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e Conversion (VC) systems modify a speaker voi
e (sour
e speak-er) to be per
eived as if another speaker (target speaker) had uttered it. Previouspublished VC approa
hes using Gaussian Mixture Models performs the 
onversionin a frame by frame basis. In this paper, the in
lusion of dynami
 information ofthe sour
e, target or both joint sour
e-target speakers in the 
onversion is studied.Obje
tive and per
eptual results 
ompare the performan
e of the proposed systems.Keywords: voi
e 
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tionVoi
e Conversion (VC) systems modifya speaker voi
e (sour
e speaker) to be per-
eived as if another speaker (target speaker)had uttered it. Appli
ations of VC systems
an be found in several �elds, su
h as TTS(text-to-spee
h systems) 
ustomization, au-tomati
 translation, edu
ation, medi
al aidsand entertainment.Nowadays, high quality TTS are based onthe 
on
atenation of a
ousti
 units, i.e. toprodu
e an utteran
e the most appropriat-ed a
ousti
 units are sele
ted from a singlespeaker stored database. Then some strate-gy of spe
tral 
ontinuity is applied to jointthe sele
ted units together. In order to haveavailable a wide range of a
ousti
 units, hugeamount of pre-re
orded labeled data is need-ed, what makes expensive and time 
onsum-ing to develop a new speaker voi
e.VC 
an be a fast and a 
heap way to buildnew voi
es for a TTS. So, it will be able toread e-mails or SMS with their sender's voi
e,to assign our and ours friends voi
es to 
har-a
ters when playing on a 
omputer, or to give� This work has been partially sponsored by the Eu-ropean Union under grant FP6-506738 (TC-STARproje
t, http://www.t
-star.org) and the SpanishGovernment under grant TIC2002-04447-C02 (ALI-ADO proje
t, http://gps-ts
.up
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di�erent voi
es to di�erent 
omputer appli-
ations. Re
ently (Kawanami et al., 2003),VC has been also applied to emotional spee
hsynthesis, as an aid to prosodi
 modi�
ationson a neutral senten
e.VC 
an also be very useful in interpret-ed telephony, when the translation task re-quires speaker identi�
ation by listeners. Forexample, in a 
onferen
e 
all with three par-ti
ipants is very important to be able todi�erentiate between speakers by their voi
-es. Also, it 
an help to learn foreign lan-guages (Mashimo et al., 2001),(Mashimo etal., 2002), espe
ially in pronun
iation exer
is-es, when students would listen to their ownvoi
es pronoun
ing foreign sounds properly.Another �eld to apply VC is in speakingaids for people with spee
h impairments, im-proving the intelligibility of abnormal spee
huttered by a speaker who has spee
h organproblems (Hosom et al., 2003). Also, it 
anbe useful for designing hearing aids appro-priated for spe
i�
 hearing problems. In divepra
ti
es, VC 
an be applied to enhan
e thehelium spee
h signals of the submariners.There are several appli
ations of VC inthe multimedia entertainment too. One of themost obvious is karaoke, where the singer 
anbe \helped" to su

ess in every kind of songs.Also, some experiments have been done in



�lm dubbing and looping (repla
ing unde-sired utteran
es with the desired ones) (Turkand Arslan, 2002), and in restoring old �lms.VC 
an also be applied to the most 
lassi-
al �elds of spee
h te
hnology, for example invery low bandwidth spee
h en
oding, trans-mitting the spee
h without speaker informa-tion, and adding it at the de
oding step.Moreover, a
quiring a high level of knowledgeabout speaker individuality 
an help spee
hor speaker re
ognition tasks.The goal of this paper is to build a VCsystem as a post-pro
essing blo
k for a TTS,in order not to have to store several spee
hdatabases, one for ea
h speaker. So, theamount of training data is not a problem.Only high quality is required.The following topi
s are studied, introdu
-ing a new approa
h to vo
al tra
t 
onversion:The e�e
ts of in
luding dynami
 
