Dialogue Moves for Natural Command Languages

J. Gabriel Amores, José F. Quesada
{jgabriel, jquesada}@cica.es
Grupo de Investigacién JULIETTA
Universidad de Sevilla

Abstract This paper studies Natural
Command Language dialogues from the
Information State Update perspective
and proposes the specification of Dia-
logue Moves for this type of dialogues.
First, we describe the properties of Nat-
ural Command Languages and Natural
Command Language Dialogues. The pa-
per proposes a classification of Dialogue
Moves for Natural Command Language
Dialogues and applies these moves to a
sample dialogue. Finally, we compare
Natural Command Language Moves with
other Move Coding Schemes.!

1 Introduction

One of the main goals of the Siridus project
is to extend the range of types of dialogue to
which the Information State Update (ISU)
view of dialogue is applicable. Roughly
speaking, the term information state means
the information stored internally by an agent,
in this case a dialogue system. More pre-
cisely, the information state of a dialogue in-
cludes all the cumulative additions from pre-
vious actions in the dialogue, which, taking
into account the structure and goals of the
dialogue, motivates and determines the fu-
ture actions in the dialogue. By its own na-
ture and functionality, the information state
of a dialogue is a dynamic structure, that
evolves (is updated) from the observation and
performance of dialogue moves. This paper
concentrates on the study of Natural Com-
mand Language dialogues from the Informa-
tion State Update perspective, and on the
specification of Dialogue Moves for this type
of dialogues.

!This work has been funded by EU Fifth Frame-
work Project SIRDUS (IST-1999-10516)

2 Natural Command Languages

Briefly speaking, a Natural Command Lan-
guage is a command language expressed
through the medium of natural language. A
Natural Command Language (NCL) should
satisfy the following properties:

1. Use natural language vocabulary as far
as possible.

2. Reflect natural subcategorization frames
(e.g. optional elements to be expressed
via optional PPs, required items to be
subcategorized for), especially as far as
semantic selectional restrictions is con-
cerned. In this sense, an argument se-
mantic type might determine the precise
meaning of the function.

3. They reflect natural syntactic order (e.g.
in English Verb-Obj-Obj for imperatives
—mnot all commands need be imperative
though). However, from a structural
point of view, NCLs tend to reflect pat-
terns of spoken language, rather than
written language. They may, for exam-
ple, make use of topicalised patterns per-
mit some use of context dependent ex-
pressions such as pronouns, ellipsis, etc.

4. Constitute a sub—language, with reason-
ably clear boundaries. It is important
that users can learn the degree of expres-
sivity of the language, use elements of it
compositionally and yet not expect any
arbitrary NL expression to be machine
understandable.

5. New functionality in the system ought
to be able to be accommodated within
the language without altering language
structural properties. Users ought to be
able to introduce to some degree their
own modes of expression and have the
system understand them.

6. Be domain-independent. Ideally, issuing
commands in a new domain should not
necessarily mean learning a completely
new language. Lexical items might vary
(and extra ambiguity might be intro-
duced) but again structural principles
ought not to vary. Taking this idea to
an extreme would basically reduce the
NCL grammar to just one production:

Function -> FunctionWord
Parameters*.

However, this desideratum may conflict
somewhat with the previous goal (4)
“Naturally occuring sublanguages” may
very well have domain dependent restric-
tions on syntax and semantics (e.g. in
domain X always interpret K as P), even
deviant rules, and may lead to ineffi-
ciency from a computational point of
view.

7. Cover system outputs, as well as inputs.
If system outputs can be expressed in
the sublanguage, then this may encour-
age the user to use it and help him to
learn it. Feedback messages will need to
be sensitive to problems in the linguis-
tic expression of commands; for exam-
ple, potential ambiguities.

