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Abstract
This paper presents a new parsing algorithm for unrestricted context-

free grammars.

Basically, it may be described as a bidirectional

bottom-up parser that is driven by an event generation strategy and
is based on a sophisticated Syntactic Gonstraint Propagation (SCP)
technique which uses strong top-down predictions. First, we motivate
the new algorithm by discussing the notion of overparsing. Next, we
present the formal kernel of the algorithm (based on the relations of

partial derivability and adjacency)

and a detailed description of the

algorithm. Finally, the paper presents some important results from
three perspectives: linguistic, computational and formal.

1 Introduction

During the last years, the research
in the field of context-free parsing
has mostly focused its attention on
the problems of efficiency (Tomita,
1991; Rayner & Carter, 1996; Pereira
& Wright, 1996; Amores & Que-
sada 1997; Quesada 1997b}, general
scope (Nederhof & Sarbo, 1993; Rek-
ers, 1992; Bunt & Tomita, 1996;
Visser, 1997), formal models (Kay,
1980; Sikkel & Nijholt, 1997; Quesa-
da 1997a) and integration with unifi-
cation (Carroll, 1993; Maxwell & Ka-
plan, 1993; Carpenter & Penn, 1996).

Language engineering and new ap-
plications of parsing, such as real-time
systems, multimodality or telecommmu-
nications, have brought efficiency to a
central position (Tomita, 1991; Bunt
& Tomita, 1996). This has motivated
new proposals as well as improve-
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ments of classical techniques: stochas-
tic methods (Magerman, 1995; Briscoe
& Carroll, 1995; Collins, 1996}, par-
alelism (Alblas et al, 1994}, ‘re-
ductionistic” techniques (Pereira &
Wright, 1996; Rayner & Carter, 1996),
improvements of tabular algorithms
(Nederhof & Sarbo, 1993; Bunt &
Tomita, 1996), etc.

The work described in this paper fol-
lows this line of research. We pro-
pose the Syntactic Constraint Prop-
agation (SCP) parsing algorithm: a
general, sound and very efficient algo-
rithm, whose main characteristics are
the following:

Scope: Any CFG, without any
modification.
Environment and in-

tegration: SCP defines two protocols
for its communication with the lexico-
morphological and unification levels.
The first one permits the manipula-
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tion of multi-expression words, multi—
word expressions and lexical ambigu-
ity. The second one allows both on-
line and off-line interfaces.

Formal kernel: Computational
complexity and real efficiency are con-
ditioned by overparsing (section 2).
SCP avoids overparsing by means of a
bidirectional bottom-up event—driven
strategy, along with a strong top—down
filtering mechanism based on the rela-
tions of partial derivability and adja-
cency (section 3).

Computational model: Formal
robustness and efficiency are the two
main goals of SCP, and, therefore, the
implementation plays a crucial role.
The computational layer of SCP in-
cludes several techniques: the CeD
framework (section 4), which allows
remote constraint propagation using
uniquely local controls; the Qmem
model for the compilation and repre-
sentation of CFG according to the for-
mal kernel; and the RBmem system, a
low-level memory management layer.

Performance: Experimental re-
sults ! show a performace of 10,000 to
20,000 words per second, with a com-
plexity O(nlogn), for common gram-
matical phenomena in natural lan-
guages, such as recursive construc-
tions, local and non-local dependen-
cies.

Robustness: Since the ontput of
SCP is a multi-virtual tree, in case
of non-grammatical inputs, SCP gen-
erates a map of the last state of the
parser as well as a full list of all the
partial analyses.

The following section describes the
notion of overparsing, which motivates
SCP. Section 3, then, presents its for-
mal kernel: partial derivability, adja-

1'With the implementation {in C) of SCP,
using a medium-size workstation.

cency and coverage. Next, section 4
describes the algorithm, its main func-
tions and data structures. Finally, sec-
tion 5 deals with some of the main
properties of SCP.

2 Overparsing

In Formal Language Theory a lan-
guage is a set, and in {classical} Set
Theory an element does or does not be-
long to a set. That is to say, a set (and
hence a language) is an unambiguous
structure. Thus, the notion of gram-
maticality corresponds to the relation
of membership over a language (set).

A grammar may be considered as
an intensive definition of a language.
But a grammar incorporates more in-
formation than a simple report of the
elements of the language: a grammar
defines a structure. The distance be-
tween gramipaticality and grammati-
cal structure defines grammatical am-
biguity.

A parser must be able to determine
the relation of grammaticality and to
obtain the grammatical structure, by
means of a set of operations: the pars-
ing structure. The distance between
the grammatical structure and the
parsing structure defines overparsing
(temporal ambiguity) (Quesada 1998).

