Parsing Categorial Grammars in Natural Deduction

José Antonio Jiménez Millan
Escuela Superior de Ingenieria de Cadiz

Calle Sacramento, 82
11003 - CADIZ (SPAIN)

Antonio Frias Delgado
Facultad de Filosofia y Letras
Avda. Gomez Ulla, s/n
11003 - CADIZ (SPAIN)

{joseantonio. jimenez,antorio.frias}fuca.es

Universidad de Cadiz, Spain

April 1999

Area temaitica:
4. Gramadticas y formalismos para
el analisis morfoldgico y sintactico

Abstract

We present an algorithm for parsing in the
product-free fragment of Categorial Grammars
(CG) using 2 Natural Deduction (ND) Calculus
¢ la Prawitz. Since this is not the usual for-
malism of choice, we must first introduce the
rules of the calculus and some of the geometric
properties of deductions in which lies the pars-
ing process.

The resulting algorithm generates only natu-
ral deductions in normal form so that it is devoid
of spurious ambiguity. The parsing is quite effi-
cient with some top-down (goal directed) steps
followed by bottom-up ones.

1 Introduction

What have we done: We present an algo-
rithm for parsing in the product-free fragment
of Categorial Grammars (CG) using the Natural
Deduction (ND) Calculus & la Prawitz.

Closely following Prawitz [Pra65], we prove
the inversion principle—as well as other sev-
eral geometric properties of deductions in the

ND version of CG—that allows ns to build a -

quite efficient mixed parser, with some bottom-
up (data directed) steps followed by top-down
(goal directed) ones. The parser generates only
natural deductions in normal form, so that it is
devoid of spurious ambiguity.

Why is it important: Gentzen developed
the sequent calculus for logic [Gen34], with its
Hauptsatz property, to cope with the problem
that posseses the natural deduction formalism
such that it does not admit of a goal-directed
algorithm for deductions. So when Lambek
presented his Lambek-Gentzen sequent calcu-
lus [Lam58), giving a formalism for syntax in a
logical format, he used the Gentzen sequent cal-
culus that has become, since then, the formalism
of choice for categorial grammars, see [Moo88].
Later Prawitz [Pra65] demonstrated that natu-
ral deduction calculus—in normal form—owns
one kind of Hauptsatz property after all, so that
it is possible to build deductions in a top down—
goal directed—fashion. Since then several au-
thors have claimed the ND formalism to be
more ‘natural’ for natural language than the se-
quent’s one (see [K6n94], an updated version of
[Kon89], and what she calls hypothetical rea-
soning). Nowadays we can say that there is
an awakening of interest in this calculus—see
[Ben91], [Kon94], so as {Bus97] and [Mo097] in
[BM97]—but there are much less studies about
parsing in ND than there are about Lambek-
Gentzen systems and, above all, we miss the for-
mal development of the culculus with its prop-
erties.

Here we introduce an adapted version of the
Natural Deduction Calculus for the product-free
fragment of Categorial Grammars, and then we
prove the inversion principle for this calculus
that permits us to follow some goal-directed (top
down) steps during parsing.

This is the only complete algorithm we know

of, and it is completelly based in the formal
study of geometric properties of this ND cal-

culus.

State of the art in ND parsing: As we noted
before, most. work in categorial grammar deals
with proofs in-the Lambek-Gentzen sequent for-
malism. Although some authors have developed
one ‘normal form’ for prooftrees in the Lambek-
Gentzen sequent calculus and some algorithms
to generate only proof trees in that ‘normal’
form, they are not “du'ectly related with our
work in natural deduction calculus.

The closer works to ours are that -of Konig
[K6n94), and that of Carpenter [Car94]. ..

Konig presents two different algorithms for
parsing the product-free fragment of categorial
grammars in the natural deduction calculus: A
direct one, and another chart-based one. Both
two are exclusivelly data—directed (bottom-up)
algorithms and they are explained in terms of
operations over one kind of stack. Those algo-
rithms are not complete as they can not explain
the type-rising rule [a = (n/a)\n]—we belive
this is a direct consequence of the management
of that sort.of a stack in a bottom up (from data
to conclusion) fashion so that the goal (rn/a)\n
is not used at all—Moreover, because the in-
dividual steps are decomposed in several ones
that manage the stack, those algorithms have
the drawback of derivational equivalence.

The algorithm of Carpenter is another data-
directed one and the user must signal the place
he/she wants to introduce a supposition (a gap).
Besides it generates non normal proofs that are
managed by an independent normalization step.

