Dialogue Management in a Home Machine
Environment: Linguistic Components over an Agent
Architecture

José F. Quesada, Federico Garcia, Esther Sena, José Angel Bernal, Gabriel Amores

Grupo de Investigacion Julietta
Universidad de Sevilla

Abstract This paper presents the main
characteristics of an Agent—based Archi-
tecture for the design and implementa-
tion of a Spoken Dialogue System. From
a theoretical point of view, the system is
based on the Information State Update
approach, in particular, the system aims
at the management of Natural Command
Language Dialogue Moves in a Home
Machine Environment. Specifically, the
paper is focused on the Natural Lan-
guage Understanding and Dialogue Man-
agement Agents, and discusses their inte-
gration over a global agent architecture
(which includes Action and Knowledge
Managers, Speech Input/Output compo-
nents and HomeSetup controllers).

1 Introduction

Spoken Dialogue Systems have become one of
the most prominent research areas in Compu-
tational Linguistics. Over the last few years,
several projects all over the world have fo-
cused on this topic. This paper describes the
main characteristics of a spoken dialogue sys-
tem aimed at the control of a lightning sce-
nario in a home machine environment.

From a functional point of view, the system
may be described as a:

e Spoken Dialogue System, which acts as a
natural language interface between users
and

e Home Devices installed in a Home Ma-
chine Environment

e designed and implemented over an
Agent Architecture (specifically,

!This work has been supported by D’Homme (Di-
alogues in the Home Machine Environment), EC
Project IST-2000-26280. The authors would like to
thanks the rest of the project partners for their com-
ments and suggestions on the work.

OAA - Open Agent Architecture
[Martin et al 99]).

Section 2 describes the overall architec-
ture and agents, mainly the HomeSetup,
KnowledgeManager, ActionManager, Text-
To-Speech and Dialogue Manager Agents.

One of the main goals of the Natural Lan-
guage Understanding component of the sys-
tem is both to detect the command and the
device that the user wants to control and to
set the level or percentage that the user spec-
ifies at a precise moment. For instance, the
sentence ”Set the kitchen light at level 57 ,
must be transformed into a semantic repre-
sentation, where the main features will be:

¢ Command:Set
e Device: Light
e Location: Kitchen

e Level:b

Taking this information as its input, the
Dialogue Manager must be able to detect if
the semantic structure is:

e Functionally complete (Which light do
you want to turn on if you have just re-
ceived "Switch on the light”?)

e Pragmatically coherent and technically
possible (you cannot switch on a door,
for instance).

Besides, the Dialogue Manager must clar-
ify ambiguous expressions, such as ”"Switch
on the living room light”, when there are sev-
eral lights in the living room.

In order to solve these problems, the Di-
alogue Manager is closely connected to both
the Natural Language Understanding and the
Knowledge Manager modules.

Next, we present the linguistic components
of the architecture, that is, the Natural Lan-
guage Understanding and the Dialogue Man-
ager Agents. At this level, it is worth noting
that the system allows the following function-
ality:

e Natural Command Languages
e Expectations
e Multiple Commands

e Default Interpretation

A detailed description of the
kernel of the Dialogue Manager
may be found in [Quesada et al 00,
Quesada, Torre & Amores 2000], including
the specification language for the description
of dialogue systems and the strategies for the
implementation of the previous functions,
mainly the manipulation of expectations and
the use of default interpretations.

Section 3 describes the Natural Language
Understanding module, paying special atten-
tion to the grammatical level: a unification—
based semantic-oriented grammar specifica-
tion. The interface between the Natural Lan-
guage Undertanding and the Dialogue Man-
ager agents is based on the DTAC protocol
([Amores & Quesada 2000]). Section 4 in-
cludes an interesting set of examples incor-
porating for each example the DTAC rep-
resentation of the sentence obtained by the
grammar presented in section 3.

Finally, section 5 highlights one of the main
challenges of the system: to obtain a natu-
ral language interface to the Home Machine
Environment. This means that a user must
be able to install, plug or unplug, and con-
figure new or previous devices and to work
and talk with them on the fly. This section
includes some examples which illustrates the
main functions supported by the system so
far.

2 Overall Architecture and
Agents

The system has been implemented using the
Open Agent Architecture [Martin et al 99].
Figure 1 illustrates the main agents apart
from the Facilitator, the central agent in
charge of the communication between the
rest of agents.

