In this paper we present the linguistic resources
- the text handling and the linguistic processing
modules - which have been developed for the
MELISSA project using the ALEP platform. In
particular, we will see how generic (large scale)
grammars involving deep linguistic analysis can
be efficiently used for NL interfaces, and how
a modularized design of the linguistic resources
allows us to deal with the peculiarities of sub-
languages, while at the same time keeping the
resources as general as possible,

1 Introduction

The MELISSA project (cf. [7] ! provides technology,
tools, and linguistic resources for Spanish, English
and German that will allow software developers to
integrate NL interfaces (supporting spoken and writ-
ten input) into their products. In that, MELISSA
focusses on NL understanding.

The architecture of a MELISSA runtime system is
set up to construct, primarily, meaning representa-
tions of NL utterances which users make in interact-
ing with a given software application. In the context
of one of the applications serving as the validation
base of MELISSA and assuming Spanish users?, typ-

1The MELISSA project is funded by the Commission of the
EU (DG I1I - 6) under ESPRIT 22252. Project partners are
Software AG Espana {(SAGE), Spain (coordinator); Anite Sys-
tems {Anite), Luxembourg {partner); Institut fiir Angewandte
Informationsforschung (AT}, Saarbriicken, Germany (partner);
SEMA Group (SEMA), France/Spain {partner); Organizacion
Nacional de Ciegos de Espana {ONCE), Spain (user); NET-
Cologne - Gesellschaft fiir Telekommunikation mbH, Koin,
Germany (user). http://vww.anite-systems.lu/melissa.

2ICAD, an administrative purchase and acquirement han-
dling system, eployed at ONCE, dealing with budget proposals
and providing information to help decision makers.

Linguistic Processing Modules in ALEP for Natural
Language Interfaces

Montserrat Marimon, Axel Theofilidis
IAI - Saarbriicken
{montse, axel}@iai.uni-sb.de

Thierry Declerck, Andrew Bredenkamp
DFKI - Saarbriicken
{declerck, andrewb}@dfki.de

ical instructions will be:

Propuestae 98/65 (Proposal 98/65)

Elaborar una propuesta de tipo compras generales
(Process a proposal of type ‘compras generales’)

Elaborar una propueste que tenga como referen-
cia VARIOS y cuyo importe sea de 25.000 plas
{Process a proposal which has reference 'VAR-
I0S’ and whose budget is 25.000 ptas)

The meaning representations obtained for such user
instructions are interpreted against the background of
an application knowledge model. Successful semantic
interpretation, in turn, triggers the appropriate ex-
ecutable function call. The particular modules inte-
grated in this process of natural language understand-
ing are the THM (Text Handling Module}, LPM (Lin-
guistic Processing Module), SAM (Semantic Analysis
Module), FGM (Function Generatior Module), AKR
(Application Knowledge Repository).

In this paper we concentrate on the linguistic pro-
cessing strategies and resources that are used in
MELISSA. The approach chosen involves deep lin-
guistic analysis of input expressions using unification-
based grammars. We will outline and discuss design
features of the underlying linguistic resources that re-
late to the major challenge of deploying unification-
based, deep linguistic analysis in the context of the
MELISSA project: to meet with the pecularities of
the sub-language of computer instructions by intro-
ducing robustness features, while at the same time
providing for accurate and efficient performance.

2 _LinguiStiC Platform

The core. of. the MELISSA LPM is7based on' the

Advanced La.nguage Engmeermg Plat.form (ALEP;
cf. [6]),. re-using e.g.
yser, parser and feature mterpreter In the second
place, ALEP is being used as the deveIOpment plat-
form by the la.nguage engineers in chaige of develop—
ing MELISSA linguistic resources.

