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Resumen: Los sistemas de conversién de voz modifican la voz de un locutor (lo-
cutor fuente) para que se perciba como si hubiera sido producida por otro locutor
(locutor objetivo). Muchos trabajos se basan en un modelado mediante mezcla de
Gaussianas de las caracteristicas conjuntas de ambos locutores, realizado asumiendo
independencia para cada tramo de voz. En este articulo se estudia la inclusién de in-
formacién dindmica, tanto del locutor fuente, como del locutor objetivo o de &mbos.

Los sistemas propuestos se comparan basdndose en medidas objetivas y perceptuales.
Palabras clave: conversion de voz, GMM, HMM

Abstract: Voice Conversion (VC) systems modify a speaker voice (source speak-
er) to be perceived as if another speaker (target speaker) had uttered it. Previous
published VC approaches using Gaussian Mixture Models performs the conversion
in a frame by frame basis. In this paper, the inclusion of dynamic information of
the source, target or both joint source-target speakers in the conversion is studied.
Objective and perceptual results compare the performance of the proposed systems.
Keywords: voice conversion, GMM, HMM
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1. Introduction

Voice Conversion (VC) systems modify
a speaker voice (source speaker) to be per-
ceived as if another speaker (target speaker)
had uttered it. Applications of VC systems
can be found in several fields, such as TTS
(text-to-speech systems) customization, au-
tomatic translation, education, medical aids
and entertainment.

Nowadays, high quality TTS are based on
the concatenation of acoustic units, i.e. to
produce an utterance the most appropriat-
ed acoustic units are selected from a single
speaker stored database. Then some strate-
gy of spectral continuity is applied to joint
the selected units together. In order to have
available a wide range of acoustic units, huge
amount of pre-recorded labeled data is need-
ed, what makes expensive and time consum-
ing to develop a new speaker voice.

VC can be a fast and a cheap way to build
new voices for a TTS. So, it will be able to
read e-mails or SMS with their sender’s voice,
to assign our and ours friends voices to char-
acters when playing on a computer, or to give
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different voices to different computer appli-
cations. Recently (Kawanami et al., 2003),
VC has been also applied to emotional speech
synthesis, as an aid to prosodic modifications
on a neutral sentence.

VC can also be very useful in interpret-
ed telephony, when the translation task re-
quires speaker identification by listeners. For
example, in a conference call with three par-
ticipants is very important to be able to
differentiate between speakers by their voic-
es. Also, it can help to learn foreign lan-
guages (Mashimo et al., 2001),(Mashimo et
al., 2002), especially in pronunciation exercis-
es, when students would listen to their own
voices pronouncing foreign sounds properly.

Another field to apply VC is in speaking
aids for people with speech impairments, im-
proving the intelligibility of abnormal speech
uttered by a speaker who has speech organ
problems (Hosom et al., 2003). Also, it can
be useful for designing hearing aids appro-
priated for specific hearing problems. In dive
practices, VC can be applied to enhance the
helium speech signals of the submariners.

There are several applications of VC in
the multimedia entertainment too. One of the
most obvious is karaoke, where the singer can
be “helped” to success in every kind of songs.
Also, some experiments have been done in



film dubbing and looping (replacing unde-
sired utterances with the desired ones) (Turk
and Arslan, 2002), and in restoring old films.

VC can also be applied to the most classi-
cal fields of speech technology, for example in
very low bandwidth speech encoding, trans-
mitting the speech without speaker informa-
tion, and adding it at the decoding step.
Moreover, acquiring a high level of knowledge
about speaker individuality can help speech
or speaker recognition tasks.

The goal of this paper is to build a VC
system as a post-processing block for a T'TS,
in order not to have to store several speech
databases, one for each speaker. So, the
amount of training data is not a problem.
Only high quality is required.

The following topics are studied, introduc-
ing a new approach to vocal tract conversion:

= The effects of including dynamic char-
acteristics in the acoustic model used
to build local vocal tract mapping func-
tions.

= The effects of including joint source and
target information during the training of
the vocal tract acoustic model.

The outline of this paper is as follows. In
section 2 the block architecture of VC sys-
tems is presented. Then in section 3 a GMM-
based system is explained. In section 4 the
inclusion of delta parameters to the acoustic
model is proposed, and in section 5 a new ap-
proach based on HMM is introduced. Finally,
in section 6 the results are discussed and the
conclusions can be found in section 7.