In conclusion, we take NCLs as the set of
input and output natural language expres-
sions which are acceptable in a given applica-
tion domain. This domain is semantically de-
fined by the functions (commands) known by
the user and the system, and the natural lan-
guage vocabulary which may be used to ex-
press those commands. In addition, it should
contain metalinguistc patterns and expres-
sions typical of human-like interaction.

3 Natural Command Language
Dialogues

Natural Command Language Dialogues
(NCLD) are artificially constructed models
(including knowledge representation and
reasoning) able to guide the interaction
between the different parts involved in a
dialogue based on a NCL.

A NCLD will at least allow the following
kind of phenomena:

1. Multiple Commands NCL

NCLD must be able to manage differ-
ent commands and dialogue operations.
So, one of the main functions of NCLD
models will be Command Detection.

2. Context Dependency

Only at the dialogue level is it possible to
understand anaphora, ellipsis and other
context dependent constructions. From
the dialogue system design perspective,
the treatment of these discourse phe-
nomena will imply the representation
and storage of the whole dialogue his-
tory so far.

3. Man—Machine Interaction

Naturalness and flexibility of the flow
of interactions (restricted to the linguis-
tic limitations of the underlying NCL),
relevance and adequacy of the outputs,
consistency (order of arguments in com-
mands), etc.

4. Interface with External Functional Com-
ponents

NCL are aimed at the specification of
commands belonging to a command lan-
guage. The user’s goal is to execute
the command(s). Therefore, the dia-
logue level must not only understand
the naturally expressed command, but
also execute it. In fact, this implies
the definition and use of another Com-
mand Language between the NCLD Sys-
tem and the external functional compo-
nents in charge of the execution of the
commands.

4 Dialogue Moves in NCL
Dialogues

This section focuses on Natural Command
Languages from the Information State Up-
date approach, paying special attention to
the specification and classification of Dia-
logue Moves for this type of dialogues.
Following the classification proposed in the
Information State Theory of Dialogue Mod-
elling [Traum et al, 1999], the following sub-
section shows a description of the informa-
tional components of the information state.

5 Informational Components

e Modeling Internal vs External as-
pects of the Dialogue: As a con-
sequence of their own nature, Natural
Command Language Dialogues involve

just two participants: the user and the
machine. The first decision concerns
whether we should model the partici-
pants’ internal state, or more external
aspects of the dialogue.

Since the goal of this type of dialogues
is that the user have control over the
execution of one or more commands by
the machine, most dialogues exhibit a
marked functional or operational ten-
dency. In addition, the sequence of com-
mands may sometimes lack some logical
flow, or even be the consequence of ob-
scure intentions during the dialogue.

For all these reasons, it seems reason-
able to focus our model on the external
aspects of dialogue. That is, it should
be based more on what was said than
what was in the minds of the partici-
pants when things were said.

e Static and Dynamic Aspects: One
of the aspects which differentiates Natu-
ral Command Language Dialogues from
Information Seeking Dialogues is the dy-
namic nature of the knowledge bases in-
volved.

In an Information Seeking Dialogue, in
which the system as a whole is viewed
by the user as a repository of knowl-
edge, knowledge bases have a clear static
character from the point of view of the
user. That is, the data stored in these
resources may be updated, but not by
the user during its interaction with the
system.

On the contrary, one of the main fea-
tures of Natural Command Language
Dialogues is the presence of a command
execution system which is capable of dy-
namically modifying the contents of ex-
ternal resources to the dialogue (during
its interaction with the user), such as the
knowledge bases associated to the do-
main.

5.1 Dialogue Moves

Following is a list of the dialogue moves
which we have identified after the study
of several scenarios belonging to Natural
Command Language Dialogues, namely the
ATOS (Automatic Telephone Operator Sys-
tem) dialogue corpus, some examples from
the description of the Natural Language In-
terface to Virtual Reality Systems project,

and some other examples obtained from ar-
tificially modelled possible natural language
interactions with a database manager system.