We have not found any work that developed
the geometric properties of natural deductions
in a formal way (or at all) except some hints in
Johan Van Benthem, Esther Konig; and others.

2 A Natural Deduction Cal-
culus a la Prawitz for CG

In a more or less ‘classical’ logic, we use to say
that in the ND calculus a proof is build by one
deduction that is defined like an ordered list of
formulae. This definition is not appropiate in
Categorial Grammars as we need, beside the se-
quential order of formulae that reflects the order
of application of the rules of inference as above,
another mechanism to reflect the left-to-right
relative position of lexical items (hypotheses)
in the sentence as well as the left-to-right rela-
tive position of phrasal constituents {intermedi-

ate lemas). This mechanism should, also, reflect
the resource-sensitivity of this kind of substruc-
tural logic, so. that resouces can not be reused
once consumed. o

2.1 Deduction as a two-dimensio-
o nal structure '

We will deﬁne one deductlon (a proofin ND cal-
culus) as a two-dimensional structure that looks
like-a tree but that is a rooted directed acyclic
graph really, with arcs in sequential left to right
order. The relative vertical position, of hypothe-
ses (lexical items) and premisses (phrasal con-
stituents) in the tree, shows the order of applica-
tion of the rules of inference; but there relative
horizontal position reflects the. relative left to
right order of words in the sentence. But. before
we needs soine deﬁmtlons _

We define the Jringeof one deduction tree as
the left-to-right ordered sequence of the leaves
of the tree. - .b
A deduction is made up of one only conclu-
sion (the root of the graph) that is obtained
out of certain premisses using some deduction
rules. Each premiss is obtained, in the same
way, out of other premisses using other deduc-
tion rules, and so on until we reach the hypothe-
ses. These hypotheses make a left-to-right or-
dered sequence that we call the fringe of the
deduction graph.

Each hypothesis B may be in one of two states:
it may be active — it is the usual state and it in-
dicates that it is an active part of the deduction
such that the conclusion A is dependant upon B:
[a, B, 8 F A} ~ or it may be cancelled meaning
that, from one point on, the conclusion is not de-
pendant upon the cancelled hypothesis (then we
say the hypothesis was a supposition). We will
use the below notation to indicate a deduction
(a proof in ND), such that a F A, of the con-
clusion A out of the sequence of hypotheses @
t&lat builds the fringe of the leaves of the graph:

A. This notation lets us infer certain proper-
ties of deductions from the geometric properties
of the tree in a rather perspicacious way. Note
that a is a sequence of hypotheses in which we
care for the left-to-right order of hypotheses as
well as for the number of times they occurs.

Base case in the definition of deductions:

A (hypothesis)

3
-3

>

3

5.

This is the most simple deduction we can build,
meaning that we can deduce the conclusion A
just because we have considered it to be a hy-
pothesis.

Introduction rules of logical connectives
in the conclusion:

(A v 7 [4];
v A%
A\BBi (Intro,\) B‘/BAj (Intro,/f)

The bracketing [A] shows the hypothesis A
being cancelled (it is a supposition), while
the indexing reflects that the supposition is
only active in the path!, [A;... A\B,] or
[A;... B/A;], between the first occurrence of
the index until the second occurrence of the in-
dex. Out of this path such hypothesis is can-
celled.

The index makes deductions to be a graph
and not a real tree. These rules are suitable
to use in a goal-directed automatic parser be-
cause they fulfil the subformula property®*—aé la
Gentzen—Premisses are subformulae of the con-
clusion.

Elimination rules of logical connectives in
the conclusion

o B B o

Vv \YJ Vv v

A A\B B B/A A -
T(im,\) B (Elim,/)

These rules do not present the above subfor-

mula property as the premiss A does not belong
to the conclusion. This is a serious drawback for
the implementation of a goal-directed antomatic
parser for it causes an infinite ramification in the
search. Below we will see that there is another
kind of ‘subformula property’ for deductions in
normal form that allows us to solve that prob-
lem.
In an instance of the (Elim,\) or (Elim, /)
rule, we say ‘A’ to be the minor premiss.
We say the other premisses—of these and other
rules— to be the major premisses. In the case of
the elimination rules, major premisses are of the
form ‘A\B’ or ‘B/A’. We will show below that
we can impose several restrictions to the form
of major and minor premisses of deductions in
normal form.

!Below we will define in a formal way what is meant
to be a ‘path’ between two given formulae.