Home Setup Knowledge Manage

h

Text To Speec

Action Manage

Semantic lnterprete

User Interface {consnleH

Figure 1: Overall agent architecture.

e HomeSetup: This agent is in charge of
the simulation of a Home Machine Envi-
ronment. This agent mainly allows the
installation of new devices and their con-
figuration. As part of the configuration
the user may instantiate the set of de-
scriptors related to the device.

e KnowledgeManager: This agent con-
tains both the static (structure of the
house, general ontology, ...) and dy-
namic (installation, configuration and
status of the devices) knowledge in-
volved in the task.

e ActionManager: The current devices
will support the actual functionality of
the system. This functionality (turn
on/off the device, ask the current status,
change the level of a dimmerable device,
...) must be accessed through the Home-
Setup agent, in charge of the simulation
and monitoring of the scenario. Never-
theless the devices incorporate primitive
functions to the system. The Action-
Manager incorporates new higher level
functionality that will be translated into
sequences of primitive actions.

e Text-to-Speech: In charge of the gen-
eration of the speech output. In order
to do so we have developed an OAA-
wrapper for Festival, allowing in this way
the use of this system as part of the gen-
eral architecture.

e Dialogue Management: This agent
includes the User Interface (which con-
trols at a high level the communication
with the user), the Parser, the Seman-
tic Interpreter and the Dialogue Man-
ager components.

The Knowledge Manager is in charge of
storing and organizing the information re-
lated to the devices installed in the house
regarding ubication, characteristics and re-
lations with other devices. The approach
adopted for organizing this information is
based on the conformation of a semantic net-
work. The properties of this network are:

e Nodes organized in a graph topology

e Non- directed connections between
nodes.

e Non- conexed.
e Non- cyclical.

e Parent-child relation defined in each
conection between nodes.

Each node contains a list of components.
A component consists of a pair of strings: a
label and a value. We can describe thereby
the structure of the network as having two
relations:

e A component belongs to a node.

component € node

e A node includes other node.
nodel C node2

e.l. nodel is parent of node2.

Let see an example of semantic network:

ground < indoors
ground < outdoors

indoors < kitchen
indoors < den

indoors < corridor
indoors < living_room

outdoors < front
outdoors < back

where the symbol C is represented by <. The
figure 2 represents the graph conforming the
network specified.

Kiksher

e / Aving-roocm
indoors 3
/ dan

Sorrider

£ ront
HK\K Jiﬂu;ljfﬁ;

P

around

Figure 2: Graph representation of a semantic
network example.

3 Natural Language
Understanding

Dialogue systems enable users to interact
with computer systems via natural and in-
telligent dialogues, as they would with hu-
man agents. Development of such systems
requires a wide range of speech and language
technologies, including natural language and
dialogue processing, to determine the mean-
ings and intentions of the utterances and to
generate a text-to-text interaction between
the user and the system.

As regards this document, what we have
done is to develop an interface for both En-
glish and Spanish for the specification of dif-
ferent functions in an intelligent house sce-
nario. In order to do so, we have made use
of Natural Command Languages. Natural
Command Languages comprise the set of in-
put and output natural language expressions
which are acceptable in a given application
domain. The most outstanding character-
istics of these NCLs are the use of natural
language vocabulary and syntactic structure.
Also, NCLs reflect natural syntactic order
and more precisely the patterns of spoken
language. In fact, they are a sub-language,
with reasonably clear boundaries but also
one in which new functionality can be added
without altering the structural properties of
the language.

Next subsection presents the main rules of
the unification- based grammar that has been
implemented. At this level it is worth noting
that the grammar incorporates Non—terminal
typification, and includes rules to construct
a Natural Command Language Dialogue rep-
resentation model, based on Dialogue Moves
where DMOVE represents the dialogue move
itself [Amores & Quesada 2000], TYPE the
specific type of dialogue move, ARGS the

functional subcategorization model of the
type of dialogue move and CONT the actual
contents of terminal structures.

3.1 Unification—based and
Semantic—oriented Grammar

Roots0fGrammar:
// Parameters
Value
Device
// Commands
Command

This is a configuration parameter used by
the parser, in fact, it is the only one that the
parser uses. On the other hand, the unifier
is the one in charge of the rest of the param-
eters. By means of these RootsofGrammar,
all grammar symbols that may be treated as
roots are specified. This in turn let us have
grammars with several root symbols.