A number of criteria motivates the cho:ce of ALEP;
ALEP provides a “lean” (based on term unification)

typed feature structure formalismthat has been used -
- in continuation of the grammar development effort
of the' LS-GRAM project (cf. [8]) - to-design lexi--

cons and grammars within the peneral paradigm of
HPSG (cf. [4] {5]). Furthermore, ALEP provides an
efficient head scheme based parser, rule indexation
mechanisms and, above all, a number of devices that
support a modular and, thus distributed design of
linguistic resources. An interface format enables in-
tegration of SGML encoded data structures obtained
from text processing modules (THM) with grammars
supporting deep. linguistic analysis. The ALEP re-
finement facility allows for enriching linguistic struc-
tures, as obtained from the parsing operation, with
additional information; it is thus possible to shift the
computational burden of accounting for a variety of
grammatical constra.mts, grammar relaxations, and
ambiguities (lexical, syntactic and semantic) from the
computationally expensive parsing operation to the
stage of refinement (which will be described below).

All these- ALEP features have contributed to an im-
plementation of the NL understanding capabilities of
MELISSA with efficient run-time performance with-
out sacrificing declara.tlwty or generality of linguistic
resources. ,

3 The Text Handling Module

The Text Handling Module (THM) is conceived to
preparé the textual® input for higher level process-
ing. It is designed as a set of modular components
dealing with both language specific and application
specific phenomena®. The latter are derived from the
application specific corpus analysis. The THM is pa-
rameterizable for all the sub-modules defined.

INote that speech input is first converted to written text.

4THM has been specifically designed for the ICAD applica-
tion (cf. footnote 2) and KEWIS, a citizen service and infor-
mation system with the requirement of multilinguality.

its morphographemm anal-. -

analysis in ALEP. -

3.1 Functionality

The first task of THM is to delimit the basic texty
units, and to organize the input into a (rather fig]
tree structure. - Tagging of textual units is done
means of SGML tags, which is integrated by me
of a rule-based interface to the high-level ling

The “top-level” unit of representation is the par
graph, marked with a <P> ... </P> tag pair. Be)
this, the input is organized mto sentences (<S>
</S>). Potential errors in sentence splitting intros
duced by abbreviations are as far as possible a.vo:dd_
since known abbreviations are checked in language’
dependent abbreviations databases. Language spee
cific modules are also activated for dealing with punes
tuation marks. :

Fach sentence is, in turn, divided into word tag:
(<W> ... </W>). Within those tags, the words 8
and the recognized language or application specific
phenomena are classified by means of the “TYPE"
feature. Spemal constructs such as fixed expressions,
(dates, proper names, numbers, multiple word unit,
etc.) and application specific constructs-(codes or
other items from an application specific ontology)
recognised, marked up with an appropriate TYPE 3
value and parsed to produce a normalized value (e.g. 3§
an ISO representation of dates, etc.). For instance, 3
consider how the following is marked up:

Propuesta tipo compras generales del 28 de ebril
de 1999

<P>
<5
<W TYPE="WORD" ORIG="propuesta"
CONV="propuesta"...>propuesta</W>
<W TYPE="PROPTYPE" DRIG="tipo compras gecerales"
CONV="0801"...>tipo compras generale</W>
<W TYPE="WORD" ORIG="de"
CONV="de"...>de</W>
<W TYPE="DATE" ORIG="el 28 de abxril de 19995" :
CONV="28/04/1999"...>el 28 da abril de 1999</W> 3
</S>
</P>

Note that string tipo compras generales has been
recognised as a proposal type based on application-
specific patterns. As it is a ‘W’ element, it will be
treated as atomic for the rest of the processing chain,
i.e. its internal structure is not inspected, as for the
(language-specific) date el 28 de abril de 1999, the
CONYV value (created according to the application
deﬁmtmns) will be passed on for use in the SAM mod-
ule.

The THM is also being used for “noise filtering”.
Sub-strings which have been identified as irrelevant

Eln the application specific corpus analysis are sup-
E-pressed. This holds, for instance, for politeness mark-
-ors such as as por favor (please).

3.2 Implementation

E The implementation of the THM is in the Perl pro-
. gramming language, ensuring a high level of porta-
E bllity across the operating systems on which the
E MELISSA system runs (Unix and NT). The THM
comes in two versions, a stand-alone version and a
& porver-client implementation. THM can be also used
§ outside the context of MELISSA, being configurable
f: with respect to its output, the default being an SGML
k. type representation.