2We will see below that there is another kind of sub-
formula property for deductions in normal form.

In a natural deduction tree II, we define
a thread as the ordered sequence of occurrence
of formulae [F,F3,...,F,], taken from that
tree, such that: 1) F; is one of the leaves of
the tree—one hypothesis of the proof— 2) F,
is the root of the tree—the conclusion of the
proof— 3) Vie[1..n)F; is one premiss in an in-
stance of some deduction rule such that Fy
is its conclusion.

In the natural deduction tree II we define
a branch as the initial segment [F1, Fy,. .., Fy]
of a thread such that: 1) Fy, is the first formula
in the thread that plays the role of a minor pre-
miss in an instance of the aplication of some
elimination rule. 2) Otherwise F,, should be
the root of the tree—the conclusion in the de-
duction tree—in the case there is no minor pre-
miss in the thread. We say a branch that is also
a thread to be a main branch.

‘We define a path between the occurrence of
two formulae ‘A’ and ’B’ in a deduction tree
I, as the initial segment {A = F, F,...,Fp)
of the thread [A = Fl,Fg,...,Fm, Fm+1 =
B,...,F,]. Notice that we can not always find
a path between whatever two formulae in a de-
duction.

Conditions for the application of the
rules: We should emphasize that: 1) Each
and every hypothesis can be used only
once and that they may be cancelled only
once. 2) We can only operate with hypotheses
that are consecutive in the horizontal ordering
and that are at the very same vertical height. 3)
Hypotheses makes up a sequence —the fringe of
the rooted directed acyclic graph with ordered
arcs— Hence we care for the left to right order
of the hypotheses as well as for the number of
times they occurs. '

3 Normalization. The in-

version principle

Given a deduction tree, II, such that ¢ Fnxp A,
we can introduce in it an endless chain of in-
troduction and elimination rules that yields the
very same conclusion A out of the very same hy-
potheses . We say such a family of deductions
to be equivalent. Among them there is a simpli-
fied one that we say is in normal form. Thisis
an instance of the more general inversion prin-
ciple that states that, in deductions of the form:

ﬁ.[A]i- - o
B/A, (Infro /) 7 Vo

El N
-B (e /) -1t is' l.mphCIt a pre-

vious. proof of B in the proofs of the prermses

B/:4 and Z ‘Suéh' dedﬁc‘fibns’ lﬁEj be reduced
2y :

Y
BA
v
to the simplified following form: "B . so that
there is no introduction rule followed by an elim-
ination one. And a.na.logously for the symmetnc
(\) operator.

The inversion prmc:ple asses that we do not
obtain any gain if we infer the formu]a B|A
as the conclusion of one rule of ‘introduction,
and then we use that very same formula B|A as
the major premiss in an ehmmatmn rule This
dnves to’ the following theorem

THEOREM 1 Inversion Theorem: "-{f

_ . : v
[y Fnp Al, then there is a deduction tree A
such that no (occurrence of one) formula is at
the same time the conclusion of an introduction
rule end the major premiss of an elimination
rule. :

‘The proof is based upon the inversion princi-
ple above. : O
Hence, we get a family of eqmva.lent deduc-
tions with only one normal form. Normalization

fulfil the Church-Rosser property, thus normal -

forms are umque

4 Some prbperties of deduc-
tions in normal form

Deductions in normal form own a very pecu-
liar structure that we may take advantage of for
building an automatic parser.

THEOREM 2 Given a deduction tree II, in
normal form, and one sequence of formulae 8 =
[F\; Bz, ..., F;] that makes a branch in'II, then
there ezists one formula F; € B—that we will
call the minimum formula in B—that splits
the sequence:f in two (may be emply) parts
called the elimination part and the introduction
part. These parts are such that: 1) Each for-
mula Fje[1...q) from the Elim-part is the major

premiss in some (Elim,+) rule and it contains

formula in the branch (with the possible excep-

Fj41 as .a subformula. 2) Ifi #:n then F
is the premiss of one (Intro,+) rule. . 3) Each
formula Fie(1..n) from the Intro-part (with the
exception of the last one) is the premiss of some
(Intro,x) rule and it is a subfonnula of FJ+1

Thus, each branch in a deduction in normal
form*may be- sphtted into one (may.be empty)
sequence of elimination rules in which conclu-
sions are more and more simple—with less and
less conectors—iollowed by another. (may be
empty) sequence of introduction rules in which
formulae -are more and more complex—with
more and more connectors—. The formula that
separates both parts is called the minimum for-
mule in. the -branch and owns the more simple
structure of the branch so that it is a subfor-
mula of every formulae above and it is also a
subformula of every formula below.

