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Abstract

This paper shows that previously re-
ported generation algorithms run into
problems in dealing with f-structure rep-
resentations. A generation algorithm
that is suitable for this type of represen-
tations, the Semantic Kernel Generation
(SKG) algorithm is presented. The SKG
method has the same processing strategy
as the Semantic Head Driven generation
(SHDG) algorithm and relies on the as-
sumption that it is possible to compute
the Semantic Kernel (SK) and non Se-
mantic Kernel (Non-SK} information for
each input structure.

Keywords: tactical generation, reé-
versibility, unification grammars

1 Introduction

Ideally, a declarative grammar should be
suitable for both parsing and generation.
Unfortunately, things are not that easy.
As it is well-known, for many declarative
grammars the implicit concept of deriva-
tion is that of parsing. As a result, parsing
is easier than generation; given a grammar
formalism, there are several well-known
parsing strategies that one could (more
or less easily) adapt. The same does not
hold for (tactical) generation, since the
task of generating a string out of a se-
mantic representation becomes more com-
plex due to the fact that semantic rep-
resentations vary according to the theo-
ries adopted. Not surprisingly, different
generation algorithms are defined for each
type of semantic representation. In this
paper we take up the problem of generat-
ing a string out of an f-structure like rep-
resentation; instead of designing an inter-
face between this kind of structures and

semantic structures useable by already ex-
isting generation methods we have de-
cided to implement an algorithm that op-
erates directly on f-structure representa-
tions but keeps the main merits of other
generation methods as much as possible.!
We therefore put forward a new genera-
tion algorithm; the Semantic Kernel (SK)
generation algorithm, that can be seen
as a variant of the semantic heed driven
generation algorithm (SHDG) (Shieber et
al.,1990), (Noord,1993). SKG follows ba-
sically the SHDG processing strategy but
runs under other assumptions. Since
in SKG the syntactic-head relation plays
also an important role, it can also be
seen as a variant of the syntactic-head
driven generation algorithm (SynHDG)
(see (Konig,1994) and (K6nig,1995)).

2 The Semantic Kernel
Generation Algorithm

In order to show how the SKG method
works (and why former generation meth-
ods are not directly applicable to f-
structure representations) we assume the
grammar fragment and lexical entries
which are given in figures 1,32 As for the
grammar fragment, note that rules Ie and
1b introduce modifiers at sentence level,
and rule 2introduces modifiers at vp level.
Rule 2 combines the subject with the vp.

S —

lsee for example (Busemann,lggﬁ) for an alter-
native proposal on an interface between constraint-
based grammars and generation systems.

2For the grammar fragment only the relevant se-
mantic information is shown.

100



Rule { deals with the complements of a
vp. Note also that the subject is treated
as a complement.

|-CAT: v
LEX: generate

SUBCAT: (NP[H, NP@>
PRED: generate

SEM: ARG1:
ARG2: 2 J

Figure 1: Lexical entry for generate

CAT: n
LEX: sentence

SEM: [REL: sentence

Figure 2: Lexical entry for sentence

The analysis of the sentence The little
prolog program generated the compler sen-
tence quickly is given in figure 4.3 The
point is that input for the generator repre-
sents the deep predicate argument struc-
ture of sentences; modifiers are contained
in set-valued feature “mod” 4 Note also
that input representations are encoded as
(possible typed) Feature Structures,

We first review the direct applica-
tion of former generation methods to f-
structure representations and then we de-
scribe more thoroughly the SKG algo-
rithm.

For expository purposes we will use the
graphical notation used in (Konig,1994)
for describing the generation algorithms.
Taken directly from {(Konig,1994): we
will assume that the syntax-semantics-

relation for a given grammar is stated by

The example is due to Nicolas Nicolov.
‘We assume that set-valued features are modelled
as (Prolog) lists.

wop: (quick)

