
Distributed Translation Memories implementation using

WebServices0

Alberto Simões
Linguateca

Universidade do Minho
ambs@di.uminho.pt

Xavier Gómez Guinovart
Semin. de Lingǘıstica Informática

Universidade de Vigo
xgg@uvigo.es

José João Almeida
Projecto Natura

Universidade do Minho
jj@di.uminho.pt

Resumen: Las memorias de traducción son muy útiles para la traducción, pero
son dif́ıciles de compartir y de reutilizar por parte de la comunidad de traductores.
Mediante las memorias distribuidas de traducción, los usuarios pueden construir
conjuntamente y compartir memorias de traducción. En este art́ıculo, presentamos
los detalles de la implementación de esta arquitectura utilizando la tecnoloǵıa de
WebServices y un ejemplo de un sistema distribuido entre Portugal y España.
Palabras clave: memorias de traducción distribuidas, WebServices, TAO

Abstract: Translation Memories are very useful for translators but are difficult
to share and reuse in a community of translators. This article presents the concept
of Distributed Translation Memories, where all users can contribute and sharing
translations. Implementation details using WebServices are shown, as well as an
example of a distributed system between Portugal and Spain.
Keywords: distributed translation memories, WebServices, CAT

1 Introduction

Translation Memories (TM) are relations be-
tween sentences in two or more different lan-
guages. Translators use them to save old
translations, hoping they can be reused later.

Common translation tools use TM, but
use a proprietary format for their internal
representation. Meanwhile, a standard for
interchange of TM was defined. This stan-
dard is based on XML(XML, 10 February
1998) and is named Translation Memory eX-
change (TMX) format (Savourel, 1997; OS-
CAR, 2003; Gómez, 2001).

Although useful, the use of TMX did not
change the way translators work. They have
their own TM and TMX is only used for in-
terchange between big companies which have
their own TM. Each translator of a commu-
nity continues working only with their own
computer: when translating a new sentence
only local TMs are searched.

The idea behind Distributed Translation
Memories (DTM) is to spread TMs on servers
around the world where any translator could

0This work has been partially funded by the Min-
isterio de Ciencia y Tecnoloǵıa (MCYT), the Fondo
Europeo de Desenvolvemento Rexional (FEDER), the
Xunta de Galicia, and the Universidade de Vigo,
within the project “Linguistic-computational process-
ing of the Linguistic Corpus of the University of Vigo
(CLUVI)” (ref. BFF2002-01385), and Fundação para
a Ciência e Tecnologia of Portugal through grant
POSI/PLP/43931/2001, and co-financed by POSI.

query for their sentences.
DTMs can be useful in two different situ-

ations:

• some big companies distribute Trans-
lation Memories to their translators,
where technical phrases are already
translated. In these cases, this company
needs to send the TM by email, ftp or
common mail to the translator. With
DTM, these companies can build up a
server to be used by their translators
(identified by some username/password
pair, for example);

• among a translators group working on
the same project it is usual to have com-
mon sentences to translate. If they can
share their own translation memories in
a dynamic way, they can reuse them eas-
ily. With this in mind, each translation
workstation will work as a local server
like current peer-to-peer (P2P) share ap-
plications.

This article will explain how DTM can be
used to help the translator, and how it can
be implemented using simple technology.

2 DTM impact on translators

work

From the translator’s point of view, the util-
ity of DTM available on line can enable them

to take advantage of the Internet resources
in TM/CAT environments such as Trados or
DéjàVu. Thanks to DTM, translators can
manage very large volumes of TM databases
without having them installed on their com-
puters, saving their maintenance and update
as well. On the one hand, translators can
access DTM servers via Internet. These can
be commercial servers (setup by translation
companies) or free-access servers (such as the
University of Minho’s server or the University
of Vigo’s). On the other hand, translators
can access DTM of their peer-to-peer commu-
nity in order to share TM, for example, with
the help of a Napster-style P2P program.

The search for a translation in this po-
tentially enormous DTM on-line repository
must increase substantially the productivity
of TM/CAT programs because, as is obvious,
the bigger the size of the enquired TM, the
bigger the possibility of finding a translation
where the translation unit in the source lan-
guage is the same or similar as in the inquired
text. As for free-access institutional servers
of DTM, and regarding the public interest of
their creation and effectiveness, we agree with
Abaitua (Abaitua, 2001) in the need of creat-
ing a collective initiative in order to increase
the size and consequently the utility of free-
access DTM available on-line, with the help
of persons and institutions related with the
academic, publishing and professional trans-
lation fields.

