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Resumen

This paper describes the main characteristics of the Lexzical Objects Theory: aframework that com-
prehends the formal, linguistic and computational aspects involved in the study of unification and features
structuresin Computational Linguistics. From a functional point of view, our proposal is based on alayered
architecture which distinguish between three main levels. Specification level introducesnew expressivetools:
optionality and special values (null, complete and incomplete), and definesthe inference rules that obtain the
canonical form of any lexical object. Representation level permits three models. InRange, DataDefined and
EndL ess, and concentrateson computational techniquesaimed to improve the management of lexical objects.
Finally, Unification Level definesformally Low Level Logic-based, Weak and Constructive Unification strate-
gies.

1 Introduction

The study of the formal properties of feature structures (FS henceforward) and unification
has focused the attention of alot of research worksin Computational Linguistics (CL). These
works can be organized in four main streams.

Thefirst line has concentrated on the study of FSasamodel for the description of linguis-
tic phenomena. Inthis context, researchers have analyzed their expressive power and have
proposed different extensionsto the basic model: templatesand lexical rules (Shieber, 1984),
negation and digunction (Karttunen, 1984), correference and non-local values (Kasper and
Rounds, 1986), etc.

The second line is related to the use of typification strategies as part of FS-based for-
malisms, obtaining the so-called typed (or sorted) feature structures (Carpenter, 1992) and
order-sorted unification (Meseguer et al., 1990).

Third, some authors have studied the problems associated with the representation of fea-
ture structures:. denotational semantics of the model (Shieber, 1984; Pereira and Shieber,
1984), computationally efficient data structures (Karttunen and Kay, 1985; Pereira, 1985),
techniques used for the storage and retrieval of very large FS—-based knowledge bases (Que-
sada and Amores, 1995), and so on.



Finally, it is possible to delimitate a fourth stream of work concentrated on the design and
implementation of efficient unification algorithms. Dueto the critical role that unification
playsin CL, thisdivisionisfull of interesting and very famous proposal: binary trees (Kart-
tunen and Kay, 1985), structure sharing (Pereira, 1985), non—destructive unification (Wrob-
lewski, 1987), strategic lazy incrementa unification (Kogure, 1990) or non—redundant lazy
copy (Emele, 1991).

2 Lexical Objects Theory

Thiswork presents atheoretical framework that takes into account the main result of the four
research streamsindicated. The model presented here has specially concentrated its attention
on the logico-mathematical analysis of theformal propertiesof unification and FS. In thisad-
dress, the main precedents we have considered are the works by Robert T. Kasper & William
C. Rounds (Kasper and Rounds, 1986; Rounds and Kasper, 1986; Rounds, 1997), Stuart M.
Shieber (Shieber, 1986) and Bob Carpenter (Carpenter, 1992).

The main contribution of our model, which justify afull Lexzical Objects Theory, iSto
offer a uniform and completely integrated and formalized framework that accounts al the
stages of the cycle of life of FS. Previousworks have usually concentrated on partial aspects,
and thisis a source of problems:

¢ Inconsistency between the formal model that defines the properties of FS and their de-
scriptions (Kasper and Rounds, 1986);

e Almost any study about FS incorporates a well-founded analysis of the problems gen-
erated during their representation. That isto say, the representation level isn’t analysed,
or, inthe best casg, it isconsidered as a direct trandation of the logical model.

e Thelack of adetailed analysisof therepresentation of FSanditslink with thealgorithms
of unification increases the computational costs of the latter.

These problemsarise asaconsequence of very restrictiveor partial formalization schemes.
Our proposal aimsto present a methodol ogically interdisciplinar framework that includes si-
multaneously computational, linguistic and formal requirements.

From a functional point of view, the study of lexical objects (LO henceforth) is divided
in three main levels: Specification, Representation and Unification. In the next sections we
describe their main characteristics.