NonTerminalTypes:
// Parameters
Device =
(DMOVE: specifyParameter,
TYPE: Device)
Number =
(DMOVE: specifyParameter,
TYPE: Value,
SUBTYPE: Number)
Level =
(DMOVE: specifyParameter,
TYPE: Value,
SUBTYPE: Level)
Percentage =
(DMOVE: specifyParameter,
TYPE: Value,
SUBTYPE: Percentage)
// Commands
CommandOn =
(DMOVE: specifyCommand,
TYPE: CommandOn,
ARGS: [Devicel)
Command0ff =
(DMOVE: specifyCommand,
TYPE: CommandQff,
ARGS: [Devicel)
CommandIst =
(DMOVE: specifyCommand,
TYPE: CommandISt,
ARGS: [Devicel)
CommandSet =
(DMOVE: specifyCommand,
TYPE: CommandSet,
ARGS: [Device,Valuel)
CommandInc =
(DMOVE: specifyCommand,
TYPE: CommandInc,
ARGS: [Device,Value])
CommandDec =
(DMOVE: specifyCommand,
TYPE: CommandDec,
ARGS: [Device,Value])
AskHelp =

(DMOVE: askHelp,
TYPE: AskHelp)

Quit =
(DMOVE: quit,
TYPE: Quit)

Under the label NonTerminalTypes, we
have both parameters and commands. Both
types will be the ones that will appear in the
DTAC structures that the Dialogue Manager
will take as its input. This can be clearly
noticed in section 4. As regards parame-
ters, there are four, namely device, percent-
age, number and level. The label device may
stand for words such as “kitchen”, the label
number stands for a plain number such as
“5”, and the word level along with percent-
age, indicate either a level such as “at level
5”7, or a percentage such as “to 25 percent” re-
spectively. These parameters will be instanti-
ated as the arguments of the commands, but
they will be enclosed under the label “value”,
that is, this value together with the device,
will be what will actually appear as the ar-
gument of the command. Therefore, percent-
age, number and level will be value subtypes.
We have created this construct to avoid ambi-
guities in both the grammar and the semantic
representation. Commands are divided into
eight types. The first group of commands
(CommandOn, CommandOff, and Comman-
dIst) takes a device as its argument. At this
point, the user may ask the system to switch
on a light, to switch it off, or he may just be
asking for the status of a light. The second
set of commands are the ones used with dim-
merable devices, therefore they take a device
plus a value. They are used to set a light at
any level, percentage or number, to increase
it, or to decrease it. The third set consists of
two commands, one of them for asking help,
and the other one for quiting the system. As
it can be noticed below, the do not require
any parameters.

11111111117 PARAMETERS
(A100 : AuxDevice -> LAuxDevice)

{ Qup = @self-1; }
(A101 : AuxDevice -> AuxDevice LAuxDevice)

{ Qup = @self-2; }
(P100 : Device -> LKeyDevice)

{ Qup = @self-1; }
(P102 : Device ->AuxDevice LKeyDevice)

{ oup = @self-2; }
(L100 : AuxPerc -> LAuxPerc)

{ oup = @self-1; }
(L101 : AuxLevel -> LAuxLevel)

{ oup = @self-1; }
(L102 : Number -> LNumber)

{Qup = @self-1; }
(L104 : Level -> AuxLevel LNumber)

{ Qup = @self-2; }

(L105 : Level -> LNumber AuxLevel)
{ Qup = @self-1; }
(L106 : Percentage -> LNumber AuxPerc)
{ Qup = @self-1; }
(L107 : Percentage -> AuxPerc LNumber)
{ Qup = @self-2; }
(L110 : Value -> Number)
{ Qup = @self-1; }
(L111 : Value -> Level)
{ Qup = @self-1; }
(L112 : Value -> Percentage)
{ Qup = @self-1; }
(L120 : Args -> Device)
{ Qup.Device = @self-1; }
(L121 : Args -> Value)
{ Qup.Value = @self-1; }

In this part of the grammar, we can see the
rules with the functional equations associated
to them. All of them are parameter rules.
Words beginning with L are terminal cat-
egories. For instance: LAuxDevice, LAux-
Perc,LNumber,LKeyDevice. We have words
such as “level”, “percentage” and “light”,
which belong to the corresponding categories
“AuxLevel”, “AuxPercentage” and “ AuxDe-
vice”. Also, as device is a non-terminal type,
“LkeyDevice” is the lexical category standing
for words such as “kitchen”. An Args can be
either a value or a device, and a value can be
either a level or a percentage. The creation
of these constructs and the way in which the
rules have been implemented, allows us both
to have any kind of word order and to avoid
grammatical ambiguity.