To sum up, the features of the TM/CAT
architecture oriented to on-line DTM can
mean a very important improvement of the
profitability of these systems. Firstly, the
shared DTM can achieve an extension (and
consequently a potential utility) bigger than
the TM generally employed by users of these
systems, as these TM are usually individual
or transferred by a company for a specific
translation. Secondly, the updating of these
DTM available on line means an increase of
the utility of the offered translations, a fea-
ture of these systems which can become par-
ticularly relevant in the event of P2P com-
munities of translators assigned to the same
project of translation. Finally, regarding the
traditional utility of TM/CAT software, the
distributed architecture means for translators
a decrease of the needs of storage and com-
putational processing. Also, along with the
development of CAT environments on line,
DTM technology allows to hand over the

computational requirements to Internet, in
terms of applications and resources, for the
Translator’s Workbench in a near future .

3 DTM Architecture

The architecture of Distributed Translations
Memories depends to a great extent on their
context of use.

In a translation community, translators
use a workstation connected to a network
where other translation workstations exist.
This means that each workstation will act
both as a client and as a server of DTMs.
This is an architecture very similar to other
peer-to-peer software. Figure 1 shows such
an architecture.

Figure 1: Peer-to-peer architecture

When the DTM is viewed as a service
provided by a University, a translation soft-
ware producer or other entities, the service
provider will act only as a DTM server, while
clients can be simple DTM clients or mem-
bers in a peer-to-peer architecture. Figure 2
shows a client/server architecture.

The software implementation of these two
services has different implications. The typi-
cal client-server architecture implementation
relies in remote procedure call protocols1 like
RPC, Java RMI, Corba or, more recently,
WebServices.

This type of implementation is not appro-
priate to the peer-to-peer architecture. As

1Or specific and closed implementations of com-
munication.

Figure 2: Client/server architecture

each machine will be client and server, and
will run on a workstation, it is not common
to have server daemons running on work ma-
chines.

Meanwhile, in this article we will rely on
a web-service based implementation, for the
client/server architecture.

4 DTM service definition

Web-services philosophy is based on a kind
of Application Program Interface (API) to be
used by the Internet. Each web-service server
defines an Interface using WSDL (Web Ser-
vice Description Language) (Christensen et
al., 2001) used by the clients.

This interface is a set of functions defini-
tions: arguments and their data types, and
return data type. In this section we will de-
fine the functions or methods that a web-
service server should implement.

4.1 Querying Languages

The ideal web-service server should be state-
less: in most cases, servers cannot track users
and store information about them. With
this in mind, each message should be self-
contained. Therefore, a message asking for a
translation for a specific sentence should con-
tain not only the sentence to be translated
but also the language that sentence is in, and
the language in which we want the transla-
tion.

This message could be sufficient but, in
some cases, that would lead to clients asking
for translations for languages the server does
not include in its translation memories.

To solve this flood of messages, it is impor-
tant to define a message to query the server
for its knowledge on a pair of languages:

lang pair(L1,L2) −→ B

The lang_pair message is sent with two
language codes. The server will return a
boolean value meaning its knowledge (or not)
about that pair of languages.

Note that we are considering the transla-
tion memory to be reflexive: if the server can
translate from language L1 to L2, then it can
translate from L2 to L1.

4.2 Querying for a Translation

Although the normal translation software
searches for a translation and uses only one
of the found translations, in the implementa-
tion of DTM it is more important to give as
many translations as possible at a time.

For that purpose, and keeping in mind the
idea of a stateless server, we defined a mes-
sage named equiv which returns equivalent
sentences in another language:

equiv(L1,L2,SL1
) −→ S

⋆

L2

The semantics of the server when answer-
ing this message is not so simple as it seems
at a first glance: while sometimes there is
the possibility of the query sentence to exist
in the Translation Memory, the probability
for that is very low. In fact, what transla-
tion systems based on TM do is to search
for a similar sentence. The definition of the
similarity function can be more or less com-
plicated, depending on how we implement it.
In the section 5.1.2 we discuss some possible
implementations for this function.