2. Voice conversion system
architecture

In figure 1 a generic VC system is present-
ed. A VC system has two different operating
modes: the training step and the transform-
ing step. In the training step, all the compo-
nents of the system are estimated from source
and target speech data. So, for each new tar-
get speaker, a training must be carried out.
Once the conversion function for a set of two
speakers has been learned, any source utter-
ance can be converted to sound as if the tar-
get speaker had uttered it.

Several features has been used in VC.
They can be grouped in:

» Parametric features: formant frequen-
cies and bandwidths, also glottal flow
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Figure 1: VC system block diagram

parameters (Narendranath et al., 1995)
(Gutierrez-Arriola et al., 1998) (Mori
and Kasuya, 2003) (Rentzos et al.,
2003).

= LP related features. These kinds of fea-
tures are based on the source-filter mod-
el for speech production. Usually, the
polynomial coefficients are derived to
other parameters with better interpola-
tion properties, such as: LSF (Kain and
Macon, 2001)(Arslan, 1999), lar (Iwa-
hashi and Sagisaka, 1995), reflexion coef-
ficients (Verhelst and Mertens, 1996) or
LPC cepstrum.

= Spectral features without assuming any
signal model, such as spectral lines
(Siindermann and Hége, 2003) or mel
frequency cepstrum (Masuko et al.,
1997) (Mashimo et al., 2001).

In this paper LSF features, extracted pitch
synchronous, are used as vocal tract param-
eters. As it was mentioned, this paper is fo-
cused on studying a new vocal tract conver-
sion system approach, so dealing with the
residual LP signal remains as a future study
and it is out of the scope of this paper.

Once both speaker’s training data is
parametrized, some kind of alignment is
needed at the frame level in order to learn the
mapping. Several strategies has been used,
from manual alignment to DTW (Abe et
al., 1988)(Kain and Macon, 2001), sentence
HMM (Arslan, 1999) or source-target class
mapping (Siindermann and Ney, 2003) for
corpus with different contents for source and
target speakers. We use lineal frame align-
ment, based on phoneme labeling.

Most of the techniques used for the map-
ping functions come from the fields of speaker
recognition and speaker adaptation for au-



tomatic speech recognition systems. Usual-
ly, a vocal tract mapping function is trained
by estimating the correspondence between
spectral features of the source speaker with
aligned features of the target. Then, resid-
ual adjustments and prosodic modifications
are carried out. Several approaches have
been used for the spectral mapping, such as
mapping codebooks (Abe et al., 1988), Lin-
ear Multivariate Regression (LMR) and Dy-
namic Frequency Warping (DFW) (Valbret,
Moulines, and Tubach, 1992), Speaker Trans-
formation Algorithm using Segmental Code-
books (STASC) (Arslan, 1999), speaker in-
terpolation (Iwahashi and Sagisaka, 1995),
or Artificial Neural Networks (ANN) (Naren-
dranath et al., 1995). In the next section, one
of the standard vocal tract conversion system
is presented, as a baseline system for compar-
isons.

3. Baseline system: GMM-based
voice conversion

A GMM can model the probability distri-
bution of any feature vector x as a sum of Q
multivariate Gaussian functions,

Q-1
p) = aN(xing, B (1)
q=0
Q-1
Z ag =1 ag >0 (2)
q=0

where N(x;p4,%,) is a normal distribution
and qq is the prior probability of the Gaus-
sian ¢. The parameters (o, i1, 3) can be es-
timated using the Expectation-Maximization
(EM) algorithm.

A GMM is highly suitable to model a
speaker acoustic space, since it can deal with
different acoustics classes. Also, the classifica-
tion of a frame is smoothed and the transfor-
mation function continuous, avoiding spec-
tral jumps in the transformed speech.

The baseline system chosen is based on
modeling the joint acoustic space of the
source and target features with a GMM, first
published in (Kain and Macon, 1998). The
GMM is estimated maximizing the likelihood
function of the joint source-target probabili-
ty.

The transformation function can be ob-
tained through the regression on the GMM

of the target given the source parameters:
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where x and y are source and target feature
vectors, and h,(x) is the posterior probability
of the qth Gaussian.