3 Specification Level

3.1 New Expressive Tools: Optionality and Special Values

From the perspective of itsinformational domain, aunification—based grammeatical formalism
defines the notion of lexical object asapartial function A from a set of attributes ¥ to a set of
vauesY: A : Xt ... — YT where Xt = ., ¥U

Thisbasic model has been enriched using different extensions, such asnegation and disyunc-
tion of single and complex vaues. Our formalism for the specificacion of LO includes all
these possibilities and also incorporates the following:

1. Optionality. 7. Thislet usto indicate a default value for an attribute. Thereisan inter-
esting linguistic motivation for this extension. With the definition of optionality we will
incorporate a weak unification mechanism, that is, LO marked as optiona will never
fail when unifying.!

(gen:7masc) U (num:sing) = (gen:?masc,num:sing)

(gen:7masc) U (gen:fem) = (gen:fem)

2. Lists. The formalismincludeslists as a basic data type.

3. Special Values.

(@) Null Values: # and (#). These let usto assign no valueto an attribute. In conjunc-
tion with the multiple inheritance mechanism, these values allow usto delete (asan
exception) an inherited value. Null values unify with any other:

(gen:#) U (gen:fem) = (gen:fem)
(agr:(#)) U (agr:(num:sing)) = (agr:(num:sing))

(b) Incomplete Values: _and (_). Thesevauesindicatethat an attribute hasno value,
but it requires some value to be correct. Of course, these values unify with any
other. Also, the Unification Level containsafunction ableto determineasan error
of unification a LO in which there remain incomplete values:

(subj:(_)) U (subj:(head:Mary)) = (subj: (head:Mary)) = vy
(subj:(_)) U (obj:(head:Mary)) = (subj:(_),obj: (head:Mary)) = 1),
IncompleteValuesAnalysis(iy) = Success

IncompleteValuesAnalysis(iyq) = FError
(c) Complete Values. + and (+). Itsunification with any other value will awaysfail.

(head:+) U (head:Mary) = Error
(subj:(+)) U (subj:(head:Mary)) = Error

1 U represents the unification operation.



3.2

1.

3.2.1

Definition of Lexical Object

Atom: Any identifier? isaLO. Special values #, _ and + are also LO, and specificaly
atoms.

List: If AisalLO, then[Al]isasoalO.

Attribute-Value Pair: If f isanidentifier and A isaLO, then f : AisaLO. Specia
values (#), (_) and (+) areaso LO, and specifically pairs.

Negation: If AisaLO, then —A isalLO.
Optionality: If AisalLO, then?A isalLO.

Conjunction: If A and Q2 aretwo LO, then A, Q2 isaLO. Wewill use aso the symbol A
to represent conjunctions.

Digunction: If A and 2 aretwo LO, then A; 2 isaLO. We will use a'so the symbol Vv
to represent digunctions.

Semantic Types and Constraints

Rules 1 to 3 introduce different semantic types of LO:

1. Atoms (S E M aronr). Wewill refer to them with lower case letters: «, b, . . .

2. Lists (SEML[ST): [a], [b], ce

3. Attribute-Value Pair (SEMparr). We will use lower case Greek letters. «, 3,... to

refer to LO of typepair. The notation «s_. o indicatesthat « isapair, wherethe attribute
is f and thevalueis A.

Over the previous definition of LO we will impose the following semantic constraints:
lists will be generated only from S EM 4705, Objects, and both objects in a conjunction or
digunction will have the same semantic type.

We will refer to any special atomic value by means of « s and to any special pair value by
as. Capital Greek letters: A, Q2. ..., will refer to LO of any type.

3.2.2 Parentheses and Labels.

The formalism includes the use of parentheses as a neutral operator that may improve the
legibility of LO and change the precedence® and order of application® of operators:

2 An identifier is a sequence of alphanumeric symbols. When needed, we permit the use of non alphanumeric symbols
using standard techniques: quotes ("), inverted commas (’) and escape sequences.

3By default, from right to left.