Proof: Let us remind first that, by deﬁmt:on no

tion of the last one)-may be a minor premiss in
one elimination rule. Then let us observe that,
in any branch 8 that belongs to a deduction in
normal form, the formulae that play the role of
major premiss of an elimination rule must pre-
cede those formulae that are premisses in any
introduction rule. If this was not the case we
will find us with one situation that is subject of
normalization and hence it is in a contradiction
with our initial supposition of the deduction to
be in normal form.

“Thus, let us consider the first formula ‘F;"in
the branch that is a premiss of an (Intro,) rule,
or otherwise let F; = F, if there is no such in-
tro rule in the branch. This formula 'F}’ is the
minimum formula in the branch § and it fulfils
the above three properties (1), (2) and (3) in the
theorem. _ o

THEOREM 3 Subformula property for
deductions in normal form: Every occurence 4
. i ’T A

- v
of & formula F; in a normalized deduction A, is
a subformula of the conclusion A or, otherwise,
it must be a subformula of any hypothesis in ~.

This theorem is but a conclusion of the former
one. a

5 An algorithm to obtain
deductions in normal form

Although the elimination rules forbid the design
of a goal directed algorithm for parsing in natu-
ral deduction—for they produce an infinite ram-
ification of the search tree—, the above theorem
3 states that, if we want to obtain deductions in
normal form, we should only try with subfor-
mulae of the original sequence of hypotheses or
with subformulae of the conclusion. This leads
us to build the following inductive algorithm.

We will call goai to one sequence of categories,
« (the antecedent), followed by the target cate-
gory, O (the consequent), and this we will write
as [a= O]

Procedure ‘proof one goal’ Input: one goal
[@ = O]. Output: A sequence of steps that
builds the proof tree (deduction). Process:
Initial state. Initial goal: [a@ = O], where a
= the original sequence of categories of lexical
items, and O is the original target category for
the whole phrase.

Base case. If goal = [0 = O].
procedure ‘proof one goal’ {success).
Elimination step. Let goal = [= O]. Ex-
ecute function ‘Eliminate connectives’ with the
given goal.

Introduction step. We should follow the
above steps for each and every result from the
previous function for ‘Eliminate connectives’
a) IF antecedent = consequent, THEN end pro-
cedure ‘proof one goal’ (success). b) OTH-
ERWISE execute procedure for 'Insert connec-
tives’.

End of procedure ‘proof one goal’ a

then end

Function ‘Eliminate connectives™ Input:
one goal. Qutput: a set of goals. Process:
Execute every possible combination of the fol-
lowing steps and concatenate the results.

1) Output = original unaltered goal.

2) IF goal = [a, A/B, B,y = O]. THEN output
= [a, A, v = O]. This step corresponds with the
application of the (Elim, /) rule.

3) IF goal = e, B, B\ 4,v = 0]. THEN output
= [a, A,v = O). This step corresponds with the
aplication of the (Elim,\} rule.

End of the function ‘Eliminate connec-
tives’ (|

Procedure ‘Insert connectives’: Input:
one goal. QOutput: a sequence of steps that

builds a deduction tree. Process: Try each of
the following cases in a nondeterministic way:
1) IF goal = [a, 4/(B/C), = O] THEN 1l.a)
Split—non deterministically—the sequence 8 in
one left part 8; and another right part 2 (6
should not be empty). 1.b) Execute proce-
dure ‘proof one goal’ with both two new goals:
[61,C = B] and [o,A,B: = O]. This step
corresponds with the application of one intro-
duction rule followed by the application of an
elimination rule.
2) IF goal = [a, A/(C\B), 8 = O] THEN The
symmetrical situation to (1)
3) IF goal = [a, (C\B)\ A, = O] THEN The
symmetrical situation to (1)
4) IF goal = [a, (B/C)\A, 8 = O] THEN The
symmetrical situation to (1)
5) IF goal = [@ = A/B] THEN execute proce-
dure ‘proof one goal’ with the new goal [a, B =
A]. This step corresponds with the application
of some (Intro, /) rule.
6) IF goal = [@ = B\A] THEN The symmet-
rical situation to (5)
7) OTHERWISE end procedure ‘Insert connec-
tives’ (failure).
End of procedure ‘Insert connectives’ 0O
Steps (5) and (6) are top-down (goal directed)
steps fron the conclusion to data, while steps
(1), (2), (3) and (4) are mixed ones, from data
to conclusion and back from conclusion to data.