har-a
teristi
s in the a
ousti
 model usedto build lo
al vo
al tra
t mapping fun
-tions.The e�e
ts of in
luding joint sour
e andtarget information during the training ofthe vo
al tra
t a
ousti
 model.The outline of this paper is as follows. Inse
tion 2 the blo
k ar
hite
ture of VC sys-tems is presented. Then in se
tion 3 a GMM-based system is explained. In se
tion 4 thein
lusion of delta parameters to the a
ousti
model is proposed, and in se
tion 5 a new ap-proa
h based on HMM is introdu
ed. Finally,in se
tion 6 the results are dis
ussed and the
on
lusions 
an be found in se
tion 7.2. Voi
e 
onversion systemar
hite
tureIn �gure 1 a generi
 VC system is present-ed. A VC system has two di�erent operatingmodes: the training step and the transform-ing step. In the training step, all the 
ompo-nents of the system are estimated from sour
eand target spee
h data. So, for ea
h new tar-get speaker, a training must be 
arried out.On
e the 
onversion fun
tion for a set of twospeakers has been learned, any sour
e utter-an
e 
an be 
onverted to sound as if the tar-get speaker had uttered it.Several features has been used in VC.They 
an be grouped in:Parametri
 features: formant frequen-
ies and bandwidths, also glottal 
ow
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Figure 1: VC system blo
k diagramparameters (Narendranath et al., 1995)(Gutierrez-Arriola et al., 1998) (Moriand Kasuya, 2003) (Rentzos et al.,2003).LP related features. These kinds of fea-tures are based on the sour
e-�lter mod-el for spee
h produ
tion. Usually, thepolynomial 
oeÆ
ients are derived toother parameters with better interpola-tion properties, su
h as: LSF (Kain andMa
on, 2001)(Arslan, 1999), lar (Iwa-hashi and Sagisaka, 1995), re
exion 
oef-�
ients (Verhelst and Mertens, 1996) orLPC 
epstrum.Spe
tral features without assuming anysignal model, su
h as spe
tral lines(S�undermann and H�oge, 2003) or melfrequen
y 
epstrum (Masuko et al.,1997) (Mashimo et al., 2001).In this paper LSF features, extra
ted pit
hsyn
hronous, are used as vo
al tra
t param-eters. As it was mentioned, this paper is fo-
used on studying a new vo
al tra
t 
onver-sion system approa
h, so dealing with theresidual LP signal remains as a future studyand it is out of the s
ope of this paper.On
e both speaker's training data isparametrized, some kind of alignment isneeded at the frame level in order to learn themapping. Several strategies has been used,from manual alignment to DTW (Abe etal., 1988)(Kain and Ma
on, 2001), senten
eHMM (Arslan, 1999) or sour
e-target 
lassmapping (S�undermann and Ney, 2003) for
orpus with di�erent 
ontents for sour
e andtarget speakers. We use lineal frame align-ment, based on phoneme labeling.Most of the te
hniques used for the map-ping fun
tions 
ome from the �elds of speakerre
ognition and speaker adaptation for au-