PRED: generate

[DEF:  +

ARG1: [moOD: (Iittle, prolog)
[REL:  program

[DEF: 4+
ARG2: |MOD: (complex>
|REL:  sentence J

Figure 4: Input semantics

pairs of trees. The left tree states a local
Syntactic dependency, whereas the right
tree defines a local semantic dependency.
We also assume that there is a one-to-one
mapping from the nonterminal Jeaf nodes
of the syntactic tree on the leaf nodes of
the local semantic tree. Note that this
is only a graphical notation for the rule-
to-rule hypothesis, i.e., the fact that in
the grammar each syntactic rule is related
with a semantic analysis rule. An exam-
ple is given below:

________ -
]

( $ VP(NP)>
np vp NP VP

_-——b._
! t

(1)

The head-
corner generator ((Noord,2993), a variant
of SHDG) and SynHDG are (graphically)
described in figure 5 (taken directly from
(Konig,1994)). The rule lez is the pre-
diction step of the algorithm, i.e. it re-
stricts the selection of lexieal entries to
those that can be linked to the local goal
(visualized by a dotted line). The rule
hec_complete is the bottom-up step which
selects a rule for which z4 is the syntac-
tic head and X, is the semantic head. As
a result, it also predicts the head’s sis-
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(1a)

(1b}
(2)
(3)

(4)

(6)

(7)

(8)

cat: s
sem: SEM
 sem:mod: M |MODS)

cat: s
| sem: SEM

cat: s
sem: SEM

cat: vp
sem: SEM
| sem:mod:  [MOD{MODS]

cat: vp
sem: SEM
subcat: [SUBJ| REST]

cat: vp
sem: SEM
subcat: SUBCAT

[cat: np
| sem: SEM

[cat: _ n2
| sem: SEM

cat: n2
sem: SEM

sem:mod: [MOD | MODS]

cat: s

M ad"], sem: SEM
Lo sem:mod: MODS
[ cat: s
sem: SEM ‘[cat.. M adv]
|_1=.em:1'nl:|cl: MODS ser:
cat: vp
cat: 1p sem: SEM
sem: SEMSUBJ['|_. . ['cat: np ]
subcats  llsem: SEM.SUBJ
S cat: vpoo
::;- ;i(;D], sem: SEM
L= sem:mod: MODS_
[cat: vp
sem: SEM [cat. X ]
cat: X 'lsem: SEMx
_subcat. [SUBJ,[Sem SEMX]]lREST]
_cat'. v
sem: SEM
| subcat:  SUBCAT
cat: n2
[cat. det], com: SEM]
cat: n
sem: SEM
. cat: n2

[::;.adj SEM]‘ sem: SEM

' sem:mod: MODS

Figure 3: Grammar Fragment.Only semantic information is shown




ters, which have to be expanded recur-
sively (top-down prediction). The differ-
ence between SHDG and SynHDG is the
link relation for semantic structures: in
(Noord,1993) the semantic-based link re-
lation is defined as follows:

link(X,X;) if 2)

X and X; are identical. If semantics
is represented using first order terms,
that reduces to check whether X and X;
unify. As for the SynHDG algorithm, the
semantic-based link relation is defined as
follows (Konig,1994):

link(X,X:) if (3)

X; is a substructure of X. In practical
terms, X; is an element of the bag of se-
mantic keywords that constitute X.

2.1 The direct application of
former generation procedures
to f-structure representations

We will illustrate the problems of SHDG
(more specifically, a variant of it, the
head-corner generator described in (No-
ord,1993)) with f-structures following its
application to the (very simple) input se-
mantics given below (which corresponds
to the np the complez sentence):

cat: np (4)
sem: |rel:  sentence

def: +
I mod: [complex]]

According to the algorithm described in
figure 5, and because of the syntactic-
head and semantic-head link relation, the
rule lez can only be applied to the lexi-
cal entry for sentence (figure 2). How-
ever, since the link relation for semantic
structures is defined in terms of unifica-
tion of semantic representations, the ap-
plication of rule lex leads us to a new se-
mantic goal which is identicel to the in-
put semantics. Now, it comes to apply

the rule hc_complete; Tule 7 is the unique
candidate. After applying it, our current
goal is the following:

[cat: n2 1 (5)
sem: {rel:  sentence

def: +
] mod: [complex]|]

At this point, a new hc_complete step
needs to be performed. Now we have two
candidates: rules 6 and 8. If one selects
rule 6, and after generating recursively the
determiner, one ends up having generated
only part of the sentence: the sentence.