Overparsing drastically decreases
computational and real efficiency. To
demonstrate this, let us consider the
following grammar (Grm):

(1:8-»N b) (2:85 >N ¢)
(3:N->N a) (4:N->a)
(5:H—>M M) (6:M->a)

and the strings of words with the for-
mat atbh. It is obvious that all input
strings of this kind are not ambigu-
ous with respect to Gpny,- Nevertheless,
parsing algorithms like Earley (1970),
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chart (Kay, 1980) or GLR (Tomita,
1991) overgenerate the M structures.
In contrast, SCP avoids overparsing.
Table 1 compares the performance of
SCP (n) with the performance (n%) of
Earley, chart and GLR, supposing all
the algorithms have the same efficiency
in the base case (length 1 : 0.0001 mil-
liseconds), which is true for the imple-
mentation of the SCP algorithm.

Table 1: Parsing complexity: Gnm

Length  SCP Earley chart GLR
n n n?

1 0.0001 0.0001

4 0.0004 0.0064

16 0.0016 0.4096

64 0.0064 26.2144

256 0.0256 1677.7200
(27 minutes)

1024 0.1024 107374.0000
(29 hours)

That is, for grammar Gpmp, with
strings of words of the kind a*b, pars-
ing algorithms like Earley, chart and
GLR generate an overparsing on the

order 73 — 7.

3 The Formal Kernel of
SCP

3.1 Bottom-Up Derivation

Given G =< G7,Gn,Gp,Ggr > where
we have distinguished their terminal
symbols Gr, non-terminal symbols
Gpn, vocabulary Gy = Gr U Gy, set
of productions Gp C Gy x Gy, and
roots Gg C Gy, we will define the
bottom-up derivation as follows. Let
be § € Gy and A, I, € G},. The di-
rect bottom-up derivation in G, — g,
is defined as:
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TAQ —g T (6 — A (1)

The bottom-up derivation 1 {/,
==~ will be defined as the reflex-
ive and transitive closure of the direct
bottom-up derivation:

T =g QiB3A),..., Ay € G}
Vigcicn)(Bi —6 Ain), M1 =T,
An =18

3.2 Partial Derivability and
Adjacency

Let take ¢, 8 € Gy and A € G}:
Root Symbols. R{a) il € Gr
Epsilon Symbols. E{a) if e =¢

a
String of Epsilon Symbols.

E(A) iff V& € A(E(9))

Left Partial Derivability. S is a
left partial derivation of a: a ~—7 fif
ar, A, € Gy such that (TeA =g
T'BQ). LPD(e) ={ € Gv : ¥
BYU{a}

Right Partial Derivability. £
is a right partial derivation of a:
a —: B3, A,Q € Gy such that
(TaA == QBA). RPD(e} = {B €
Gy :ar—! fYU{a}

Primary Adjacency. # is a pri-
mary adjacent of e: aff §if 36 € Gv
and r,Q,A € Gy such that (§ —
TaApQ) € Gp A E(A).

Left Adjacency. 8 is a left adja-
cent of a: a fif B iffdy € LPD(a)
and 3§ € RPD(p) such that (¢ { 7)-
LA(o) ={B € Gy : afi B).

Right Adjacency. § is a right ad-
jacent of a: « ft B iff 3y € RPD(e)
and 3§ € LPD(B) such that (v 1 4).
RA(a) ={B € Gy : a i} B}

Left—-Most Symbol. « is a left~
most symbol: LM (a) ifi 38 € Gg such
that (@ —7 9)

Right-Most Symbol.- o is a
right-most symbol: RM(a) iff 3§ €
Gr such that (a+—7 d)




3.3 Coverage Tables Table 2: Input to SCP

For each a € Gy:

LC1(a) = {(6 — @) €Gp} - lovurly eyncat  Dbp B

_.E.C?.(a) ={(d—2 o) eCGp:RE . can amx 1 2

GV} not neg 2 3

MC(a) = {(§ — Aof}) € Gp : gee ¥ 3 4

_ QA € G} that pron-rel 4 5

; RCla)={(§ — Aa)€Gp:AE that pron-dem 4 5

b G} that  detrrel 4 5

‘:l man n 5 6

*\ i: that pron-rel 6 7

f 4 The Algorithm SCP that pron-dem 6 7

gl that det-rel 6 7

i ;r} 4.1 The Lexical Interface: 11;:31; 1 t’c'ad" ? g

%,9 a{i Breaking Points the det 8 g

it SCP expects that the le/-xi/-co-mor/- docter 9_10
.