The phenomena under consideration are identified

;__ either by means of regular expressions or combina-
tlons thereof, or by means of fast lookup in tables.
E These resources are largely determined as a result

of investigation of user needs (i.e. application spe-

~ clfic corpora). In a number of specific areas, static
E resources in the form of data files are used. These
. Include, for instance, abbreviations and codes, which
- are developer- and user-definable by means of an con-

figuration interface. The format of these external
resources is application dependent and include na-
tive Perl data structures, “foreign formats” as well as
plain text files.

In the THM of MELISSA we have thus achieved a
high degree of modularity, particularly with respect
to the languages and applications under considera-
tion. The experience acquired suggests that adap-
tation to other languages and applications would be
relatively straightforward. The modularity achieved
so far also provided support for the related proceesing
steps in the architecture of MELISSA.

The THM component provides a high-level of ro-
bustness, efficiency and openness for the high-level
processing, in that the LPM grammars described be-
low, are reasonably static with respect to changing
requirements of the application, since application-
gpecific terms are represented with abstract lexical
eniries for subsequent processing.

4 The Linguistic
Module

Acceptance of an NLI (by the end-user) requires that
the underlying NL processing capabilities cope with
as broad a range of natural ways of accessing applica-
tion functionality by language as possible. It further
requires that response times do not exceed those of
standard (command line or graphical) user interfaces.

Processing

iFrom the point of view of grammar design, “nat-
ural ways of accessing application functionality” in-
clude sub-sentential input units (Propuesta 87/78),
head-elliptical input units (ehore las gue ...), func-
tionally incomplete input units or constituents (e.g.
lacking determiners (tramitar propuesta 98/89)), and
input units exhibiting non-standard constituent. or-
dering. Though the scope of the MELISSA project
puts limits on the provision of robustness features,
the coverage of the current linguistic resources goes
far beyond “core” grammatical phenomena, to the
above-mentioned types of construct. In that, gener-
ality of the core components of the linguistic resources
is maintained on the basis of a strictly modular de-
sign. These components may thus be re-used across
different applications, by supplementing them with
add-on modules according to the demands of a given
application and its specific user base.

4.1 Grammar Design

The process of désigning and implementing a gram-
mar in ALEP is divided into two steps: the type sys-
tem declaration and the definition of lexical entries
and grammar rules.

4.1.1 The Lexicon

The ALEP formalism supports a lexicalist treatment
of linguistic phenomena such as subcategorization,
control relations, subject-verb agreement, tradition-
ally dealt with by means of specialised structure rules.
This results in an increase in redundancy and com-
plexity of lexical entries. For this reason, it is very
important the way this information is encoded.

The ALEP formalism does not support multiple
inheritance. However, a rich set of macros can be de-
fined so that lexical information common to a subset
of entries can be moved out of lexical entries into sep-
arate macro definitions. This ensures coherence of the
linguistic code and ease of maintenance and updating
of the lexical resources. The Spanish lexical resources
include 90 macros encoding lexical templates for open
class categories.

These macros may be defined in such a specific and
exhaustive way that they account for a whole class of
lexical entries or in a modular way so that macros
can be nested. We followed the latter strategy, which
allowed the grammar developers to adapt the generic
linguistic resources to the application requirements
in a straightforward way. Consider for instance re-
laxing functional completeness or subject-verb agree-
ment, in this case, we only need to modify the modu-
lar macros encoding this information, lexical macros

that use these macros are automatlca.‘lly updated on
compllatlon :

4.1.2 . The Structure Rules -

Grammar rules are reduced to a smaJl set of binary-
bra.nchmg phrase structure rules .