4By default negation and optionality, lists, pairs, disjunction, conjunction.



e Parenthesis: If AisalLO, then(A)isaLO too.

Rule 3 permits the creation of a LO from an attribute f and aLO A. The specification
language permits the addition of a label to the attribute. The label is an identifier between
two ~ symbols:

feature~label™ : A

Labels allow for the introduction of correference constraints. Besides, labels allow for
the extension of the basic scheme of LO specification with specia constraints introduced by
certain grammatical formalismsand theories.

3.3 Inference Rules

3.3.1 Stage 1: Negation and Optionality.

At the end of this stage, the negation and optionality operators will be applied on atoms ex-
clusively, except optionality that may be applied over negation.

—# F  # (S.1.1) ?ar  F ar (S.1.13)

—+ (S.1.2) tar F  ar (S.1.14)

— o+ (S.1.3) a] F  [74] (S.1.15)

- @ (S.1.4) Tajan F apooa (S.1.16)

—(+) Q) (S.1.5) A F O 7A (S.1.17)

—() B (S.1.6) HAANQ) o (TA)A(7Q2)S.1.18)

—la] F  [—q] (S.1.7) AVEO) F o (7A) VvV (7Q)S.1.19)
—aja B oaj_a (S.1.8)
-—A +F A (S.1.9)
—IA F 7-A (S.1.10)
—(AANQ) F  (=A)V(=Op.1.11)
—(AVQ) F  (=A)A(=OPp.1.12)

3.3.2 Stage 2: Disjunctive Normal Form.

At this stage we aim to get the digunctive normal form (DNF) of SEMp4;r LO.
It isworth to note that the specification level doesn’t fulfil the commutative property (due
to the inheritance mechanism). Thisis the motivation of formula (S.2.3).



ap(ove)y T Bros Vys—¢ (5.2.1)
(aVB)Ay F (aAy)V(BAY) (5.2.2)
aN(pVy) F (aAB)V(aA7y) (5.2.3)

3.3.3 Stage 3: Fusion, Simplification and Smoothing.

The goal of this stage is to merge the multiple definitions of the same attribute. To simplify
this operation and obtain a very-well defined logical representation this stage includes a set
of smoothing (simplification) rules.®

Qfany  F ajp (S.3.1)

[a] ATO] F [B] (S5.3.2)

[a] VO] F  [aVi (S.3.3)

as AN F A (S.3.4)
aAN(BsANA) F A (5.3.5)
alhfBs F  Bs (S.3.6)
aj—aNfBr—a b Y—(ang (5.3.7)
afa N (B AN®) b ang) A D (S5.3.8)
(aNB)ANA F  an(fAA) (5.3.9)
(aVB)VA F  aV(fVA) (5.3.10)
ajaNfPyma b BygNasa [1ff g << £] (S.3.11)
aj AN (Byma AN®) F Bma A(aj_a AN®) [iff g << £] (S.3.12)

4 Representation Level

This level includes a typification layer, which main origina contribution is the distinction
between three main domain typification models:

1. InRange. The possible values of an attribute are previously specified.

2. DataDefined. The possible values of an attribute are also a very-well defined set, but
the user doesn’'t define that set using a pre-declaration like with the InRange model. In
this case, the system has to obtain the set of values from the LOs where the attribute
appears.

5By g << f we mean that attribute g is alphabetically smaller than attribute f.




3. EndLess. From atheoretical point of view, the domain of values is endless, because
always it is possible to incorporate new values.

From an operational perspective, DataDefined objects may be thought as an user-friendly
technique based on a post-typification mechanism. At theend of theanalysisprocess, DataDe-
fined objects will be considered as InRange.

As aresult of the typification layer, the system will know for each attribute its semantic
type (Atom, List or Pair) and its typification model (InRange or EndL ess).

Next, the Representation Level concentrated on the relations between the logical descrip-
tion obtained from the previous level (Specification) and their use by the unification algo-
rithmsin the next level (Unification).

