD systems were 
tested. 

Medium Probability of Confusion (MPC): 
150 word pairs which had a confusion 
rate lower than 5% and higher than 0% 
when the CD system was tested. 

High Probability of Confusion (HPC): 
189 word pairs which had a confusion 
rate higher than 5% when the CD system 
was tested. 

It would have been desirable to have more 
HPC word pairs to better rely on the results, but 
no more words were available. We consider a 
False Rejection to classify as confusable an 
LPC word pair, and a False Acceptance to 
classify as not confusable a HPC word pair. The 
MPC word pairs were not taken into account in 
the evaluation because we considered that is not 
a severe error neither to classify them as 
confusable nor as not confusable. 

We used the following values (8), (9), (10) 
and (17): α=4, β=3, γ=2, σ=1 and dPK_=7. The 
HMMs used to calculate the inter-phone 
distances are not the models used in 
recognition. In the first case we used models 
without context with 3 states and 1 Gaussian 
per state. The results would probably improve 
by using context dependent models, but the 
complexity of the system would increase. 

 
5.2 Confusability Prediction Results 
Table 1 shows the EER for each inter-word 
distance, each Gaussian distance and the OS 
alignment. The EER is the False Acceptance 
Rate and the False Rejection Rate obtained with 
the threshold that makes them equal. We denote 
as PAD1, PAD2 and PAD3, the PAD measures 
calculated with d(1)

PK(c(k)), d(2)
PK(c(k)) and 

d(3)
PK(c(k)) respectively. We can see that the 

proposed PAD measure always outperforms the 
classical DTW distance, independently of the 
inter-phone distance used to do the alignment. 
We can also see that OS-PAD3 gives lower 
error rates than OS-PAD2, and that OS-PAD2 



 

 

gives lower error rates than OS-PAD1. 
Therefore, for our purpose, it is better to give 
priority to align vowels rather than to align 
other phones, because this is the basis of the 
OS-PAD3 measure. 

 
OS-DTW OS-PAD1 OS-PAD2 OS-PAD3

EUC 9,4% 7,9% 6,9% 6,8%
KL 9,6% 9,0% 7,9% 6,9%
JM 11,7% 9,5% 9,4% 9,0%
MAH 12,1% 9,8% 8,5% 7,9%
BHA 17,0% 16,0% 14,6% 13,8%  

 
Table 1. The EER for each inter-word distance with 
the OS alignment and each Gaussian distance in 
equation (1). 
 

Table 1 also shows that, with the OS 
alignment, the best Gaussian distance is the 
Euclidean, because it gives the lower error rates 
independently of the used inter-word distance. 
With this Gaussian distance a 6.8% of EER is 
obtained when using OS-PAD3. 

 
ID-DTW ID-PAD1 ID-PAD2 ID-PAD3

EUC 3,1% 2,1% 2,1% 2,1%
KL 3,2% 1,6% 1,6% 1,6%
JM 7,5% 6,9% 6,5% 6,3%
MAH 2,6% 2,6% 2,6% 2,5%
BHA 8,9% 10,1% 9,6% 8,9%  
 
Table 2. The EER for each inter-word distance with 
the ID alignment and each Gaussian distance in 
equation (1). 

 
Table 2 shows the same results as in table 1 

but with the ID alignment instead of OS. The 
first conclusion obtained when comparing the 
table 2 with the table 1 is that the ID alignment 
gives better results. The ID alignment always 
outperforms the OS alignment independently of 
the inter-word distance and the Gaussian 
distance. ID-PAD outperforms ID-DTW for all 
the Gaussian distances except Bhattacharyya. 
ID-PAD3 outperforms ID-PAD2, and ID-PAD2 
outperforms ID-PAD1, except with the 
Euclidean and Kullback-Leibler distances. In 
these cases the three PAD measures give the 
same results. The best results are obtained with 
the Kullback-Leibler Gaussian distance, with a 
1.6% of EER. The Euclidean distance also 
gives low error rates and it has lower 
computational cost. 

In Fig. 3 we can see the FAR and FRR 
curves for the ID-PAD3 and ID-DTW distances 
with the KL Gaussian distance. We can see that 
the FAR curve is similar for the two inter-word 
distances. This implies that they do a similar 
alignment when the words to compare are 
similar.  On the other hand, the FRR curve of 
the ID-PAD3 distance is lower than that of the 
ID-DTW distance. This implies that ID-PAD3 
gives higher distances to the word pairs that are 
different, making a better separation between 
the two classes, confusable and not confusable. 
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Fig. 3. FAR and FRR curves for the ID-PAD3 and 
ID-DTW distances, with the KL Gaussian distance. 

6 Conclusions 
In this paper we have proposed a new inter-
word distance based on DTW called PAD. This 
new distance is based on an alignment that is 
obtained with an inter-phone distance that is not 
the same that the one used to calculate the inter-
word distance. The first one is based on 
phonetic knowledge, and the second one is 
obtained from the acoustic models of the 
phones. We have proposed new inter-phone 
distances of both types. We have also used two 
different alignments: either with or without 
insertions and deletions. 

We have applied the new inter-word 
distance to predict if two words are likely 
confused by and ASR system. The new distance 
outperformed de classical DTW in terms of 
EER, with a 50% of EER reduction in the best 
case. The alignment with insertion and 
deletions provided lower error rates. Using this 
alignment and the PAD measure an EER of 
1.6% is obtained. 
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