. Structural macros have beén defined to implement

the genera.l prmc:ples governing 1 the. ID schemata, di-
versﬂicatlon of rules for the. dJﬂ'erent _categories al-
lowed grammar deve10pers to modu]a.nze the lmg-
ware, and by means of a system .of rule sets, for an
easy activation/ deactivation of those rules which are
appropriate for. a given application. On the other
hand, occasionally diversification of rules favoured
the extension of a generic treatment of a given phe-
nomenon to cope with its specific requirements. So
for example, the rule dealing with. adverbial modi-
fiers was left aside in the ICAD application, whereas
those dealing with clitics have been extended to cover
“laismo” / “leismo”.

In addition, special macros have been deﬁned to

cover those prototypical constructions of such a data -

handling application. "An’ example of these is the
macro defined to deal with other inputs than finite
clauses, such as infinitival VPs (e.g., Tramitar prop-
uestas (Send proposals) or NPs (e.g., Propueste 98/45
{Proposal 98/45). Again, multiplication of these spe-
cial rules favoured their extension to other types of
input expressions which, even though they may not
be considered as prototypical structures, provide the
LPM with robustness, something to bea.r in mind
when developmg NL interfaces.

4.2 Efficiency

ALEP grammars were being used for the first time
in an industrial context. Therefore, a major require-
ment in the LPM was efficiency. To fulfil this re-
quirement, grammar developers have deployed expen-
sive ALEP facilities to control the process of analysis
and to reduce spurious ambiguity, namely the speci-
fier features, head selection declamtmns, and the re-
finement. S

e Specifier features. The type system on the ba-
sis of which linguistic knowledge is defined can
also be used to encode non-linguistic informa-
tion, that may be used to activate only those

" lexdcal entries and structure rules appropriate for
the different a.na.lyms steps, thus avoiding spuri-
ous ambiguity at analysis steps in which they
cannot be resolved.

e Head selection declaration. ALEP provides
a head schema parser; i.e., structure rules are

accessed by a separate head:daughter key, whioh
- grammar developers can spec:fy in-a special typ
of declaration. Specifying functional categorie$
(e.g., determiners, conjunctions) as being parsing’
heads rather than substantial categories, elg;nlli
icantly improves the performa.nce of the grams7§
. mar; and allows the grammar to-be extended:
w1th no significant effect on performa.nce

) Reﬂnement Spunous a.mblg'ulty has been aue-_u
- ceasfully reduced by the use of the ALEP facll
ity to distinguish. between two different . phasey
.. of the analysis process: “‘parsing’, which builds
up the tree, and reﬁnement’ -which adds mfor-,,
mation to the tree. So, for msta.nce, a unique;
lexical entry for modlfymg prepositions has been
encoded in the ‘parsing’ lexicon,, leaving the se-,”
mantic content unspecified or underspecified, dif-; 3
ferent readings are encoded in different ‘refine-: 3
ment’ entries. This facility has also been used. 3
in phrase structure rule definitions, where for
__ instance the dmtmctxon between different types,
of unbounded dependencles is postponed to the;__'if
refinement phase. Consequently, relaxation on. 3
accents for . mterroga.twe pronouns, determmers 3
and, adverbs did not interfere in the processmg
performance. '

To illustrate performance, in a testsmte con-
taining 808 sentences with an average of 7.341
words/sentence, the analysis time (including both -
THM and LPM) is 0.83 seconds/word5 o '

5 Meaning | Representatioln

During the refinement stage of linguistic processing,
compositional meaning representations are obtained
by recursive embedding of semantic feature struc-
tures corresponding to the constituents of the pro-
cessed utterance. In that, predications, argument re- :
lations, and meodifier relations are encoded as indi- |
vidual semantic facts, marked by a unique wrapper
data type, so called 'sf-terms’ (SFs). Links between
semantic facts are established through sharing of vari-
ables which mark eventive or non-eventive discourse
referents. ‘This is illustrated by the followmg exam-

ple:

Elgborar nueva propuesta (Elaborate new pro-
posal)

t_sem:{
index => st(:ndex(avent E)),
pred => sf(pred{elaborate,E,A,B)),

5Machine: ‘Sun Ultrasparc -

arg? => t_sem:{

arg => sf(rel(axg2,E,B)),

index => sf{index(nevent,B)),

pred => sif(pred(proposal,B)),

mods => [t_sem:{
mod => sf(rel(quality,B,M)),
index => sf(index(nevent,M)),
pred => sf{pred(new ,M,B))},
argl => sf(rel(argl,M,B)) }}