The table below summarizes the Dialogue
Moves for Natural Command Languages clas-
sifying them into three groups:

Dialogue Moves
in NCL
askCommand
specifyCommand
informExecution
askParameter
specifyParameter
Interaction-oriented | askConfirmation
answer YN
askContinuation
askRepeat
askHelp
answerHelp
errorRecovery
greet

quit

Command-oriented

Parameter-oriented

5.2 Command—Oriented Dialogue
Moves

These dialogue moves deal with command
specification tasks such as askCommand,
specifyCommand and informExecution.

5.2.1 askCommand

This move is related to those situations in

which the system requests the user to specify

a command or function to be performed.
For instance:

e Specify a function, please.

e do you want a route?

There are two possible notations for this di-
alogue move, depending on whether the move
suggests or not a possible command:

e askCommand Specify a function,
please.

e askCommand(travelRoute) do you
want a route?

5.2.2 sgpecifyCommand
This move takes place when a specific com-
mand or function has been selected. Often,
a command specification may include one or
more of its parameters.

For instance:

o [want to place a call.
e flights to paris.
o T want to call 1 2 8 4 collect.

The notation should include the command,
and the set of instantiated parameters:

e specifyCommand(phoneCall) I want
to place a call.

e specifyCommand(fly,cityTo=paris)
flights to paris.

e specifyCommand(collectCall, des-
tination = 1234) I want to call 1 2
3 4 collect.

5.2.3 informExecution

This corresponds to the actual execution of
the command, which, of course, may change
the state of the world and the information
state of the participants. Once this dialogue
move has finished, the participants know that
the command has been executed. At a lin-
guistic level, this move will be agsociated with
utterances where the system acknowledges
the execution of the task. In some situations,
to improve naturalness, it may be an implicit
move. In other cases, this move corresponds
to the actual execution (as with a phone call).

s Example 1:
— Do you really want to call 1 2 8 4
collect?
— yes, please.
— CALL COLLECT EXECUTION

s Example 2:

— Do you want the directory list or-
dered by name?

— Yes, please.
— DIRECTORY LIST.

The notation should include the command
plus all relevant parameters:

¢ informExecution(collectCall, desti-
nation = 2134) CALL COLLECT EX-
ECUTION

e informExecution(ls, directory =
test, order = name) DIRECTORY
LIST.

5.3 Parameter—Oriented Dialogue
Moves

As commands usually require specific param-

eters, several dialogue moves control com-

mand completeness (mainly, instantiation

of mandatory parameters). Two dialogue

moves (askParameter and specifyParameter)

have been identified in this group.

5.3.1 askParameter

In the askParameter move, the system asks

for the value of a specific parameter.
Examples:

o What city do you want to go from?

e Do you want a return ticket?

o when do you go?

o Yes, who would you like to call?

The notation should include the parameter
(the command may be inferred from the di-
alogue context), and possibly the suggested

value for the parameter if it was present (as
in the last example):

e askParameter(cityFrom) What city
do you want to go from?

e askParameter(returnTicket) Do you
want a return ticket?

e askParameter(when) when do you
go?

e askParameter(destination) Yes, who
would you like to call?

5.3.2 specifyParameter

This move corresponds to the assignment of
some value to one parameter.
For instance:

e [ondon.

e yes, as cheap as possible.

o [will start al nine am.

In this case, the notation must include

the parameter and its value, which, in some
cases, may have a very complex structure.

¢ specifyParameter(cityFrom = lon-
don) london.

¢ specifyParameter(returnTicket
yes yes, specifyParameter(price
cheap) as cheap as possible.

e specifyParameter(when = 9am) [
will start at nine am.

5.4 Interaction—oriented Dialogue
Moves

Finally, a third group includes those dialogue
moves related to some intrinsic characteris-
tics of the dialogue such as the confirma-
tion of the command before its execution,
sub—help dialogues, error recovery strategies
(of special interest with spoken language sys-
tems), etc.