pho/-lo/-gi/-cal module breaks the in-
put string into a set of pieces marked
by means of breaking points. The in-
put to SCP will be then a set of 4-
tuples, containing the lexical imput,
the syntactic category and the inter-
val of breaking points (first and last
breaking points):

iyt

4.2 (CaD structures

SGP is divided in two main blocks: the 3
initialization phase and the parsing cy- ,
cle.
The initialization phase begins with
the creation of the CaeD structures.
GenerateCaD creates one
CaD structure for each breaking point.
An CeD structure contains the fields:

iy

L

e Y et A G Ly T
Py gy R
T =y

< lez_unit, syn_cat, fbp,lbp >

For instance, given the input sen-

tence: “Peler cannot see that man that
is the doctor™?, the lexical module may
divide the input in the following break-
ing points:

E]Petercannot seemt

0] generated, each row of input will gen-

man @thatis 8] the |9 doctor

Table 2 contains the result of the lex-
ical analysis. This model permits the
representation of multi-word expres-
sions (that is), multi-expression words
(cannot) and lexical ambiguity (¢hat)-
We will call this matrix input.

2Gupposing that the sentence is the out-
put of a speech recognizer and we don'’t have
punctuation marks.
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Lclosed, Relosed, Ropen and Lopen
(lists of events: LEvent); Rnodes and
Lnodes (lists of nodes: LNode).

4.3 Node structures

Once the CaD structures have been

erate a node associated to the corre-
sponding interval of CaD’s.

A Node structure stores the fol-
lowing information: GrSymb (gram-
matical symbol), Lex Unit (the lexical
unit associated to terminal nodes), Mvt
(multi-virtual tree associated to mon-
terminal nodes), Lcad and Read (links
to the CaDs that define the interval of
the node).




4,4 Ewvent structures

Each node will generate one event for
each entry of the coverage tables of
the grammatical symbol associated to
the node. Figure 1 shows the crite-
ria of connection between Event's and
CaD’.

Figure 1: Linking events to CaDs

Evants
zaD = 1:]
€ M
Ropen | Lapen ;:;;:><:;;:; Rapen| Lopen
Relased | Leloxed LC1 Relosed| Lelosed
I——-———-'
RNodes Lnoiu,.~‘- RiNodes| Lnodes
Hode

An Ewvent contains the following
fields: GrRule (rule), Ldot and Rdot
(dots in the right-hand side of the
rule), Llinks and Rlinks (links in
its left and right extreme}, Ltype and
Rtype (types of comnection to the
CaD’s) and Status (logical status).

4.5 Link structures

For each event, and in its two ex-
tremes, it is mecessary to amalyze the
possible links with other events in the
same CaD. There are 3 kinds of links

(figure 2).

Figure 2: Links inside a CaD
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The CheckLinks function will ana-
lyze the links in the left and right ex-
tremes of the event {using the informa-
tion obtained during the compilation
phase: left and right partial derivabil-
ity, and adjacency}, and according to
the result of this analisys, the function
will evaluate the Jogical status of the
event. -

4.6 Event’s Logical Status.

There are 4 logical states:

RUN (Running): Events closed in
both extremes and with links in both
extremes.

DER (Derivation): Events with at
least one open extreme, with both ex-
tremes linked and with at least ome
Partial Derivation link.

EPS (Epsilon): Events with at least
one open extreme, with both extremes
linked and with all the lioks of one
open extreme of the kind Epsilon.

DEL (Delete): The rest, that is,
events with no links in at least one of
the extremes.

To improve the efficiency it is pos-
sible to maintain four lists of events
(DERIVATION, RUN, DELETE and
EPSILON). To change the status of an
event implies to move the event from
one list to another, but this may be
done in constant time.

4.6.1 Step 6: Parsing Cycle.

functien SCPcyclel(cad)
cycle = 1
while (cycle)
cycle = 0
if (event = GetEpsilenEvent())
cycle = 1
EpailonExpansion(svest)
alse 17 (event = GotDeleteEvant(})
cycle = 1
DeleteEvant (avant)
#las if (event = GetRunEvent())
cycls = 1
AunEvent (event)
elge if (link = GatFusionLizk()}
cycla = 1




FusionLink(1ink)

The functions Get* return the first
element of the correspondent list and
change the head of the list to the fol-
lowing element, which are constant op-
erations.

Epsilon Expansion. This opera-
tion moves the left dot one position to
the left or the right dot one position to
the right, depending on the open ex-
treme marked as EPSILON.

Delete Event. To delete an event
implies to delete it and their links. For
each Jink deleted, the logical status of
the second event in the link will be
analized. So this mechanism permits
a remote constraint propagation using
uniquely local controls {inside a CaD).