11111111117 COMMANDS
(C200 : CommandOn -> LCommandOn)

{ Qup = @self-1; }
(C201 : Command0ff -> LCommandOff)

{ Qup = @self-1; }
(C213 : CommandIst -> LAuxIstB)

{ Qup.TYPE =a CommandISt; }
(C214 : CommandIst -> LAuxIstA LAuxIstB)

{ Qup.TYPE =a CommandISt; }
(C215 : CommandIst -> LAuxIstB LAuxIstC)

{ Qup.TYPE =a CommandISt; }

(C202 : CommandSet -> LCommandSet)

{ oup = @self-1; }
(C203 : CommandInc -> LCommandInc)

{ Qup = @self-1; }
(C204 : CommandDec -> LCommandDec)

{ Qup = @self-1; }
(C211 : XCommand -> CommandOff)

{ Qup = @self-1; }
(C212 : XCommand -> CommandIst)

{ Qup = @self-1; }
(€213 : XCommand -> CommandOn)

{ Qup = @self-1; }
(C220 : XCommand -> CommandSet)

{ Qup = @self-1; }
(€221 : XCommand -> CommandInc)

{ Qup = @self-1; }
(€222 : XCommand -> CommandDec)

{ Qup = @self-1; }

(C223 : Command -> XCommand)
{ oup = @self-1; }
(C224 : Command -> XCommand Args)
{ Qup = @self-1;
Qup = @self-2; }

The way in which the command rules have
been arranged allows us to have any combi-
nation of words, no matter the order in which
they are either said or typed. This is a cru-
cial point, specially if we have into account
that this is intended to be spoken, and spo-
ken language is by no means predictable or
fixed as regards word order. If we start from
the lexical categories, which are the ones be-
ginning with L, we get the Command*. The
* stands for On, Off,Set, Inc, Dec. As we
can notice, all these are commands with argu-
ments and they can be of the same type as the
abovementioned parameters.They can be de-
scribed as specific commands. We may have
any combination of words, specifically when
the user wants to ask for the status of a light.
He may simply say “Estado de la cocina”,
or “en que estado se encuentra la cocina”.In
the later, the two keywords would be “es-
tado” and “encuentra”, and in the former,
the keyword would be would be “estado”. All
the Command* are XCommands. These are
commands without arguments. Finally, the
XCommand is inserted within a more general
command which is just a Command.

11111111117 ERROR REPAIR
(NOO1 : Command -> Command No Args)
{ Cup = @self-1;
@if (@self-3.Device) Qthen {
Qup.RepairedDevice = @self-1.Device;
Qup.Device =a @self-3.Device;
}
0if (@self-3.Value) Qthen {
Qup.RepairedValue = @self-1.Value;
Qup.Value =a @self-3.Value;

}
}

(NOO2 : Command -> Command No Command)
{ Cup = @self-3;

@if (!(@self-3.Device) &&
(@self-1.Device)) @then {
Qup.Device = @self-1.Device;

iif (' (@self-3.Value) &&
(@self-1.Value)) @then {
Qup.Value = @self-1.Value;

}

Qup.RepairedCommand = @self-1;

These rules are used when the user makes
an error and he inmediately corrects himself.
He may be repairing an argument which may

be a level, percentage, or a device, he may be
changing the command, that is to say, he may
be asking the system to turn off the kitchen
light when he has just realized that that light
is already off, and he may be changing both
the command and the argument. This is
clearly exemplified in section 4, in examples
4,5 and 6. In number 4, the user is changing
the command, in number 5, he is changing
both the device and the value, and in num-
ber 6, he is repairing the command and the
value.

4 Semantic representation of dialogue moves

Next, we present some examples which illustrate the use of the previous grammar. These results

have been obtained with the Episteme NLP tool ([Quesada & Amores 2000]).