5.4.1 askConfirmation

Once a command has been completed, some
situations will require an explicit and/or im-
plicit confirmation. In some applications, a
confirmation may be required for each com-
mand and parameter, in order to acknowl-
edge each piece of information.

Example:

o Do you really want to call 1 2 8 4 collect?

It is important to specify the explicit part
of the command that is being confirmed:

e askConfirmation(collectCall, desti-
nation = 1234) Do you really want to
call 1 2 8 4 collect?

5.4.2 answerYN
This move represents the classical yes/no re-
ply.

e Yes.

o That’s wrong.

The current logical value will be stored as
part of the dialogue move:

e answerYN(yes) Yes.

e answerYN(no) That’s wrong.

5.4.3 askContinuation

Given the cyclical nature of command exe-
cution in this type of dialogues, each time a
command has been completed (a sort of con-
versational game) there will follow a move
asking for the continuation of the dialogue.
This move could explicitly suggest a next
command given the state of affairs and the
last executed commands. Thus, an an-
swer YN affirmative reply would actually be-
have as a specifyCommand move.
Some examples are:

e Do you want to continue?

Whose representation would be:

¢ askContinuation Do you want to con-
tinue?

5.4.4 askRepeat

Any of the participants may request the other
to repeat the last utterance, or even a specific
parameter or command.

e Repeat example:

— Fxcuse me.
— Twant to call 1 2 3 4 collect.

— Can you repeat the destination,
please?

— 123

The askRepeat sentences in the previous
sub-dialogue will be specified as follows:

e Repeat example:

— askRepeat Ezcuse me.
— Twant to call 1 2 3 4 collect.

— askRepeat(destination) Can you
repeat the destination, please?.

— 123

The askRepeat sentences in the previous
sub-dialogue will be specified as follows:

e Repeat example:

— askRepeat Ezcuse me.
— Twant to call 1 2 3 4 collect.

— askRepeat(destination) Can you
repeat the destination, please?.

— 123

5.4.5 askHelp

This move shows up with a petition for help,
which may be very general (i.e. functionality
of the whole system), a specific command, or
a specific parameter (i.e. the range of possi-
ble values), etc.

The following sub-dialogue illustrates this
situation:

s Help sub-dialogue example:
— What are the available functions of
the system?

— You can place a phone call, consult
your directory or send a message.

— Well, how can I send a message?

— To send a message, first you have
to indicate the addressee of the mes-
sage

— That’s better, but what types of ad-
dressees may I use?

— The destination of a message may
me a telephone number or a person
in your directory.

The annotation we suggest for these peti-
tions are:

e Help sub-dialogue example (with

askHelp notations):

— askHelp What are the available
functions of the system?

— You can place a phone call, consult
your directory or send a message.

— askHelp(sendMessage) Well,
how can I send a message?

— To send a message, first you have
to indicate the addressee of the mes-
sage

— askHelp(destination) That’s bet-
ter, but what types of addressees
may I use?

— The destination of a message may
me a telephone number or a person
in your directory.

5.4.6 answerHelp
This dialogue move corresponds to the reply
to an askHelp move. Therefore, there are
different modes depending on the type of help
requested.

Next, we show the previous dialogue sam-
ple using this new dialogue move:

e Help sub-dialogue example (with
askHelp and answerHelp notations):

— askHelp What are the available
functions of the system?

— answerHelp You can place a
phone call, consult your directory or
send a message.

— askHelp(sendMessage) Well,
how can I send a message?

— answerHelp(sendMessage) 7o
send a message, first you have
to indicate the addressee of the
message

— askHelp(destination) That’s bet-
ter, but what types of addressees
may I use?

— answerHelp(destination) The
destination of a message may me
a telephone number or a person in
your directory.

5.4.7 errorRecovery

During the dialogue interaction, due to in-
consistencies in the information provided, in
what was understood by the participants or
in what was recognized by a speech recog-
nition system, there may arise situations in
which the continuation of the dialogue is im-
possible.