6 Properties of the parsing
algorithm

The alpgorithm converges. DBecause every
step reduces the complexity (number of connec-
tives) of the goal. 0

The algorithm is correct. Every goal that
may be constructed by this algorithm can be
deduced in the original natural deduction calcu-
lus.

The proof follows since we can check that each
and every step in the algorithm corresponds
with-the application of some of the rules of the
original calculus or, otherwise, it corresponds
with some combination of rules. This we have
shown in each step of the algorithm. a

The algorithm is complete for deductions
in normal form. Every deduction in normal
form that may be infered in the original cal-

culus corresponds-with some goal that may be
build with:this-algorithm. This is a more hard
to.see property than the previous ome. The
proof is ‘based upon ‘the ‘rather .peculiar struc-
ture of deductions in- normal: form: because of
the theorem 2 above. Branches are made with
a (possibly empty) initial sequence of elimina-
tion steps—function for ‘eliminate connectives’
in our algorithm-~followed by another:(possibly
empty) sequence of introduction steps that ends
up in the minor premiss of some elimination
step—our (1), (2), (3) and (4) cases of the proce-
dure for ’insert connectives’ in our algorithm—
or, otherwise, it must end in the conclusion of
the goal—our (5) and {6) cases of the procedure
for ‘insert connectives’ in our algorithm—and
these are the only cases that we can find in de-
ductions in n_orma_l_ _fprm., : |

The algonthm only builds deductmns in
normal form. Every deductlons with that
structure are normal ones. - O

The algorithm is devoid of espurious am-
biguity. As the algorithm only constructs de-
ductions in normal form, and as we may assim-
ilate the concept of one different normal form
with that of one different ‘semantic’ form, thus
the algorithm is devoid of spurious ambiguity.
O :

Appendix: Prolog Program
listing of the algorithm

:— op(400,yfx,"\").
variable(l).

PNy Ay RN A AN AN NN AN S YA AR A Y Y ANy Y YT Y]
%%%4% Antomatic Theorem prover in Natural Deduction
%%%Y For Categorial Grammars

AREA

4444 Try the consults:

%%4% ? probar{[someone:s/{n\s),bore:(n\s)/n,

4 v d everyons:{s/n)\s] ,ProotTres:s)

%%%% 7 probar([a:al ,ProofTree: (b/a)\b)

Py AR R NN AN N A SA RN AN A S AN AT YA Ay AR A hA)

probar([Demo:0bjl, Demo:0bj) :- !.
probar(Xs,Zs) :-

elimina(Xs,¥s),

probar(Y¥s,Zs), !.

- prebar(Xs,Ys} -
insertar(Xs,Ys).

IZﬂﬁﬁﬂ.ﬂﬂﬂKﬂﬂﬂ1217.7.7.111111%27-%7.’4%%%1‘/7'/.'4%7.
4%% introduction rules

ﬂ?’.ﬂIﬂﬂ%ﬂﬂﬂ."I7.1%1%‘417.2%7.7.7.11_1111%%217.%%%7.7.%%

1nsertar([Demo DbJ] Demo UbJ)
insertar (Xa,Dene:0bj) :
- busca(Xs,K,Dcba: (C\B)\A.H),
append(K1, [XI1X2] ,K),
.variable(Z), .
21 im 241,
nbol1uh(varlableli),
‘mesert(variabla(Z1)),
Eps = eps(Z),
append([Eps:C], [X|¥2],K28),
probar(K2s,Demo2:B),
append (K1, [elimBack(introBack(Eps:C,Demo2:B) :C\B,
Dcha:(C\B)\A) :AIM] ,Ks),
probar (Ks ,Deme:0bj) .

insertar(Xs,Demo:0bj) :-
buscal(Xs,X,Dcba: (B/CI\A,M),
append (K1, [X|K2] ,K),
variable(Z),
Z1 is Z+1,
abolish{variable/1),
aszert{variable(Z1))},
Eps = eps(Z),
append([X|K2], [Eps:C],K28),
probar (K2s,Demo2:B),
append(X1, [elimBack(introSlash(Demo2:B,Epa:C):B/C,

Deba: (B/C)\A):AIM] ,Ks), .

probar(Ks,Demo:0bj) .