Run Event. To run a closed—closed
event involves the application of a
grammar rule, incorporating a mnew
node. But if this node has been previ-
ously created between the same CaD
structures, we.can obtain a represen-
tation model based on subtree-sharing
and local ambiguity packing, associat-
ing the analysis correspondent to the
last one with the previously created
node. This way, a node will have a list
of Muvi structures, and this structure
is defined as a list of Node structures.
The result of this mechanism is a rep-
resentation based on virtual relations
between the skeleton of the parse for-
est and the nodes included in it. The
control of cyclic phenomena and the
on-line interface to unification are also
controlled during this phase.

Fusion Events. There will be dis-

tinguished 4 cases depending on
whether there are or not other links
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in the open extremes that will be fu-
sioned.

5 Formal, Compu-
tational and Linguistic
Properties

Trom the formal point of view, it
is important to highlight two prop-
erties. First, SCP is complete and
sound. Using a new framework for
the formalization of bottom—up pars-
ing techniques®, based on the no-
tions of w-equivalence, partition, cover,
locally—connected cover, lc derivation
and connected form, we have obtained
a proof of the theorems of complete-
ness and soundness for the SCP pars-
ing algorithm: for a given CFG G,
every grammatical form generated by
G is a SCP-analyzed form (complete-
ness) and viceversa (soundness). Sec-
ond, we have tested SCP with 17 natu-
ral and artificial language phenomena
described in the literature?, and for all
the phenomena SCP avoids overpars-
ing, behaving equally or better than
Earley, chart and GLR.

From the linguistic perspective, the
previous results mean that SCP can
parse any CFG without any modifica-
tion.

But perhaps it is at a computa-
tional (real efficiency) level of compar-
ison where SCP obtains its best rates.
The first experiment (Grec) uses re-
cursive constructions and compares an
implementation of chart (Quesada &
Amores, Forthcoming) and SGP (table

3 Algorithm schemata of Kay (1980) and
parsing schemata of Siklel & Nijbolt {1997)
are mainly oriented to top—down strategies.

4Including cyclic grammars, epsilon rules,
hidden-left recursion, exponential ambiguity,
recursive constructions, local and non-local
dependencies, garden path sentences, etc.




3)- Table 4: Parsing efliciency: G

(1:S -> A BC D) (2:A -> a) (3:A -> A a)

R po G —T sCP

o T N E T N E

§ 2 0000 3 80000 3 6

Y . — 3 0000 7 170000 6 12

jr Table 3: Parsing efficiency: Gree 4 0000 16 36 0000 10 21

: P SCP 5 0.000 39 830000 15 34
L % n g8 T N E 6 0016 104 214 0000 21 52
i 00 8 210000 & 10 7 0.066 301 605 0.000 28 76
8 00 20 490000 15 20 8 0.866 927 1862 0.000 36 107
16 00 56 1230001 29 40 9 9.666 2983 5975 0.000 45 146

32 00 176 3430002 57 80 10 160.679 19K 10K 0.000 55 194
64 0.2 60810710.004 113 160 o5 0.233 210 1389

128 2.8 2240 3679 0.008 225 320
256 68.2 8576 13K 0.018 449 640
512 2K 51K 33K 0.041 897 1280
1024 0.099 1793 2560

The second experiment analyzes the
computational improvements of SCP.
Table 4 compares diferent strings of
words (zL) using the grammar Gz, (X
-> X X.

6 Conclusion and Future
‘Work

The syntactic analysis of Context-Free
Grammars is an important field of re-
search, so much as for its application
to Computer Science as to Computa-
tional Linguistics. The aim of this
work is the introduction of the SCP
parsing algorithm, which is based on
a multidisciplinary approach to this
problem. This new algorithm entails
original research on the logic, compu-
tational and linguistic levels involved
in the problem.

5Length of input string (number of words).
5Time, in seconds.

"Number of nodes generated.

®Number of events generated.
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30 1.416 465 4584

From the point of view of its strat-
egy, the SCP algorithm can be de-
scribed as a bidirectional bottom-up
parser, event driven and based on
multi-virtual trees, which incorporates
a very elaborated mechanism of con-
straint propagation.

The formal and computational mod-
els show a high level of efficiency, which
multiplies by 10 to 1000 times the re-
sults described in the specialized litera-
ture. Tt is necessary to make emphasis
on the fact that this level of efficiency
(between 2,000 and 20,000 words per
second) is achieved without diminish-
ing the general applicability of the al-
gorithm.

Among the current lines of research
in the SCP framework we can men-
tion incremental compilatior, paral-
lelization and the adaptation of the al-
gorithm for syntax definition and pro-
totyping of programming languages.
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