A Development Environment for MTT-Based
Sentence Generators

— Demonstration Note —

Bernd Bohnet, Andreas Langjahr and Leo Wanner
Computer Science Department, University of Stuttgart
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
{bohnet|langjahr|wanner }@informatik.uni-stuttgart.de

Introduction

With the rising standard of the state of the
art in text generation and the increase of the
number of practical generation applications,
it becomes more and more important to pro-
vide means for the maintenance of the gen-
erator, i.e. its extension, modification, and
monitoring by grammarians who are not fa-
miliar with its internals. However, only a
few sentence and text generators developed
to date actually provide these means. One of
these generators is KPML (Bateman, 1997).
KPML comes with a development environ-
ment and there is no doubt about the contri-
bution of this environment to the popularity
of the systemic approach in generation.

In this note, we describe a demonstration
of a high quality development environment
(henceforth DE) for Meaning-Text Theory
based sentence generators. 'The Meaning-
Text Theory (MTT) (Mel’¢uk, 1988) is a
dependency-based linguistic theory, which
becomes increasingly popular for generation;
cf. e.g., (lordanskaja et al., 1992; Lavoie &
Rambow, 1997; Coch, 1997). The introduc-
tion of MTT is beyond the scope of this note;
the interested reader is asked to consult the
above references.

The DE provides support to the user with
respect to writing, modifying, testing, and
debugging of (i) grammar rules, (ii) lexical
information, and (iii) linguistic structures at
different levels of abstraction. Furthermore,
it automatically optimizes the organization
of the lexica and the grammar by structuring
them hierarchically.

DE is written in Java 1.2 and has been
tested on a SUN workstation and on a PC
pentium with 300 MHz and 128 MB of RAM.

Global View on the DE

In MTT, seven levels (or strata) of linguistic
description are distinguished, of which five
are relevant for generation: semantic (Sem),

deep-syntactic (DSynt), surface-syntactic
(SSynt), deep-morphological (DMorph) and
surface-morphological (SMorph). The gener-
ation process consists of a series of structure
mappings between adjacent strata until the
SMorph stratum is reached. At the SMorph
stratum, the structure is a string of linearized
word forms.

The central module of the DE is a compiler
that maps a structure specified at one of the
five first of the above strata on a structure at
the adjacent stratum. To support the user in
the examination of the internal information
gathered during the processing of a structure,
a debugger and an inspector are available.
The user can interact with the compiler ei-
ther via a graphic interface or via a text com-
mand interface. For the maintenance of the
grammar, of the lexica and of the linguistic
structures, the DE possesses separate editors:
a rule editor, a lexicon editor, and a structure
editor.

The Rule Editor. Most of the grammat-
ical rules in an MTT-based generator are
two-level rules. A two-level rule establishes
a correspondence between minimal struc-
tures of two adjacent strata. Given that
in generation five of MTT’s strata are used,
four sets of two-level rules are available:
(1) Sem=DSynt-rules, (2) DSynt=-SSynt-
rules, (3) SSynt=DMorph rules, and (4)
DMorph=SMorph-rules.

The rule editor (RE) has two main func-
tions: (i) to support the maintenance (i.e.
editing and examination) of grammatical
rules, and (ii) to optimize the organization
of the grammar by automatic detection of
common parts in several rules and their ex-
traction into abstract ‘class’ rules. The theo-
retical background and the procedure of rule
generalization is described in detail in (Wan-
ner & Bohnet, submitted); a brief overview
will also be given during the presentation.

Rule testing is usually a very time con-

suming procedure. This is so partly because
the generator needs to be started as a whole
again and again, partly because the result-
ing structure and the trace must be carefully
inspected in order to find out whether the
rule in question fired and if it did not fire
why it did not. The DE attempts to minimize
this effort. With ‘drag and drop’ the devel-
oper can select one or several rules and apply
them onto an input structure (which can be
presented either graphically or in a textual
format; see below). When a rule dropped
onto the structure fires, the affected parts of
the input structure are made visually promi-
nent, and the resulting output (sub)structure
appears in the corresponding window of the
structure editor. If a rule did not fire, the in-
spector indicates which conditions of the rule
in question were not satisfied. See also below
the description of the features of the inspec-
tor.
The Structure Editor. The structure ed-
itor manages two types of windows: windows
in which the input structures are presented
and edited, and windows in which the result-
ing structures are presented. Both types of
windows can be run in a text and in a graphic
mode. The input structures can be edited in
both modes, i.e., new nodes and new relations
can be introduced, attribute-value pairs asso-
ciated with the nodes can be changed, etc.

In the same way as rules, structures can

be checked with respect to their syntax and
semantics. Each structure can be exported
into postscript files and thus conveniently be
printed.
The Lexicon Editor. The main function
of the lexicon editor is to support the main-
tenance of the lexica. Several types of lexica
are distinguished: conceptual lexica, seman-
tic lexica and lexico-syntactic lexica.

Besides the standard editor functions, the
lexicon editor provides the following options:
(i) sorting of the entries (either alphabeti-
cally or according to such criteria as ‘cate-
gory’); (ii) syntax check; (iii) finding infor-
mation that is common to several entries and
extracting it into abstract entries (the result
is a hierarchical organization of the resource).
During the demonstration, each of these op-
tions will be shown in action.

The Inspector. The inspector fulfils
mainly three functions. First, it presents
information collected during the application

of the rules selected by the developer to
an input structure. This information is
especially useful for generation experts who
are familiar with the internal processing. It
concerns (i) the correspondences established
between nodes of the input structure and
nodes of the resulting structure, (ii) the
instantiation of the variables of those rules
that are applied together to the input
structure in question, and (iii) the trace of
all operations performed by the compiler
during the application of the rules.

Second, it indicates to which part of the
input structure a specific rule is applicable
and what its result at the destination side is.
Third, it indicates which rules failed and why.
The second and third kind of information is
useful not only for generation experts, but
also for grammarians with a pure linguistic
background.

The Debugger. In the rule editor, break
points within individual rules can be set.
When the compiler reaches a break point it
stops and enters the debugger. In the de-
bugger, the developer can execute the rules
statement by statement. As in the inspec-
tor, the execution trace, the variable instan-
tiation and node correspondences can be ex-
amined. During the demonstration, the func-
tion of the debugger will be shown in action.

References

Bateman, J.A. 1997. Enabling technology
for multilingual natural language genera-
tion: the KPML development environment.
Natural Language Engineering. 3.2:15-55.

Coch, J. 1997. Quand l'ordinateur prend la
plume : la génération de textes. Document
Numérique. 1.3.

lordanskaja, L.N., M. Kim, R. Kittredge,
B. Lavoie & A. Polgueére. 1992. Generation
of Extended Bilingual Statistical Reports.
COLING-92. 1019-1022. Nantes.

Lavoie, B. & O. Rambow. 1997. A fast
and portable realizer for text generation
systems. Proceedings of the Fifth Confer-
ence on Applied Natural Language Process-
ing. Washington, DC.

Mel’¢uk, T1.A. 1988. Dependency Syntaz:
Theory and Practice. Albany: State Uni-
versity of New York Press.

Wanner, L. & B. Bohnet. submitted. Inher-
itance in the MTT-grammar.