The mixture of gaussians splits the acous-
tic space according joint information, and
learns a mixture of linear regression func-
tions.

Conversion systems using GMM work
with a frame by frame basis. It means that
to convert one frame the information about
past and future frames isn’t relevant. This
is a simplification of the real speech produc-
tion mechanism. Our propose is to include
dynamic information in the voice conversion
task. Two alternatives are presented: to ex-
tend the parameters employed in the estima-
tion of the GMM to include dynamic infor-
mation, or to extend the acoustic model us-
ing HMM to model not only the probability
density but also the dynamics of the speaker
features.

4. GMM with delta parameters

The first approach to include some dy-
namics in the voice conversion task is keep-
ing the same mathematical model for the
acoustic space and changing the parameters
employed in training. So, in the training of
a joint GMM the following parameters are
used: source LSF and ALSF, and target LSF
and ALSF. Then, source LSF and ALSF
are used to estimate only target LSF. Note
that the target dynamics are used only in
the training step, while source dynamics are
used both in the training and transformation
steps. The reason to include target ALSF in
the training is to allocate the class parame-
ters more judiciously.

As a delta parameters, smoothed delta
over N=2 periods are used:

N . .

D im— Niizo 1 (n + 1)
L, 242

To include ALSF in the acoustic model im-

plies to estimate conversion function param-
eters of twice dimension. So, the amount of

Ax(n) =

(5)



training data will be more critical than work-
ing with only LSF.

5. HMM-based voice conversion

HMM are well-known models which can
capture the dynamics of the training data us-
ing states. A HMM can model the probability
distribution of any feature vector, according
to its actual state, and also it can model the
dynamics of sequences of vectors with transi-
tion probabilities between states.

The model parameters (a;j, bi(x),T;),
where a;; indicates the transition probability
matrix, b;(x) the emission probability func-
tion of the ith state and m; the initial proba-
bility of the ith state, can be estimated using
the Baum-Welch algorithm.

In this paper, all the studied HMM are er-
godic, i.e. all the states are connected, and
the emission probability function for each
state is a Gaussian. LSF parameters has been
used as a vocal tract features. In this section,
we don’t use ALSF.

The block diagram of a HMM-based VC
system is presented in figure 2.
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Figure 2: HMM-based VC system block dia-
gram

In the training step, an HMM is estimat-
ed from training data, and then a conversion
function is calculated for each state. In the
transforming step HMM is used twice. First,
source data is segmented according the HMM
states. Then, each frame is transformed ap-
plying the conversion function of its segmen-
tation state.

It should be remarked that choosing ap-
propriated sequences in training a HMM is
critical, as our goal is to capture its dynam-
ics. So, only phonetically matching sentences
between source and target speakers are used.

5.1. Source HMM-based system

The basic idea of this system is to model
the dynamics of the source speaker with an
ergodic HMM. The transition probabilities of
this model will be used as dynamic character-
istics in the conversion. This system is simi-
lar to the one propose in (Kim, Lee, and Oh,
1997), but using continuous transformation
functions in order to avoid spectral jumps in
the converted features that, as it was report-
ed, degrades the quality of the transformed
speech.

The steps for training the conversion func-
tion are the following. First, a source HMM is
estimated from source data. Then, using the
estimated HMM, source training vector se-
quences are segmented according to the op-
timal state path (using Viterbi search). All
the vectors, with their target alignments, are
collected for each state, and N (number of
states) joint Gaussian functions are estimat-
ed. Finally, regressing the function for each
state we have:

~1
Fy(z) = pd + YD (x—pg)  (6)

as a conversion function, where s indicates
the state. To transform a new sequence, we
need to segment it according to the source
HMM. Then, the conversion function of each
state is applied.

5.2. Target HMM-based system

When source HMM-based system is used
for VC, the transformed speech follows the
dynamics of the source speaker, as it deter-
mines the sequence of transformation func-
tions applied. In order to incorporate the dy-
namics of the target speaker, the HMM can
be estimated with target data. In this case,
the first step of the training is to estimate a
HMM with target data. Then the same tar-
get data is segmented according to the target
HMM. For each state, all the target vectors
with their source aligned vectors are collect-
ed, and a Gaussian function is estimated to
model the source data. The conversion func-
tion is estimated for each state in the same
way than before, it is building and regressing
a joint Gaussian for each state.