-On the other hand, rule 8 can be always

selected; consequently, one could end up
having semantic goals that would look like
that:

[cat: n2 1 (6)
sem: |rel:  sentence

def: -+
] mod: [X,... |complex]}

In other words, the generator would loop
and would not lerminale.

The problems shown above lead us to
the following conclusion: the SHDG gen-
erator is neither complete nor coherent.
These issues arise in a similar way for first
order terms (see discussion in (Shieber et
al.,1990)); the problem here is that we
do not have a notion of grounded feature
structures.

2.2 Semantic Kernel Generator

Although we have found some problems
applying SHDG to the grammar in figure
3, it is not very difficult to come up with
a coherent and complete variant of SHDG
. In any case, it seems that the generator
needs some knowledge about the semantic
structure of a sign. Our first assumption
is that the generator is capable of distin-
guishing between the following different
types of semantic information within in-
put structures:
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all leaves are labeled with terminals and the tree does not contain any dotted lines
(global-success)

(sz /XX> (1ocal-success) <A ZXX>

A .
AN @ (T Ly (i .
G and link({z, X ), (z:, X3))

LB
A A
AL

(A A )

-$u Xo
T,.-.Th---Tn X,...Xp..- X0

Figure 5: Head-Corner Generator {G grammar description; z; syntactic category; X;
semantic representation) (Taken from (Konig,1994))
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¢ Semantic Kernel (SK) Infor-
mation: Semantic structure com-
pletely predictible from the lexicon
(i.e, there is at least one lexical en-
try which subsumes this structure).

e Non Semantic Kernel (Non-SK)
Information: Semantic structure

" which is not predictible from any lex-
ical entry (typically, lists). In our
grammar, modifiers are represented
as a list. This list is Non-SK infor-
mation,

Similarly, the generator is given the fol-
lowing information with respect to the
types of rules:

e SK Rules: Rules which do not add
Non-SK information.

e Non-SK Rules: Rules which add
Non-SK information. Rules 1,3,8 in
our grammar.

The hypothesis behind this classifica-
tion is that of structural predictibility. SK
information comes from the lexicon (i-e,
SK information can be seen as grounded
feature terms), and non SK information
is introduced by rules. In other words,
the generator knows whether each type of
input structure comes from-a lexical en-
try or whether it has been constructed
from a (non SK) rule. Thus, the restrict-
edness of the algorithm results from the
fact that it operates under the assump-
tion that one can recursively decompose
each input structure into SK and Non-
SK information. Although this restriction
seems to be rather strong, the generator
gives the right answers for the problem-
atic flat f-structure representations con-
taining sentence modifiers.> It is worth
mentioning that in the SHDG algorithm
from (Noord,1993) semantic representa-
tions (logical forms) are SK information.
memarks'have been already done in the

LFG framework (Wedekind and Kaplan,1993), (Ka-
plan and Wedekind,1993).

In other words, its structure is completely
predicted from the lexicon.

A graphical version of the SKG algo-
rithm is given in figure 7 and a simpli-
fied prolog-version is given in figure 6. .
Further on an example will be given that
shows how the algorithm works.

To summarize, this is the information
the generator needs to know about the
grammar:$

e link relation (head relatien).

® The SK substructure of a given se-
mantic representation.

e the Non-SK substructure of a given
semantic representation.

o The distinction between SK rules and
Non-SK rujes.

e The syntactic goals for generating SK
information.

e The syntactic goals for generating
Non-SK information.

¢ The syntactic goal we obtain after
combining SK and Non-SK informa-
tion.