tomati
 spee
h re
ognition systems. Usual-ly, a vo
al tra
t mapping fun
tion is trainedby estimating the 
orresponden
e betweenspe
tral features of the sour
e speaker withaligned features of the target. Then, resid-ual adjustments and prosodi
 modi�
ationsare 
arried out. Several approa
hes havebeen used for the spe
tral mapping, su
h asmapping 
odebooks (Abe et al., 1988), Lin-ear Multivariate Regression (LMR) and Dy-nami
 Frequen
y Warping (DFW) (Valbret,Moulines, and Tuba
h, 1992), Speaker Trans-formation Algorithm using Segmental Code-books (STASC) (Arslan, 1999), speaker in-terpolation (Iwahashi and Sagisaka, 1995),or Arti�
ial Neural Networks (ANN) (Naren-dranath et al., 1995). In the next se
tion, oneof the standard vo
al tra
t 
onversion systemis presented, as a baseline system for 
ompar-isons.3. Baseline system: GMM-basedvoi
e 
onversionA GMM 
an model the probability distri-bution of any feature ve
tor x as a sum of Qmultivariate Gaussian fun
tions,p(x) = Q�1Xq=0 �qN(x;�q;�q) (1)Q�1Xq=0 �q = 1 �q � 0 (2)where N(x;�q;�q) is a normal distributionand �q is the prior probability of the Gaus-sian q. The parameters (�q; �q;�q) 
an be es-timated using the Expe
tation-Maximization(EM) algorithm.A GMM is highly suitable to model aspeaker a
ousti
 spa
e, sin
e it 
an deal withdi�erent a
ousti
s 
lasses. Also, the 
lassi�
a-tion of a frame is smoothed and the transfor-mation fun
tion 
ontinuous, avoiding spe
-tral jumps in the transformed spee
h.The baseline system 
hosen is based onmodeling the joint a
ousti
 spa
e of thesour
e and target features with a GMM, �rstpublished in (Kain and Ma
on, 1998). TheGMM is estimated maximizing the likelihoodfun
tion of the joint sour
e-target probabili-ty. The transformation fun
tion 
an be ob-tained through the regression on the GMM

of the target given the sour
e parameters:F (x) = E[y=x℄ = Z yp(y=x)dy (3)F (x) = Q�1Xq=0 hq(x)[�yq +�yxq �xx�1q (x� �xq )℄(4)where x and y are sour
e and target featureve
tors, and hq(x) is the posterior probabilityof the qth Gaussian.The mixture of gaussians splits the a
ous-ti
 spa
e a

ording joint information, andlearns a mixture of linear regression fun
-tions.Conversion systems using GMM workwith a frame by frame basis. It means thatto 
onvert one frame the information aboutpast and future frames isn't relevant. Thisis a simpli�
ation of the real spee
h produ
-tion me
hanism. Our propose is to in
ludedynami
 information in the voi
e 
onversiontask. Two alternatives are presented: to ex-tend the parameters employed in the estima-tion of the GMM to in
lude dynami
 infor-mation, or to extend the a
ousti
 model us-ing HMM to model not only the probabilitydensity but also the dynami
s of the speakerfeatures.4. GMM with delta parametersThe �rst approa
h to in
lude some dy-nami
s in the voi
e 
onversion task is keep-ing the same mathemati
al model for thea
ousti
 spa
e and 
hanging the parametersemployed in training. So, in the training ofa joint GMM the following parameters areused: sour
e LSF and �LSF, and target LSFand �LSF. Then, sour
e LSF and �LSFare used to estimate only target LSF. Notethat the target dynami
s are used only inthe training step, while sour
e dynami
s areused both in the training and transformationsteps. The reason to in
lude target �LSF inthe training is to allo
ate the 
lass parame-ters more judi
iously.As a delta parameters, smoothed deltaover N=2 periods are used:�x(n) = PNi=�N ;i6=0 ix(n+ i)PNi=1 2i2 (5)To in
lude �LSF in the a
ousti
 model im-plies to estimate 
onversion fun
tion param-eters of twi
e dimension. So, the amount of



training data will be more 
riti
al than work-ing with only LSF.5. HMM-based voi
e 
onversionHMM are well-known models whi
h 
an
apture the dynami
s of the training data us-ing states. A HMM 
an model the probabilitydistribution of any feature ve
tor, a

ordingto its a
tual state, and also it 
an model thedynami
s of sequen
es of ve
tors with transi-tion probabilities between states.The model parameters (aij ; bi(x); �i),where aij indi
ates the transition probabilitymatrix, bi(x) the emission probability fun
-tion of the ith state and �i the initial proba-bility of the ith state, 
an be estimated usingthe Baum-Wel
h algorithm.In this paper, all the studied HMM are er-godi
, i.e. all the states are 
onne
ted, andthe emission probability fun
tion for ea
hstate is a Gaussian. LSF parameters has beenused as a vo
al tra
t features. In this se
tion,we don't use �LSF.The blo
k diagram of a HMM-based VCsystem is presented in �gure 2.
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Segmentation ConversionFigure 2: HMM-based VC system blo
k dia-gramIn the training step, an HMM is estimat-ed from training data, and then a 
onversionfun
tion is 
al
ulated for ea
h state. In thetransforming step HMM is used twi
e. First,sour
e data is segmented a