4.3 Querying for Concordances

Another common functionality provided by
CAT software is the concordance for a specific
word or small sequence of words. It can be
viewed as a specialized version of the equiv

message. Differences rely on the fact that the
server cannot align that word in the parallel
text and as such it cannot answer with only
one word either.

The API definition for this method will
also have the two languages, and the words to

be queried as arguments. Meanwhile, the an-
swer from the server will contain a sequence
of sentence pairs: the sentence in the orig-
inal language where the searched word oc-
curs, and the aligned sentence in the target
language.

conc(L1,L2,WL1
) −→ (WL1

×WL2
)⋆

4.4 Contributing to TMs

TM servers can only survive if there is feed-
back from their users. The most useful feed-
back for TM servers are new TMs. Of course
we can argue that to maintain TM quality
on the servers, we cannot accept translations
from just any translator. This is true, but fol-
lowing this idea, TM servers will never grow.
We propose that contributed TMs should get
into a stage area where they can later be
examined for quality (using manual or auto-
matic techniques).

Then, we defined a method for the TM
contribution, and leave to the server admins
to accept contributed translations or not.

submit(L1,L2, (SL1
× SL2

)⋆) −→ 1

5 Implementation Details

To test the idea and check for usability,
we created two servers and two clients.
One of each was implemented in Perl and
SOAP::Lite, the other in PHP and NuSOAP.
The Perl server and clients were developed
in the Natura Project, at Braga, Portugal.
The PHP server and clients were developed
in Seminario de Lingǘıstica Informática, at
Vigo, Spain. This way, we could test two
technologies and their interoperability.

5.1 Server Implementation

The basic idea behind the server implemen-
tation is to listen for messages and answer
them, as expected. The main problem does
not lie in the web-service implementation but
in the way the translation memory is treated
to give answers in acceptable time.

5.1.1 TM indexing

Indexing a Translation Memory is not simple.
A format like TMX cannot be used, given
the problems of indexing an XML file. Our
approach is to use a textual indexer named
Glimpse (Manber and Wu, 1994).

Figure 3: Glimpse-based server architecture

Glimpse indexes the text creating very
quick indexes. They permit that a search for
two words α and β will be performed only
in the files the indexes say they exist. So,
if we index many small files we have quicker
indexes.

These indexes are big (normally two times
the size of the indexed files), and as such
takes a lot of time to load in memory. To
solve this problem, the Glimpse distribution
includes a server. It loads the indexes one
time, and stays in memory accepting queries.

Our server implementation uses this fea-
ture. Each time the web-service receives a
query (conc or equiv), it sends the query to
the glimpse server, waiting for the answer and
sending it again in the form of a web-service
to the client. This architecture is shown on
figure 3.

5.1.2 Similarity function

implementation

This is one of the biggest problems of our im-
plementation, at the moment. Using glimpse,
we have two choices: to get the exact match
(which does not offer many chances to find
the sentence we need) or to search for a set
of words (basically, divide the sentence into
words and get sentences in the TM with as
many words from these as we can find —
which does not guarantee order in the words).

To solve this problem we will need to pre-
pare a specific indexer for the task. The se-
mantics we want for this function is: to find a
similar sentence where some words can differ,
and some new ones can occur in the middle.
For that purpose, we should define thresholds
of how many words can differ and how many
new words can be found.

Although with a simple definition, the im-
plementation of such a function in an efficient
way is not simple.

5.1.3 Perl implementation

Both Perl and PHP implementation are very
straightforward. The version here presented
is simplified and its objective is to illustrate
how to build your own server.

Here we will show a Perl server. First,
we need to create a module file. Name it
mtd.pm for example. This module will have
a function for each one of the web-service’s
methods2.

package mtd;

use Search::Glimpse;
use strict;

our %known_languages = (
en => [qw/pt/],
pt => [qw/en/]);

sub lang_pair {
my ($self, $l1, $l2) = @_;

if (exists($known_languages{$l1}) &&
grep { $_ eq $l2 }

@{$known_languages{$l1}})
{ return 1 }
else
{ return 0 }

}

sub equiv {
my ($self, $l1, $l2, $string) = @_;
my $x = Search::Glimpse->new(

’server’ => ’server.url.pt’,
’nr_hits’ => 10);

my @answers = $x->search($string);
my $i = 0;
for (@answers) {

$i++;
s!^[^:]+:!!;
s/<tu.*<tu id="[^"]+">//;
s!</tu.*$!!;