The goal of this section is to illustrate the generality and simplicity of the representation
formalism with a wide range of phenomena: incomplete commands, commands with different
arguments, different types of arguments (numbers, descriptors, ...

commands and parameters:

1. Turn on
DMOVE speci fyCommand
TYPFE SwdCommandOn
ARGS [SwdDevice]
2. Turn on the kitchen light
[DMOVE : speci fyCommand T
TYPE : SwdCommandOn
ARGS [SwdDevice]
CONT
DMOVE speci fyParameter
SwdDeuvice TYPE SwdDevice
L CONT kitchen |

3. Dim the kitchen light down to 25 percent

DMOVE
TYPE
ARGS
CONT

SwdDevice

SwdV alue

speci fyCommand
SwdCommandDec
[SwdDevice], [SwdV alue]

| DMOVE speci fyParameter
TYPE SwdDevice]

| CONT kitchen

[DMOVE speci fyParameter
TYPE SwdV alue
CONT : 25

| SUBTYPE SwdPercentage

4. Increase the kitchen lamp no no decrease it

[DMOVE speci fyCommand
TYPE SwdCommandDec
ARGS [SwdDevice], [SwdV alue]
CONT
[DMOVE speci fyParameter '|
SwdDevice TYPE SwdDevice
| CONT Kitchen
T DMOVE speci fyCommand
TYPFE SwdCommandInc
ARGS [SwdDevice], [SwdV alue]
ErrorCommand CONT
{ DMOVE speci fyParameter
SwdDevice TYPE SwdDevice
i L [CONT Kitchen

) and error repairs, both of

1
]

5. Increase the lamp in the kitchen to level 10 no no no the light in the dinning
room to 25 percent

r DMOVE . speci fyCommand T
TYPE 1 SwdCommandInc
ARGS : [SwdDevice], [SwdV alue]
CONT :
| DMOVE : specifyParameter
SwdDevice : TYPE . SwdDevice]
| CONT : living,oom
[DMOVE . specifyParameter
TYPE : SwdValue
SwdV alue CONT . 95
| SUBTYPE : SwdPercentage
[DMOVE : specifyParameter
ErrorSwdDevice : TYPE . SwdDevice]
| CONT : Kitchen
[DMOVE . specifyParameter
ErrorSwdV alue g}(;if? f(;udValue
L | SUBTYPE : SwdLevel i

6. Set the light in the kitchen at level 5 no no no increase it to 25 percent.

DMOVE : specifyCommand]
TYPE : SwdCommandInc
ARGS : [SwdDevice], [SwdV alue]
CONT :
[DMOVE . specifyParameter
TYPE i SwdValue
SwdV alue CONT . o5

| SUBTYPE : SwdPercentage

[DMOVE : specifyParameter,
SwdDevice : TYPE : SwdDevice]
| CONT : kitchen
[DMOVE : specifyCommand, i
TYPFE : SwdCommandSet
ARGS : [SwdDevice, SwdV alue]
CONT
[DMOVE : specifyParameter
ErrorCommand : SwdDevice TYPE : SwdDevice]
| CONT 1 kitchen
[DMOVE . specifyParameter
TYPE : SwdValue
SwdV alue CONT -

| SUBTYPE : SwdLevel

5 Natural Language Dialogues

Finally, we present some dialogue examples
which illustrate the main functions of the sys-
tem from a linguistic point of view:

5.1 Natural Command Languages
and Expectations
Scenario: Two lights: one in the kitchen and
the other in the corridor. Both are turned off
at the beginning
Dialogue 1

e User: Turn on.

System: What device would you like to
turn on?

U: The kitchen light.

S: The light in the kitchen has just been
turned on.

In this example, the system detects that
in order to turn on a device, the user
must supply the descriptor of the actual
device. This functionality is implemented
as a expectation of the dialogue manager
([Quesada, Torre & Amores 2000]).

5.2 Multiple Commands
Dialogue 2

e U: Turn off the kitchen and switch the
corridor on.

e S: The light in the kitchen has just been
turned off.

e S: The light in the corridor has just been
turned on.

Althought the output generated by the sys-
tem must be improved in order to obtain
just one sentence, this example illustrates one
of the most complex phenomena in dialogue
management: the user asks the system to ex-
ecute several commands in one utterance.