ording the HMMstates. Then, ea
h frame is transformed ap-plying the 
onversion fun
tion of its segmen-tation state.It should be remarked that 
hoosing ap-propriated sequen
es in training a HMM is
riti
al, as our goal is to 
apture its dynam-i
s. So, only phoneti
ally mat
hing senten
esbetween sour
e and target speakers are used.

5.1. Sour
e HMM-based systemThe basi
 idea of this system is to modelthe dynami
s of the sour
e speaker with anergodi
 HMM. The transition probabilities ofthis model will be used as dynami
 
hara
ter-isti
s in the 
onversion. This system is simi-lar to the one propose in (Kim, Lee, and Oh,1997), but using 
ontinuous transformationfun
tions in order to avoid spe
tral jumps inthe 
onverted features that, as it was report-ed, degrades the quality of the transformedspee
h.The steps for training the 
onversion fun
-tion are the following. First, a sour
e HMM isestimated from sour
e data. Then, using theestimated HMM, sour
e training ve
tor se-quen
es are segmented a

ording to the op-timal state path (using Viterbi sear
h). Allthe ve
tors, with their target alignments, are
olle
ted for ea
h state, and N (number ofstates) joint Gaussian fun
tions are estimat-ed. Finally, regressing the fun
tion for ea
hstate we have:Fs(x) = �ys +�yxs �xx�1s (x� �xs ) (6)as a 
onversion fun
tion, where s indi
atesthe state. To transform a new sequen
e, weneed to segment it a

ording to the sour
eHMM. Then, the 
onversion fun
tion of ea
hstate is applied.5.2. Target HMM-based systemWhen sour
e HMM-based system is usedfor VC, the transformed spee
h follows thedynami
s of the sour
e speaker, as it deter-mines the sequen
e of transformation fun
-tions applied. In order to in
orporate the dy-nami
s of the target speaker, the HMM 
anbe estimated with target data. In this 
ase,the �rst step of the training is to estimate aHMM with target data. Then the same tar-get data is segmented a

ording to the targetHMM. For ea
h state, all the target ve
torswith their sour
e aligned ve
tors are 
olle
t-ed, and a Gaussian fun
tion is estimated tomodel the sour
e data. The 
onversion fun
-tion is estimated for ea
h state in the sameway than before, it is building and regressinga joint Gaussian for ea
h state.In the transformation step, the sour
e se-quen
es are segmented by Viterbi a

ordingthe estimated target transition probabilitiesbetween target HMM states, and the emis-sion probabilities of the sour
e speaker ve
-tors estimated by the Gaussians. Then, the




orresponding transformation fun
tions areapplied. Although the segmentation is not asa

urate as in the previous 
ase, it is expe
t-ed that the 
orre
t dynami
s in
reases theper
eptual performan
e.5.3. Joint HMM-based systemAs it has been previously done with GMMsystems, we introdu
e joint information inorder to allo
ate the distribution fun
tionsmore task-oriented, and also to use bothsour
e and target dynami
 information. So,using aligned sour
e-target features ve
tors ajoint HMM is estimated. Like in joint GMM,there is no need of an extra step to 
al
ulatethe mapping fun
tion for ea
h state. Sin
ethere is a joint Gaussian per state, we 
an
al
ulate the regression fun
tion straightfor-ward.On
e the joint HMM is estimated, thereare two di�erent ways of transforming newve
tors. On one hand, the new sequen
e 
anbe segmented a