4.1 Representation of InRange Atomic Lexical Objects

Let us consider that the domain of an InRange Atomic LO (for instance, «) has n different
values:

D, ={vy,vq,...,0,}

We can represent each value of thisdomain as a sequence of n bits:

vy =100...0
vy =010...0
v, =000...1

The negation will be represented as the one's complement:
—vy =011...1
The digunction of two valuesistheir bitwise inclusive OR:
vy Vg =110...0
To store optionality we will use an additiona bit:

vy =100...0:0
v =100...0:1
?—v;=011...1:1

InRange specia atomic LO will be stored as ¢:

#=111...1:0=FULL:0
~=000...0:1=NULL:1
+=2000...0:0=NULL:0

5We will use NULL or FULL to indicate that a field has 0 or 1, respectively, in all its bits.




4.2 Representation of EndLess Atomic Lexical Objects

Our goal isto store only once every different value. Thisway, two objectsarein fact the same
if they have been stored in the same memory address.

Therefore, the representation of an object of this type will require a memory address (a
pointer”) and two additional bits; the flags of optionality and negation. To store disjunction,
we will use a pointer to the same data structure, obtaining arecursive list of elements.

Let be the domain of an EndLess Atomic LO (for instance, ¢), the following set:

l)6 = {wl,wg,...}

We will use the next representation strategies ®:

Wy :W:Ooptn:Onegt :
Twy = Wi | Lopen t Onege :
—wy =W | Ooptn * Lyeget :
T —wy = |wj :1Opm:1mgt:
w1Vw2::0:0: :

EndLess specia atomic LO will be stored as:

— | wj |:

#=|FULL|:0:0: NULL
_=|NULL|:1:0:NULL
+=|NULL|:0:0:|NULL

4.3 Representation of Lists

Lists will be represented as strings of the corresponding types of atoms.

4.4 Representation of Pairs

To simplify the management of this kind of structures, the Representation and Unification
Levelsconsider al the pairsasbeing of EndLesstype. Also, each component of the DNF will
be stored separately. The representation schemein this case isbased on three data structures:

1. PairRoot. This structure containsthe following fields:

(@) roottype. Normal (pairlink) or derreferenced (derreference).
(b) derreference. A PairRoot pointer.
(©) pairlink. A PairLink pointer.

"FULL and NULL are not allowed to be correct memory positions.
8 represents the memory address where w1 has been stored.



(d) postcopy. Aninteger flag.
2. PairLink.

(@ pair. A PairVal pointer.
(b) next. A PairLink pointer.

3. PawrVal.

(8) attribute.
(b) strsharing. Aninteger flag: structure sharing.
(¢) valtype. Controlsthe type of information pointed by value.

(d) value. A pointer toaLO; it may be an Atom (InRange or EndLess), aList or aPair
(PairRoot).

We will use the following graphicsfor their representation:

Pair Root PairLink PairVval
derreference attribute
= pair
\j/ value
pairlink next
Fig. 1.

5 Unification Level

5.1 Unification of Atoms (A): Low-Level Logic Unification and Weak Uni-
fication

5.1.1 Unification of InRange Atomic (IA) Lexical Objects.

The next three unification rules control this case distinguishing between double, single and
no optionality.”

a:1l Upa b:1 F  (a B-OR b):1 (U.1)

a:0 if (p == 0),
:p U b:(1— F 2
@ P =ia ( P) { b:0 otherwise. (U-2)
a:0 Ursa b:0 F  (a B-AND b):0 (U.3)

?B-OR and B-AND are the bitwise OR and AND operations, respectively. In the next sections, m, n and p are
binary variables.