In these situations, an errorRecovery di-
alogue move generated by a participant warns
the other participant about the inconsistency
detected, and suggests a restart from the last
consistent state, or he/she may show some
reservations about the item which may be
causing the error or inconsistency.

The following example illustrates this sit-
uation:

o I'm sorry. I don’t understand which
function you would like to perform. Let’s
start from the beginning. Could you tell
me which function you would like to per-
form?

In this case, the recovery move has clearly
identified the source of the error (the com-
mand was not recognized), and a repetition
of the command is requested.

e errorRecovery(command) I’'m sorry.
I don’t understand which function you
would like to perform. Let’s start from
the beginning. askCommand Could
you tell me which function you would like
to perform?

5.4.8 greet

This move describes the usual greeting oper-
ation:

e greet Welcome to the system!

5.4.9 quit

Likewise, this move represents the usual clos-
ing operation:

e quit thanks, bye!

e quit Thank you for your visit!

6 NCL Dialogue Moves for the
Spanish Telephone Command
Dialogue Corpus

This section applies the model of dialogue
moves proposed in the previous section to a
sample of a dialogue belonging to the Spanish
Telephone Command Dialogue (STCD) cor-
pus.

The main features of this scenario
have been discussed in document
D3.1 User Requirements on a Natural
Command Language Dialogue System
[Torre, Amores & Quesada, 2000], which
also includes a set of representative dia-
logues in this corpus as well as a detailed
description of the expected functionality of
the system and the supported commands.

7 Annotating the Spanish
Telephone Command Dialogue
Corpus

This section contains the hand annotation of

the dialogue number 10 shown in chapter 6 of

[Torre, Amores & Quesada, 2000], using the

dialogue move scheme described above.

e 5(1): greet Welcome to the system.
askCommand Which function would
you like to perform?

e U(1): specifyCommand(phoneCall)
I want to place a call SILENCE speci-
fyCommand(phoneCall) place a call.

e S(2) askParameter(destination)
Who would you like to call?

e U(2). specifyParameter(destination
= 9898) Extension nine eight nine
eight.

e S5(3) informExecu-
tion(phoneCall,destination =
9898) I'll put you through to extension
nine eight nine eight.

o U(3):

e 5(4). askContinuation Would you like
to perform any other function?

e U(4): specifyCommand(phoneCall)
I want to place a call.

e S(5) askParameter(destination)
Who would you like to place a call?

e U(5): answerYN(no) No, specify-
Command(collectcall) I want to place
a collect call.

S(6): askParameter(destination)
Who would you like to call?

U(6): answerYN(no) No, specify-
Command(sendMessage) I want to
send a message.

S(7): askParameter(destination) If
you want to place a collect call, you must
provide a telephone number or a name.

U(7): specify-
Command(sendMessage) 1 want
to send a message.

S(8): errorRecovery I'm sorry. I don’t
understand which function you would
like to perform. Let’s start from the be-
ginning. askCommand Could you tell
me which function you would like to per-
form?

U(s): specify-
Command(sendMessage) 1 want
to send a message.

S(9): askParameter(destination)
Who would you like to send a message
to?

U(9): specifyParameter(destination
= JuanMedinaRobles) To Juan Med-
ina Robles.

S(10): answerHelp(sendMessage)
Please, record your message after the
tone. Pi.

S(11): askConfirma-
tion(sendMessage,destination

= JuanMedinaRobles) Sending the
message to Juan Medina Robles.

U(10): answerYN(no) No, specify-
Parameter(destination = JuliaMe-
dinaRobles) Julia Medina Robles.

S(12). askConfirmation(destination
= JuliaMedinaRobles) Julia Medina
Robles?

U(11): answerYN(yes) Yes.

S(13): informExecu-
tion(sendMessage,destination

= JuliaMedinaRobles) Sending the
message to Julia Medina Robles.