ording to the optimal statepath s�: s� = argmaxs p(x; s=�) (7)s� = argmaxs p(x=s; �)p(s=�) (8)where � = (aij ; bi(x); �i) i = 1:::N , for aHMM with N states. Then, as in sour
eHMM, ea
h ve
tor is transformed a

ord-ing to its segmentation state. Note that nowtransition probabilities take into a

ount notonly sour
e speaker, but also target speakerinformation.Another way of transforming a new se-quen
e is to in
lude the regression in thesear
h of the optimal path.s� = argmaxs p(y;x; s=�) (9)s� � argmaxs p(~y;x; s=�) (10)s� � argmaxs p(~y=x; s; �)p(x=s; �)p(s=�)(11)where ~y indi
ates the transformed frame.We have approximated the solution usingthe transformed frame instead of the targetframe, whi
h is unknown. Although a priorithe transformed frame is also unknown, thede
omposition 11 allows to 
ompute it apply-ing the regression fun
tion of the state s tothe sour
e frame.

Both approa
hes, 
alled method A andmethod B respe
tively, will led to di�erentsolutions.6. ExperimentsThe 
orpus used for the experiments wasbuilt to generate a Spanish unit sele
tionTTS system. Spee
h and laringograph sig-nals were re
orded in an a
ousti
ally isolatedroom. A sample frequen
y of 32kHz and 16bits per sample were used. For this study, sig-nals were de
imated to 8kHz. The total 
or-pus size is more than one hour for ea
h speak-er (one male and one female), but we use fewsenten
es from ea
h one.The frame alignment used is lineal in-side ea
h phoneme. Only phoneti
 trans
rip-tion mat
hing senten
es are used. To trainHMM's, ea
h senten
e without pauses is 
on-sidered a sequen
e.To evaluate the proposed systems obje
-tive and per
eptual test have been 
arriedout.6.1. Obje
tive TestsThe performan
e index used for test is:P = 1� IHMD(~y;y)IHMD(x;y) (12)where the distan
es are Inverse Harmoni
Mean Distan
e (Laroia, Phamdo, and Far-vardin, 1991). As it 
an be seen, the optimalperforman
e is P = 1, while a 
onversion sys-tem that doesn't 
hange the sour
e spee
hwill led to P = 0. The expression for InverseHarmoni
 Mean Distan
e is:IHMD(x;y) = PXp=1 
(p)(x(p) � y(p))2 (13)
(p) = 1w(p)� w(p� 1) + 1w(p+ 1)� w(p)(14)with w(0) = 0, w(P+1) = � and w(p) = x(p)or w(p) = y(p) so that 
(p) is maximized (pis the ve
tor dimension). The features usedare LSF. Using this distan
e measurement weweight more the mismat
h in spe
tral pi
ksthan the mismat
h in spe
tral valleys.Two sets of experiments has been 
ar-ried out: using 20 senten
es (about 7.800aligned ve
tors), and using 162 senten
e(about 68.000 ve
tors) for the training.



Figures 3 and 4 show the results for thevoi
e 
onversion task from a male speak-er to a female speaker, and vi
e-versa forthe two amounts of data. In ea
h 
ase, af-ter training 4, 8, 12, 16, 20, 32, 64 
om-ponents of the mixture, the optimal num-ber is shown. That 
orresponds to 8 
ompo-nents for 20 senten
es and 20 
omponents for162 senten
es. The systems tested are: base-line GMM, GMM with delta parameters (dG-MM), sour
e HMM (sHMM), target HMM(tHMM) and joint HMM method A and B(jHMMA and jHMMB).
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e index formale!female 
onversion.
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20 sentences 162 sentences Figure 4: Performan
e index forfemale!male 
onversion.It 
an be seen that the performan
e of thesystem depends on the speakers involved inthe 
onversion. Moreover, doing the 
onver-sion in one dire
tion or in the other 
hangesthe performan
e.As it was expe
ted, in
reasing the amountof training data improves the performan
e.