5.1.2 Unification of EndLess Atomic (EA) Lexical Objects.

In this case, we have to control the flags of negation and optionality, as well as digunctions:

. . a*:0:m if (a* == b%),
@”:0:m Upy 07:0:m  F {NULL:O:O otherwise.
a*:0:0 if (m == 0) and (a* '= b
a*:0:m Uga 0°:0:(1—m) F b*:0:0 if (m == 1) and (¢* '= @).))
NULL :0:0 otherwise.
a*:p:m if (p == 0)
*ip (1 —=9p): +
a@>ipim Uga b7:(1=p)in {b*:(l—p):n otherwise.
) (a* == b*) and
*a 1 f
a*:1:m Ugy ":1:n “ m * (m == n), (U.7)
a*:1:mVvb:1:n otherwise.
(AVQ) Uga & F V(A Uga &)V (Q Ugsa 9)) (U.8)
A Uga (QVP) F V(A Uga Q) V(A Ugsa D)) (U.9)

Theoperator V eliminates duplied componentsin conjunctionsand digunctiosof EndLess
Atomic objects and duplied components in conjunctions of InRange Atomic objects:

VIAVa :p:mVQVa :p:mVW¥) F AVa:p:mvQVvVy (U.10)
VIANa :p:mAQAa:p:mA¥) F AAd:p:mAQAY  (U.11)
VIANa:pAQANa:pANT) F AANa:pAQAT (U.12)

5.2 Unification of Lists (L)

List Unification is defined using the previous definitions of Atomic Unification join with the
next rules:

[A] Uy [Q F  [A Us Q] (U.13)
anNb Us ¢ F V(e Usg o)A (b Us ©)) (U.14)
a Us bAe F V(e Ug b)A(a Us ¢)) (U.15)

5.3 Unification of Pairs (P): Constructive Unification

The formal properties of Pair Unification are summarized in the next rule:



Qy A A (\I}* Lp (6g_>Q A (I)*)) if £ << g,
(ayma ANUT) Up (fymo AOT) By—a A ((ajoa ANUF) Up &%)  if g K.16)
7f—>(A u Q) A (\I/* |_|p (I)*) if £ == g.

where U* and ®* may be normal or empty pairs objects. If U* isempty (¥* = 0), then
a AU = a. The empty set is aneutral element for unification:

AUp 0 F A (U.17)
O up A A (U.18)

From a computational perspective we introduce Constructive Unification. This algorithm
mixesin anovel way different well-known strategies:

e Structure-sharing.

¢ Reversible Unification. The agorithm includes two working models: reversible unifi-
cation with disunification and non-reversible unification with post-copy (withinitsturn
avoids pre-, over- and redundant copying).

e Strategic Unification. The algorithm uses ordered LO asinput, and by the manipulation
of the PairLink datastructuresisableto obtain aordered LO too. If the ordering criteria
isn’t the alphabetic order of attributes, but the descendent probability of unification fail
previoudly obtained in atraining process, we will easily obtain a strategic agorithm.

e Typed Unification. In any case, the algorithm eliminates the process of searching at-
tributes, a expensivetask both from the computational and the complexity perspectives.

Asasingleilustration, Fig. 2 containsthe representation of theLO F'1 and 2. Dark lines
in thisfigure represent the modifications introduced by the unification agorithm.

F1 = (a:p,c:q,d:r,e:s)
F2 = (a:p,b:s,c:q)
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Fig. 2.: Constructive Unification of F'1 and F'2
As part of the unification algorithm we will have obtained alist of the
<data-structure, field, old-value>
changed (disunification information), that for Fig. 2is
{<10,derreference,NULL>,<2,next,4>,<15,next ,NULL>}
Now we can select between:

1. Post-copy the unified object. In this case, we have to copy only the PairRoot (1) and
PairLink (2, 13, 15, 6 and 8) structures, marking the ParVal (3, 14, 16, 7 and 9) as
structure-shared. Once post-copied, wewill apply the disunification algorithm obtaining
the input structures.

2. Store the disunification information in the PairRoot structure and continue. Later, we
can apply or not the disunification algorithm.

When post-copying structures, we will usethe postcopy mark to avoid redundant copying.
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