In order to show how the SKG algo-
rithm works we will follow its application
to the input semantics for the complex
sentence given in example 4. For this
input semantics, we have two SK struc-
tures:

' [rel: sentence] (7

[def: +] (8)
and one nonSK structure:
[mods: [complex]] 9

According to the algorithm described in
figure 7, the rule lez cannot be applied be-
cause of the SK structure condition: input

®All this information can be collected off-line from
the grammar, though in the current implementation
it has been done by hand.
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%% Initial Goal

skgen(Goal ,EndString} :-
has_only_sk(Goal),
predict_head{Goal,IniString,IntermGoal),

skhead_corner{Goal,IntermGoal ,IniString,EndString)

skgen (Goal ,EndString) :-
has_non_sk{Goal,Subloals),
decompose(Goal,SK_structures.NonSK_structures).
sk_obtain_subgoals (Goal,
SK_structures,
NonSK_structures,
SubGoals},
generata_top_down(SubGoals,Strings),
combine (Strings,EndString).

%% Prediction step
predict_hend(Goal,IniString.IntermGoal) -
lex_entry(Entry,IniString,Syn,Sem),
syn_link(Goal,Syn),

sk {Goal,GoalSem),
unify (GoalSem,Sem).

%/ Head Corner Step

skhead_corner(Geal,Goal,String,String).

skhead_corner (Goal,Intermgoal ,IniString,EndString)
select_nonsk_rule(IntermGoal ,NeuGoal ,Daughtars),
syn_link(Goal ,NewGoal),
generate_top_down(Daughters,List_Strings),
combine(IniString,List_Strings,NewString),
skhead_corner{Goal ,NewGoal,NewString,EndString).

%% Top down expansicn

generate_top_down(0,[1).

generate_top_dovn( [Goal|Rest] ,EndString) :-
skgen(Goal ,Stringl),
generate_top_down(Rest,List_Strings),
combine (Stringl,List_Stringe,EndString).

%% Specific Information for each grammar. !!
sk_obtain_subgoals{(cat:np),
SK_structure,

NonSK_structure,

[{cat:det & sem:SEM1),(cet:n2 & sem:SEM2)]) :-
select_sk(5K_structure,New_SK_structure,SEM1),
join(NeH_SK_strucura,HonSK_strncture,SEH2).

ak_obtain_subgoals({cat:n2),

SK_structure,
NenSK_structure,
[(cat:adj & sem:SEM1),(cat:n2 & sem:SEM2)]) :-

select_nonsk (NonSK_structure ,New_nonSK_structure,SEM1),

join(Neu_nonSK,structure,SK_structu:e.SEH2).

Figure 6: Simplified prolog version of the SKG algorithm
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all leaves are labeled with terminals and the tree does not contain any dotted lines (global-success)
(2= 2R
z X _
A A AN
VAVAVESSRES
T X Ti

| X

uk

if < zli X.-) € G and link(z, z:) and sk(X, X;} end SK(X)

twy

AN Ly A

) (he-complete) < 2 x. >
AN AN

zg XD
if </\ /\) € Gsx and SK(X)
Ly .o-Th..uTq ,...X,....X.,

A A o4

(

A A

X
if </\ A) €G and -~ SK(X) and sk(X,X)
Ly esaZheoiTh ....Xh...x..

Figure 7: Semantic Kernel Generator (G grammar description; z; syntactic category;
X semantic representation; SK(X) is true if X contains only SK information; Gsx
grammar description with only SK rules; G_gx grammar description with only nonSK
rules; sk(X, X;) is true if X}, is SK information of X (Adapted from (K&nig,1994))
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semantics does have nonSK information.
Accordingly, we can only apply the sec-
ond hc_corner step. This leads us to start
from rule 6 and generate (top-down) the
following goals:

cat: det
sem: [def: +
cat: n2
sem: |rel: sentence
mods: [complex]
Note that the generator has been told
about the relation among nonSK informa-
tion and SK and nonSK rules, so in this
case, it knows where the modifiers come
from (see rule sk_obtain_subgoals in figure
6). The generation of the determiner is
straightforward, since it reduces to apply
the lez rule. In order to generate the n2
goal (example 11) we proceed as before;
this goal has nonSK information, so the

generator starts from rule 8 and generates
(top-down) the appropriate subgoals:

(10)

(11)

[cat: n2 i (12)
| semn: [rel: sentence]_
[cat:  adj T (13)
| sern: [rel: complex]_