In the transformation step, the source se-
quences are segmented by Viterbi according
the estimated target transition probabilities
between target HMM states, and the emis-
sion probabilities of the source speaker vec-
tors estimated by the Gaussians. Then, the



corresponding transformation functions are
applied. Although the segmentation is not as
accurate as in the previous case, it is expect-
ed that the correct dynamics increases the
perceptual performance.

5.3. Joint HMM-based system

As it has been previously done with GMM
systems, we introduce joint information in
order to allocate the distribution functions
more task-oriented, and also to use both
source and target dynamic information. So,
using aligned source-target features vectors a
joint HMM is estimated. Like in joint GMM,
there is no need of an extra step to calculate
the mapping function for each state. Since
there is a joint Gaussian per state, we can
calculate the regression function straightfor-
ward.

Once the joint HMM is estimated, there
are two different ways of transforming new
vectors. On one hand, the new sequence can
be segmented according to the optimal state
path s*:

s* = arg max p(x,s/\) (7)

s" = arg ;naxp(X/S, Mp(s/A) — (8)

where X = (a;j,b;(x),m;) i = 1..N, for a
HMM with N states. Then, as in source
HMM, each vector is transformed accord-
ing to its segmentation state. Note that now
transition probabilities take into account not
only source speaker, but also target speaker
information.

Another way of transforming a new se-
quence is to include the regression in the
search of the optimal path.

s = argmaxp(y, x.s/A)  (9)
S

s* ~ arg max p(y,x,s/\) (10)

s* = arg ;naxp(S'/X’ s, A)p(x/s, A)p(s/A)
(11)

where ¢ indicates the transformed frame.
We have approximated the solution using
the transformed frame instead of the target
frame, which is unknown. Although a priori
the transformed frame is also unknown, the
decomposition 11 allows to compute it apply-
ing the regression function of the state s to
the source frame.

Both approaches, called method A and
method B respectively, will led to different
solutions.

6. Experiments

The corpus used for the experiments was
built to generate a Spanish unit selection
TTS system. Speech and laringograph sig-
nals were recorded in an acoustically isolated
room. A sample frequency of 32kHz and 16
bits per sample were used. For this study, sig-
nals were decimated to 8kHz. The total cor-
pus size is more than one hour for each speak-
er (one male and one female), but we use few
sentences from each one.

The frame alignment used is lineal in-
side each phoneme. Only phonetic transcrip-
tion matching sentences are used. To train
HMM'’s, each sentence without pauses is con-
sidered a sequence.

To evaluate the proposed systems objec-
tive and perceptual test have been carried
out.

6.1. Objective Tests

The performance index used for test is:

THMD(y,y)

p=1--"2"2W )
IHMD(x,y)

(12)

where the distances are Inverse Harmonic
Mean Distance (Laroia, Phamdo, and Far-
vardin, 1991). As it can be seen, the optimal
performance is P = 1, while a conversion sys-
tem that doesn’t change the source speech
will led to P = 0. The expression for Inverse
Harmonic Mean Distance is:

P
IHMD(x,y) = Y c(p)(z(p) — y(p))* (13)
p=1

1 1
T R VTIPS )
(14)
with w(0) = 0, w(P+1) = w and w(p) = z(p)
or w(p) = y(p) so that c¢(p) is maximized (p
is the vector dimension). The features used
are LSF. Using this distance measurement we
weight more the mismatch in spectral picks
than the mismatch in spectral valleys.

Two sets of experiments has been car-
ried out: using 20 sentences (about 7.800
aligned vectors), and using 162 sentence
(about 68.000 vectors) for the training.




Figures 3 and 4 show the results for the
voice conversion task from a male speak-
er to a female speaker, and vice-versa for
the two amounts of data. In each case, af-
ter training 4, 8, 12, 16, 20, 32, 64 com-
ponents of the mixture, the optimal num-
ber is shown. That corresponds to 8 compo-
nents for 20 sentences and 20 components for
162 sentences. The systems tested are: base-
line GMM, GMM with delta parameters (dG-
MM), source HMM (sHMM), target HMM
(tHMM) and joint HMM method A and B
(jJHMMA and jJHMMB).