It is more relevant in HMM, sin
e the modelhas more parameters, so more data is need-ed to estimate it a

urately. For this reason,the GMM-based system performs similar tothe HMM-based systems with only 20 train-ing senten
es, but sour
e HMM-based systemhas slightly higher performan
e index valueusing 162 senten
es. However, the di�eren
esare minimal, so we expe
t similar quality per-
eptual rates.Con
erning the use of joint sour
e-targetinformation, from the experimental results itseems better to use only sour
e data. Wemust take into a

ount that using joint da-ta in
reases the ve
tor dimensions.As a remark, all the HMM have learned asimilar topology. Not all the states are like-ly to be initial states, and the probability ofremaining in the a
tual state is larger than
hanging of state.6.2. Per
eptual testTwo kinds of per
eptual test have been
arried out: ABX and preferen
e test. InABX test, A and B represents either thesour
e or target speaker and X the 
onvert-ed spee
h. The listeners are asked to sele
tif X is 
loser to A or B. ABX test for
es thelisteners to 
hoose between A or B, althoughthe transformed spee
h X 
an neither resem-ble the sour
e or the target speaker. In thepreferen
e test, pairs of senten
e are present-ed, and the listeners are asked to sele
t themost natural one for ea
h pair. The followingpairs have been 
hosen to be tested: GMM20-GMM162, GMM162-sHMM162, and for ea
htest the listener evaluates three examples ofea
h pair. Both tests have been done in maleto female and female to male 
onversions.The number of listeners was 10. All of themhad tests with di�erent spee
h �les and thesystems were presented in di�erent order.To synthesize the test spee
h data, thetransformed LPC �lters derived from thetransformed LSF are fed with the originalresidual signal of the target speaker. As wehave presented a vo
al tra
t 
onversion sys-tem, our intention is to measure only the ef-fe
ts of the vo
al tra
t. Also, we have im-posed the target prosody (in
luding pit
h val-ues) to the sour
e and transformed spee
h,in order to avoid preferen
es due to prosodi

hara
teristi
s.The listeners reported that all the meth-ods explained in this paper a
hieve the 
hang-



ing in the speaker identity. But they reportedgreat diÆ
ulties in the preferen
e test, sayingthat all the spee
h �les have the same qualityand naturalnesses. When they are for
ed tode
ided between methods, we 
an only 
on-
lude that GMM162 presents higher qualitythan GMM20. No signi�
ant results are ob-served between GMM162 and sHMM162, andalso they are not very reliable be
ause the lis-teners 
ouldn't distinguish any di�eren
e be-tween them. The results of the preferen
e testare showed in �gure 5.
0 37 45 100

sourceHMM

  GMM20  GMM162 

GMM162 

45% 

37% 

Figure 5: Results of the preferen
e test.7. Con
lusionsIn this paper a new voi
e 
onversion ap-proa
h is presented. It is based on in
lud-ing dynami
 information in the training ofthe 
onversion fun
tion. So, previous pub-lished GMM-based systems that work witha frame by frame basis have been extended.Two alternatives have been presented: to ex-tend the parameters employed in the estima-tion of the GMM in
luding �LSF, or to ex-tend the a
ousti
 model using HMM to mod-el not only the probability density but alsothe dynami
s of the speaker features. In thislatter 
ase, both only sour
e or target dataand joint sour
e-target data have been usedas training data for the a
ousti
 models.The obje
tive results have shown that thein
lusion of delta parameters doesn't improvethe performan
e of a GMM-based system.On the other hand, the performan
e of theHMM-based systems depend on the amountof training data. When the system were test-ed using 162 training senten
es sour
e HMMpresented higher performan
e index valuethen the GMM-based system. However, whenper
eptual tests have been 
arried out, thelisteners reported no per
eptual di�eren
esbetween both methods.As a future work, we are studying the ef-fe
ts of in
luding phoneti
 information (thea
tual phoneme and its 
hara
teristi
s su
has: point of arti
ulation, voi
ed and manner)
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