Aftger generating the subgoals the gener-
ator combines the strings. The generation
of the subgoals above is straightforward,
since now they do not have nonSK infor-
mation and the lez rule can be applied
without problems. The application of the
he_corner step to each of the subgoals de-
serves further comments, since we are run-
ing the risk to have termination problems.
For example, once we have applied the lez
rule and the hc_corner step for senience
we obtain the goal in example 12. One
may ask whether we could apply rule 8
again and end up having subgoals like the

following:

cat: n2
sem: |rel: sentence
mods: [X,...]
This situation cannot arise, since if we
have only SK information only SK rules
can be applied, and rule 8is a nonSK rule
(see conditions for the application of the
first he_complete step in figure 7).
Another example will clarify how the

generator works. Assuming one wants to
generate a string for the the semantic rep-
resentation in figure 4, the following sen-

tences should be generated according to
the grammar:’

(14)

e the {little,prolog} program generated
the complex sentence quickly.

o quickly the {little,prolog} progrem
generated the compler sentence.

o the {little,prolog} program quickly
generaled the complez sentence.

The generator detects that the semantic
representation is composed by a SK struc-
ture and a Non-SK structure (“quickly™).
Thus, according to the grammar, there
are several ways of generating these struc-
tures given the original goal (which is a
sentence). The generator tries the follow-
ing combinations:

o It generates a string of type “§” for
the SK information and a string of
type “adv” for the Non-SK informa-
tion. Both strings can be combined
in two ways (which corresponds to
rules Rla and R1b). This gives us
two of the possibilities.

e It generates a string of type “Vp©
for the SK information and a string

7In this example we will only concentrate in the
generation of guickly at sentence or vp level; the rest
of modifiers (complez, little, prolog) for the np level
would be generated in an identical manner.
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of tvpe “adv” for the Non-SK infor-
mation (this corresponds to rule R3).
After generating these strings, and

according to rule R2, we connect the
ILVPII tO II.S'I?

3 Discussion

‘The main characteristics of the SKG gen-
erator are the following:

e It proceeds top-down, generating the
appropriate subgoals, when it finds
nonSK information.

¢ It proceeds bottom-up when lexical
prediction can be made (when there
is only SK information).

o The head-corner step for SK infor-
mation can only be performed using
SK rules, thus avoiding termination
problems.

The benefits and drawbacks of our pro-
posal are clear: the generator has the
same processing strategy as the SHDG
and it is complete and coherent, but it
needs more information about the gram-
mar.

It is interesting to point out that the
way our generator works and the distinc-
tion between Sk and Non-SK information
resembles the definition of the restrictor
operator and the treatment of modifiers
given in (Wedekind and Kaplan,1993),
(Kaplan and Wedekind,1993). The differ-
ence is obviously the context of applica-
tion: In (Kaplan and Wedekind,1993) the
main interest is structural misalignment
between f-structure and semantic repre-
sentations, whereas our concern is string
generation from f-structure like represen-
tations.

4 Implementation

Our framework has been the Sicstus-
Prolog version of the CUF language® plus
®CUF is an extension of Prolog by feature terms,

types and a sophisticated evaluation strategy (Dérre
and Dorna,1993).

a layer on top of it which implements
the grammar formalism, the (left-corner)
parser and the SKG generator.®

5 Conclusions

We have shown that for f-structure rep-
resentations, previously proposed genera-
tion algorithms run into problems. How-
ever, since the SHDG algorithm has its
merits (basic bottom-up strategy, top-
down prediction, lexical information avail-
able as soon as possible), we have pro-
posed a generation algorithm, the SKG
algorithm, that follows the same process-
ing strategy but under other assumptions:
For each semantic input it is possible to
compute its SK and Non-SK information.
We have also shown that our approach
resembles the definition of the resirictor
operator and the treatment of modifiers
given in (Kaplan and Wedekind,1993) for
dealing with structural misaligments be-
tween f-structure and semantic represen-
tations. The main drawback of the algo-
rithm is that it needs to collect more in-
formation about the grammar.

6 Future work

We are currently investigating how to
derive (semi)automatically the SK and
nonSK information from the grammar
and lexical entries. We also plan to incor-
porate the ideas presented in (Kay,1996)
{chart generation for flat semantic repre-
sentations) to our algorithm.
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