5.3 Expectations, previous
commands and default
interpretation

Dialogue 3
e U: Turn on the corridor.
e S: The light in the corridor is already on.
e U: Sorry, the kitchen light.

e S: The light in the kitchen has just been
turned on.

This example shows the integration of the
dialogue manager with the knowledge man-
ager, which has detected that the corridor
light was already on. Besides, the example il-
lustrates an ambitious dialogue strategy: the
default interpretation of a parameter as part
of a previous command. In this scenario, the
specification of the parameter is analised as
an expectation of the previous command.

5.4 Plug & Play
Dialogue 4

e U: What is the current state of the living
room light?

S: The light in the living room is not
available at the moment.

Using the HomeSetup Agent, the user in-
stalls, configures and plugs o new light at
the living room.

U: Now, turn the living room on.

S: The light in the living room has just
been turned on.

Taking into account that the 4 previous
subdialogues belong in fact to just one di-
alogue obtained from the real system, it is
worth noting the ability to support plug &
play capabilities without restarting the dia-
logue manager nor the rest of agents.

6 Conclusion

A dialogue system designed to support natu-
ral and flexible dialogues intended to control
a lightning system in a home machine envi-
ronment has been presented. The paper has
concentrated on the linguistic components of
the agent—based architecture: the grammar
and the semantic representation of complex
sentences. A set of dialogue examples illus-
trating the linguistic capabilities of the sys-
tem have been presented and described.

References

[Amores and Quesada 1997] Amores, J.G.
and J.F. Quesada. 1997. Episteme.
Procesamiento del Lenguaje Natural 21.
pp. 1-16.

[Amores & Quesada 2000] Amores, J. G.,
Quesada, J. F. 2000. Dialogue Moves in
Natural Command Languages. Deliverable
1.1. Siridus project.

[Ferndndez & Quesada 99] Fernindez, G. &
Quesada, J. F. 1999. Delfos: Un Mod-
elo Basado en Unificacién para la Repre-
sentacion y el Razonamiento en Sistemas
de Gestion de Didlogo. Procesamiento del
Lenguaje Natural, 67-74.

[Kamp & Reyle 93] Kamp, H. & Reyle, U.
1993. From Discourse to Logic. Dordrecht:
Kluwer.

[Kirchner 90] Kirchner, C. ed. 1990. Unifi-
cation. San Diego, California: Academic
Press Inc.

[Lépez & Quesada 99] Lépez, M. T. & Que-
sada, J. F.. 1999. Error Detection and
Error Recovery from Speech Recognition:
Language Engineering Strategies. XIV In-
ternational Congress of Phonetic Sciences.
San Francisco, CA.

[Noord et al 98] Noord, G. van, G. Bourna,
R. Koeling & M. J. Nederhof. 1998. Ro-
bust Grammatical Analysis for Spoken Di-

alogue Systems. Natural Language Engi-
neering, 1(1), 1-48.

[Martin et al 99] Martin, D. L., Cheyer, A.
J., Moran, D. B. (1999). The open agent
architecture: A framework for building
distributed software systems. Applied Ar-
tificial Intelligence, vol 13, pp. 91-128,
January—March 1999.

[Quesada et al 00] Quesada, J.F., Amores,
J.G., Fernandez, G., Bernal, J.A., and
Lépez, M.T. (2000). Design constratins
and representation for dialogue manage-
ment in the automatic telephone operator
scenario. In Poesio, M., and Traum, D.
Proceddings of Gotalog 2000, Gothenburg
Papers in Computational Linguistics 005,
pp- 137-142.

[Quesada & Amores 2000] Quesada, J. F. &
Amores, J. G. (2000). Diseno e Imple-
mentacion de Sistemas de Traduccion Au-
tomdtica. Universidad de Sevilla: Secre-
tariado de Publicaciones.

[Quesada, Torre & Amores 2000] Quesada,
J. F., Torre, D. & J. G. Amores. 2000.
Design of a Natural Command Language
Dialogue System Deliverable 3.2. Siridus
project. December 2000.

[Rozenberg & Salomaa 97] Rozenberg, G. &
A. Salomaa. eds. 1997. The Handbook of
Formal Languages. Berlin: Springer Ver-
lag.

[Smolka and Ait-Kaci 1990] Smolka, G. and
H. Ait-Kaci. 1990. Inheritance Hier-
archies: Semantics and Unification. In
[Kirchner 90], pages 489-516.