insertar(Xs,Demo:0bj) :-
busca(Xs,K,Dcba:A/(B/C),M),
append ([X|M1],M2,M),
variable(Z),
Z1 is Z+41,
abolish(variable/1),
Eps = eps(Z),
assert(variable(Z1)),
append([XIM1], [Eps:C] ,M1s),
probar (M1s,Demo2:B),
append (X, [elimSlash{Dcba:A/{B/C),

introSlash{Demo2:B,Eps: C) B/C) :A|M2] ,M8),

probar (Ms,Demo:0bj) .

insertar(Xe,Demo:0bj) :-
busca(Xs,K,Deba:A/(C\B),M),
append([XIM1],M2,M),
variable(Z),
Z1 is Z+1,
abolish(variable/1),
Epe = eps(Z),
assert{variable(Z1)),
append([Eps:C], [XIM1] ,M1s),
probar(Mis,Demo2:B),
append(X, [elimSlash(Dcoa:A/{C\B),

introBack(Eps:C,Demo2:B}:C\B) :A|M2] ,Ms},

probar(Ms,Demo:0bj).)

insertar(Xs,Demo:A/B) :-

variable(Z),
Z1 is Z+1,

abolish(variable/1),

Eps = eps(2),
assert(variable(21)),

append(Xs, [Eps:B] ,Xss),
probar(Xss,Demol:A),

Demo = introSlash{Democl:4,Eps:B}.

insexrtar(Xs,Demo:B\A) :~

variable(Z),

Z1 is Z+1,

abolish{variable/1),

Eps = eps(Z),
assert{variable(Z1)),

append([Eps:B] ,Xs,Xss),
probar(Xss,Demo1l:4),

Demo = introBack{(Eps:B,Demol:A}.

AR AR AR LA AL LA RN AL L LA
44%% Look for a pattern in a string
PYA Ty AN A AN E NSNS YA AA YN AA YT NAAN Yy Yok YA

busca([X{Xs],(],X,Xs).
busca({[X|Xs], [X|Inic],Y,Final) :-
busca(Xs,Inic,¥Y,Final).

PN AN A AN A AN NSNS YA S A AR AN A AN N oo S
U444 Loop to insert elimination rules

LAy S RN AN S A AN AN AN AT NS S AN Ay by Y Yoy hh A

elimina{Xs,Ys) :-
eliml(Xs,Ys),
Xs \= Ys.

elim1([1,[]1) :- !.
elimli([Dab:A/B,Db:B|Xs],
[elimSlash(Dab:A/B,Db:B)}:AlXs]).
eliml ([Db:B,Dab:B\AIXs],
[elimBack{Db:B,Dab:B\A):AlXs]).
elim1([X|Xs],[XI¥s]} :- elimi(Xs,¥Ys).

P A Y AN Y AN ST AT A AN A S AN N Ay Y b &y A A oA

References

[Ben91]

[BM97]

[Bus97]

[Car94]

J. Van Benthem. Language in Ac-
tion: Categories, Lambdas, and Dy-
namic Logic. North—-Holland, 1991.

J. Van Benthem and A. Ter Meulen,
editors. Handbook of Logic and Lan-
guage. Elsevier Science B.V. and MIT
Press, 1997.

W. Buszkowski. Mathematical linguis-

tics and proof theory. In Benthem and
Meulen [BMS7].

Bob Carpenter. A natural deduction
theorem prover for type-theoretic cat-
egorial grammars. Technical report,

[Gen34]

[Kon89]

[Kén94]

[Lam58]

[Moo88]

[Mo097]

[Pra65]

Carnegie Mellon Laboratory for Com-
putational Linguistics, 1994.

G. Gentzen. Untersuchungen iiber das
logische schielessen. Mathematische
Zeitschrift, 34, 1934.

E. Kdnig. Parsing as natural deduc-
tion. In Proceedings of the 27th Annual
Meeting of the Association for Compu-
tational Linguistics. Vancouver, 1989.

E. Kénig. A hypothetical reasoning al-
gorithm for linguistic analysis. Journel
of Logic and Computation, 4(1):1-19,

1994.

J. Lambek. The mathematics of sen-
tence structure. American Mathemat-
ical Monthly, 65:154-169, 1958.

Michael Moortgat. Categorial Inves-
tigations: Logical and Linguistics As-
pects of the Lambek Calculus. Foris
Publications, 1988.

M. Moortgat. Categorial type logics.
In Benthem and Meulen [BM97], pages
93-178.

Dag Prawitz. Natural Deduction.
Almgqvist and Wiksell, Uppsala, 1965.