}
if ($answers[0] eq "ERROR")

{ return undef }
else

{ return $answers[0] }
}

sub conc {
my ($self, $l1, $l2, $string) = @_;
my $x = Search::Glimpse->new(

’server’ => ’server.url.pt’,
’nr_hits’ => 20);

my @answers = $x->search($string);
return undef if $answers[0] eq "ERROR";
@answers = map { s!^[^:]+:!!;

s!^\s*<[^>]+>!!;
s!</tu>$!!;
s!</tu><tu[^>]+>!#XPTO#!;

2We know that the Perl code can be hard to read.
Meanwhile, it is presented here to show how small an
implementation can be.

[split /#XPTO#/]
} @answers;

return [@answers];
}
1;

As can be seen, using a different approach
to index the translation memory will only
change this module and the way it finds the
answers.

5.2 Client Implementation

The client should not be an independent pro-
gram but should be built-in or a plug-in for
a CAT system. Meanwhile, for test purposes
we developed two clients, in Perl and PHP.
Both of them communicate with any of the
two servers.

The implementation based on PHP and
NuSOAP is also simple. Here follows how to
query the server for the sentence “the pet is
dead.”3

<?php

require_once(’nusoap.php’);
$parameters = array(’arg’=>’the pet is dead’);
$soapclient = new

soapclient(’http://server.url.pt’);
$answer =
$soapclient->call(’equiv’,$parameters);

foreach($answer as $v) {
print "$v
";

}
?>

6 Conclusions

The concept of Distributed Translation Mem-
ories is useful for translators communities to
share their translations. It can also be used
to sell or to rent translation memories.

The implementation using web-services
has a big advantage over other RPC proto-
cols: as it uses HTTP to communicate, mes-
sages can pass through firewalls and HTTP
proxies without problems.

Although with some problems regarding
translation memory search, the concept is
prototyped and working. A WSDL file (Web-
service description language) should be writ-
ten so that other users can provide their ser-
vices and/or clients.

Pending tasks include the incorporation of
a client in open-source CAT systems avail-

3Of course that an implementation of DTM should
be integrated with the translation software. This code
example is just an example of how simple is the code
needed to integrate DTM in the system.

able in the Internet (p.e. Frankenstein4,
OmegaT5, ForeignDesk6).

Using the messages as described in this
article, you can access our two servers at
http://sli.uvigo.es/CLUVI/mtd.php and
at http://linguateca.di.uminho.pt/MTD.
The source-code for the clients and server can
be found at http://natura.di.uminho.pt/
downloads/source/MTD.

References

Abaitua, Joseba. 2001. Memorias de
traducción en TMX compartidas por in-
ternet. Revista Tradumàtica, (0), octubre.
http://www.fti.uab.es/tradumatica/

revista/num0/articles/jabaitua/
imprim%ir.pdf.

Christensen, Erik, Francisco Curbera, Greg
Meredith, and Sanjiva Weerawarana.
2001. Web services description lan-
guage (wsdl) 1.1. http://www.w3.org/

TR/wsdl/.

Gómez, Josu. 2001. Una gúıa al TMX.
Revista Tradumàtica, (0), octubre.
http://www.fti.uab.es/tradumatica/
revista/num0/articles/jgomez/

imprimir%.pdf.

Manber, Udi and Sun Wu. 1994. Glimpse: A
tool to search through entire filesystems.
Winter USENIX Technical Conference.

OSCAR. 2003. Open Standards for Con-
tainer/Content Allowing Re-use — TMX
home page. http://www.lisa.org/tmx/.

Savourel, Yves. 1997. TMX 1.4a Specifica-
tion. Technical report, Localisation Indus-
try Standards Association.

10 February 1998. eXtended Markup
Language (XML) version 1.0 recom-
mendation. World Wide Web Con-
sortium. http://www.w3.org/TR/1998/

REC-xml-19980210.html/.

4http://www.sf.net/projects/frankenstein/
5http://www.sf.net/projects/omegat/
6http://www.sf.net/projects/foreigndesk/