U(12):

S(14): askContinuation Would you
like to perform any other function?
U(13): answerYN(no) No.

S(15): quit Thank you for using the sys-
tem.

8 Comparing Natural Command
Language Moves with Other
Move Coding Schemes

This section compares the taxonomy of NCL
Moves with other move coding schemes. We
will try to point out the similarities and
differences between our coding scheme and
that of other projects and scenarios such as
TRAINS, DRI, MapTask, LINLIN2, GBG-
IM both at the level of scheme layers and
move taxonomies.

9 Conclusion

This paper has proposed a taxonomy of Dia-
logue Moves for Natural Command Language
Dialogues. The classification has been suc-
cessfully applied to the Spanish Telephone
Command Dialogue Corpus.

As part of the Siridus project
(jTT http:/ /www.cam.sri.com/siridus;/TT};)
we plan to apply this taxonomy as part of
the implementation of a Dialogue System
for the Automatic Telephone Operator
Scenario, and to evaluate the taxonomy (its
advantages and problems) in relation to the
other referenced taxonomies.

References

[Alexandersson et al, 1998] Alexandersson,
J., B. Buschbeck-Wolf, T. Fujinami, M.
Kipp, S. Koch, E. Maier, N. Reithinger, B.
Schmitz & M. Siegel. (1998) Dialogue Acts
in VERBMOBIL-2. DFKI Saarbriicken
and TU Berlin, Report 226, July 1998.

[Allen & Core, 1997] Allen, J. and Core, M.
(1997). DAMSL: Dialog Act Markup in
Several Layers. Draft contribution for the
Discourse Resource Initiative.

[Albesano et al, 1997] Albesano, D., Baggia,
P., Gemello, R., Gerbino, E., and Rul-
lent, C. (1997) A robust system for human-—
machine dialogue in a telephony-based ap-

plication. Journal of Speech Technology,
2(2), 99-110.

[Allwood et al, 1994] Allwood, J., Nivre, J.,
and Ahlsn, E. (1994) Semantics and Spo-
ken Language: Manual for Coding Interac-
tion Management. Report from the HSFR
project Semantik och talsprk.

[Cooper, 1998] Cooper, R. (1998). In-
formation States, Attitudes and Di-
alogue, In Proceedings of ITALLC-

98. Also available as GPCL 98-5 at

http://www.ling.gu.se/publications/ GPCL.html

[Cooper & Larsson, 1999] Cooper, R., and
Larsson, S. (1999). Dialogue moves and

information states. In Proceddings of the
Third IWCS, Tilburg.

[Cooper et al, 1999] Cooper, R., Larsson, S.,
Matheson, C., Poesio, M., and Traum,
D. (1999). Coding Instructional Dialogue
for Information States. Deliverable D1.1,
Trindi Project.

[Kamp & Reyle, 1993] Kamp, H. & Reyle,
U. (1993) From Discourse to Logic. Dor-
drecht: Kluwer.

[Poesio et al, 1999] Poesio, M., R. Cooper, S.
Larsson, D. Traum & C. Matheson. (1999)
Annotating Conversations for Information
State Updates. In Proceedings of the Am-
stelogue 99 Workshop on the Semantics
and Pragmatics of Dialogue. Amsterdam
University, May 1999.

[Torre, Amores & Quesada, 2000] Torre, D.,
J. G. Amores and J. F. Quesada. (2000)
User Requirements on a Natural Com-
mand Language Dialogue System. Deliver-
able 3.1. Siridus project.

[Traum & Hinkelman, 1992] Traum, D., and
Hinkelman, E. A. (1992). Conversation
acts in task-oriented spoken dialogue.
Computational Intelligence, 8(3). Special
Issue on Non-literal Language.

[Traum et al, 1999] Traum, D., Bos, J.,
Cooper, R., Larsson, S., Lewin, 1., and
Matheson, C. (1999). A model of dialogue
moves and information state revision. De-
liverable D2.1, Trindi Project.