Borrowing from [1}, a rather small set of argument,
relation labels is assumed, with external arguments
and least oblique arguments being assigned arg! and
arg? respectively. A number of semantically inter-
preted argument relation labels, such as arg_place or
org_goal, is reserved for arguments the meaning of
which resembles that of adjuncts. As for adjuncts,
a standard set of modifier relations is used including
e.g. place, goal, origin, time, beneficiary or instru-
ment.

Beyond encoding predicate-argument structure
and modification, the MELISSA semantic model also
accounts for functional semantic information relating
to negation, determination, tense and aspect. The
SF-encoding scheme carries over to these facets of se-
mantic information, such that a negated predication
as in not approved, for instance, would yield the fol-
lowing representation:

t_sem:{
index => sf(index(event,E)),
pol => sf(polarity(’0’,E)),
pred => sf(pred(approve,E,A,B)} }

Based on the SF-encoding scheme, a flat list of all
SFs representing the core linguistic meaning of an in-
put expression is extracted from the output structures
of the LPM and passed on to the Semantic Analysis
Module (SAM) which is responsible for mapping the
semantic graph constituted by this list of SFs onto the
correponding representation of an application func-
tion.

6 Conclusions and Prospects

In this paper, we have seen how generic (large scale)
grammars involving deep linguistic analysis can be
made efficient for use in NL interfaces, and how a
modularized design of the linguistic resources allows
us to easily adapt them to application specific require-
ments.

The basic set up of the linguistic modules (THM,
LPM), as well as the openness of the ALEP platform,
support the integration of more powerful low-level
processing tools with the deep linguistic analysis. In
particular, we envisage externalising morphological

resources (lexica), and integrating part of speech tag-
gers and shallow parsers. By these means, it will be
possible to further reduce the non-determinism of the
high-level processing and to make the parsing predic-
tions more accurate. The feasibility of the integration
of such tools has already been proven on a small scale
basis (cf. [2] [3]). Investigations as to how to adapt
the LPM to optimize interaction with such low-level
tools are currently under way. Areas of interest are,
for example, a treatment using default lexical tem-
plates to obtain useful meaning representations with-
out the need for explicit lexical entries.

References

[1] Badia, T. and Colominas, C. Predicate-
Argument Structure, in Linguistic Specifica-

tions for Typed Feature Formalism, Studies
in MT and NLP, volume 10

[2] Declerck, T. and Mass, D. The integration
of Part-of-Speech Tagger into the ALEP
Platform. In: Proceedings of the 3ré¢ ALEP
User Group Workshop. Saarbriicken 1997.

(3] Fouvry, F. and Bredenkamp, A. Par-
tial parsing in ALEP. In: Proceedings
of the 3rd ALEP User Group Workshop.
Saarbriicken 1997.

[4] Pollard, C. and Sag, 1. (1987) Information-
Based Syntaz and Semantics, CSLI Lecture
Notes Series, Chicago, Chicago Univerisity
Press.

[5] Pollard, C. and Sag, I. (1992) Head Driven
Phrase Structure Grammar, Chicago Uni-
versity Press.

(6] Simpkins, N.K. (1994) Linguistic Develop-
ment and Processing, ALEP-2 User Guide,
CEC, Luxembourg

{7) Bredenkamp, A., Declerck, T., Groe-
nendijk, M., Phelan, P., Rieder, S.,
Schmidt, P., Schulz, H., and Theofilidis, A.,
Natural Language Access to Software Appli-
cations. In: Proceedings of COLING-ACL,
Montreal 1998.

[8] Schmidt, P., Theofilidis, A., Rieder, S. De-
clerck, T Lean Formalism, Linguistic The-
ory, and Applicalions. Grammar Develop-
ment in ALEP. In: Proceedings of the 16th
COLING, Copenhagen 1996.