GMMdGMMsHMM tHMM jHMMAHMMB GMMdGMMsHMM tHMM jHMMAHMMB

20 sentences 162 sentences

Figure 3: Performance  index  for
male—female conversion.

0.36 -

GMM dGMMsHMM tHMM jHMMAHMMB

GMMdGMMsHMM tHMM jHMMAHMMB

20 sentences 162 sentences

Figure  4: Performance  index  for
female—male conversion.

It can be seen that the performance of the
system depends on the speakers involved in
the conversion. Moreover, doing the conver-
sion in one direction or in the other changes
the performance.

As it was expected, increasing the amount
of training data improves the performance.

It is more relevant in HMM, since the model
has more parameters, so more data is need-
ed to estimate it accurately. For this reason,
the GMM-based system performs similar to
the HMM-based systems with only 20 train-
ing sentences, but source HMM-based system
has slightly higher performance index value
using 162 sentences. However, the differences
are minimal, so we expect similar quality per-
ceptual rates.

Concerning the use of joint source-target
information, from the experimental results it
seems better to use only source data. We
must take into account that using joint da-
ta increases the vector dimensions.

As a remark, all the HMM have learned a
similar topology. Not all the states are like-
ly to be initial states, and the probability of
remaining in the actual state is larger than
changing of state.

6.2. Perceptual test

Two kinds of perceptual test have been
carried out: ABX and preference test. In
ABX test, A and B represents either the
source or target speaker and X the convert-
ed speech. The listeners are asked to select
if X is closer to A or B. ABX test forces the
listeners to choose between A or B, although
the transformed speech X can neither resem-
ble the source or the target speaker. In the
preference test, pairs of sentence are present-
ed, and the listeners are asked to select the
most natural one for each pair. The following
pairs have been chosen to be tested: GMM20-
GMM162, GMM162-sHMM162, and for each
test the listener evaluates three examples of
each pair. Both tests have been done in male
to female and female to male conversions.
The number of listeners was 10. All of them
had tests with different speech files and the
systems were presented in different order.

To synthesize the test speech data, the
transformed LPC filters derived from the
transformed LSF are fed with the original
residual signal of the target speaker. As we
have presented a vocal tract conversion sys-
tem, our intention is to measure only the ef-
fects of the vocal tract. Also, we have im-
posed the target prosody (including pitch val-
ues) to the source and transformed speech,
in order to avoid preferences due to prosodic
characteristics.

The listeners reported that all the meth-
ods explained in this paper achieve the chang-



ing in the speaker identity. But they reported
great difficulties in the preference test, saying
that all the speech files have the same quality
and naturalnesses. When they are forced to
decided between methods, we can only con-
clude that GMM162 presents higher quality
than GMM20. No significant results are ob-
served between GMM162 and sHMM162, and
also they are not very reliable because the lis-
teners couldn’t distinguish any difference be-
tween them. The results of the preference test
are showed in figure 5.

Figure 5: Results of the preference test.

7. Conclusions

In this paper a new voice conversion ap-
proach is presented. It is based on includ-
ing dynamic information in the training of
the conversion function. So, previous pub-
lished GMM-based systems that work with
a frame by frame basis have been extended.
Two alternatives have been presented: to ex-
tend the parameters employed in the estima-
tion of the GMM including ALSF, or to ex-
tend the acoustic model using HMM to mod-
el not only the probability density but also
the dynamics of the speaker features. In this
latter case, both only source or target data
and joint source-target data have been used
as training data for the acoustic models.

The objective results have shown that the
inclusion of delta parameters doesn’t improve
the performance of a GMM-based system.
On the other hand, the performance of the
HMM-based systems depend on the amount
of training data. When the system were test-
ed using 162 training sentences source HMM
presented higher performance index value
then the GMM-based system. However, when
perceptual tests have been carried out, the
listeners reported no perceptual differences
between both methods.

As a future work, we are studying the ef-
fects of including phonetic information (the
actual phoneme and its characteristics such
as: point of articulation, voiced and manner)

MMMMMM

MMMMMM

through unsupervised learning to the estima-
tion of the conversion function.
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