Procesamiento del Lenguaje Natural, Revista n® 19, Septiembre de 1996 81

NLlex - a tool to generate lexical analyzers for
natural language

José Jodo Dias de Almeida
Department of Computer Science
University of Minho
Campus de Gualtar
4710 Braga-Portugal
J3@di.uminho.pt

Abstract

In this paper we present a natural language lexical analysis program generator (NLlex) that
looks like Unix lex extended with morphological analysis and other Natural Language (NL)
clements.

NLlex generates a C program which is linked with a morphological analyzer and with other
modules, in order to produce a NL processor,
As a particular case, NLlex can generate modules 1o work:

* asa lexico-morphological analyzer (10 be called from yacc, NLyace, btyacc or any modules
that need it)

® as a simple lexical processor tool
NLlex can also deal with ,and be tuned 10, the so frequently seen non textual elements
(markup elements, ISTEX like things, dates, quotes, ...)

An interface between NLlex and Prolog have been developed and a Perl interface is under
development.

1 Introduction

Our main goal is to build a modular reusable set of procedures for NL analysis.

Systems for performing the complex tasks of morphological and lexica.l analysis are at the
core of all NL applications.

In this paper we present a NLlex tool that can be seen as a Unix lex for NL processing
(NLP).

The design of a Natural Language Processor is hard because:
¢ it depends on the existence of a dictionary (building a dictionary takes a long time)

¢ the dictionary must have “the right structure” (must retumn the right attributes in the right
format)

By

Procesamiento del Lenguaje Natural, Revista n? 19, Septiembre de 1996

* in general, if we have some tools, it is not so easy to teach them to speak with each i
Generally, tools are not easily adaptable.

NLlex is meant to adapt the scanner, the morphological-analyzer and the parser to p.
problems and corpora conventions. This way we expect easier reusability.

In order to deal with formal languages, operating systems like Unix offer a number of §
based on Regular Expressions (RE).

When we are processing NL it is natural to extend RE (RE+) in order to include some
details like:

e features (Cat, Gender, ...)
e uppercase/lowercase
» defined on the dictionary (or not)

and many other things.
After that it would be nice to have all the (Unix) tools tuned to those RE+.

NLlex has primitives to deal with lexical ambiguity and undefined words,
An NLlex module consists on:

e a header with dictionary definitions, feature definitions, ...

* a block of pairs of RE+ and C actions to be done when RE+ is found, including undefined’
words strategies. In the C actions associated with pairs containin g words, the correspondent’
attribute values are available.

e other C code.

In this text we will assume that the reader is familiar with the lex notation and concepts.

In section 2 we will show the design goals and the NLiIex description. A small note about
the morphological analyzer (jspell) used by NLIex is presented in order ta give a better picture
of the tool. :

In section 3 some examples are presented; the first one is a stand-alone use of NLlex, a
second one shows the connection with a NLyace parser and the third shows its use with Prolog.

2 NLlex = lex + morphological analysis

2.1 Main goals of design

The main goal of NLIex is to be able to control:

e actions to be done when we find words with certain morphological properties. These prop-
erties are defined by atiribute-value pairs.

® actions to be done with the non textual elements of text like :

- keywords

Procesamiento del Lenguaje Natural, Revista n? 19, Septiembre de 1996

- special symbols

- markup elements

- date, sport results, numbers with units, ...

* heuristics for dealing with undefined words with rules using:

- capitalization features

- unofficial application of morphological rules to words

- context

83

In the design process, care was taken not to build a new syntax but trying to follow (when-

ever possible) the existing lex (flex) syntax.

2.2 Description

In the present version (NLlex0.7) flex code is generated and morphological analysis is done by
jspell (the replacement by any other morphological analyzer that returns attribute values pairs

is easy).

Structure of NLlex input

[optional C code]
Joinitnlex
Zfestures

General definitions

%%

<RE> {C code}

Regular Expressions and actions

Y%oword

<RE> {C code}
<<EOW>>

Word processing

Youndef

<RE> {C code}
<<EOW>>

Undefined words

%%

NLlex syntax extends the lex syntax in:

® $initnlex options - to define the dictionary and corresponding morphological op-

tion,

Procesamiento de] Lenguaje Natural, Revista n? 19, Septiembre de 1996 L

%features feat-list - to define hist of features to be used; each attribute-valuc w: -
be available in the word conditions and in the word actions,

¢ Sword new zone - to define conditions over words and actions to be done when thesce wir
true. A condition can use a lirited constraint expression over:

attributes declared in $feature (CAT=prep)
the root of the word (ROOT=ser)

the letter-case type (UC (the word is uppercase))
the word in itself (n1text=51)

» <<EOW>> - (optional) action to be done after analyzing every classification of a word

» %Sundef new zone - (optional) to define conditions over undefined words (guessing is pei
formed with the morphological rules, and actions are associated with the different guesses)

e {P}{S}{W} - predefined regular expressions for paragraph, white space and words (then
values can be used in the lex RE (example 1))

e features — the names of the features can also be used in actions as features string values. The
same 1s valid for ROOT, LETT (letter case type) and nltext (the main word).

Jspell

The morphological analysis is done by Jspell[2]. Jspell was implemented reusing many lines
of the ispell spell checker and is based on an external dictionary and affix rule files.

Each dictionary entry maps a word to its classification and to the set of morphological rules
that can be applied. Each rule is identified by a flag. The affix file contains codification character
details, suffix and prefix rule definitions. Each rule may redefine the word classification features.

A special mechanism is provided to deal with irregular verbs and words in order to store
their “roots” and features correctly.

Jspell can be used as a command (to find non existent words), as a pipe (receiving “ques-
tions” dealing with words to analyze and returning words in a predefined format), as interactive
spell checker or as a C library (this mode is used here).

As a library, this morphological analyzer and guesser has, for instance, functions to:

e get words from a buffer

e analyze morphologically a word with possibility of calculation of near-misses and words
derived from unofficial application of rules

e inserting words in a personal dictionary
e saving the personal dictionary

e changing a word in a buffer

As the result of word analysis, zero or more values can be obtained. Each value has:

¢ root of the word

e set of attribute-value pairs containing information derived from the dictionary and affix-file.

Procesamiento del Lenguaje Natural, Revista n® 19, Septiembre de 1996 85

3 Examples

3.1 Independent use

In this section, 2 NLlex program is presented that prints the number of the paragraph and the
form of every occurrences of the verb to write ("escrever” in Portuguese).

1 int p=1;

2 %initnlex port /* select Portuguese dicticnary */
3 %%

4 {P} {p++;} /* increment paragraph counter */
5 Fword

6 {*ROOT=escrever*) {printf("%d-%s\n",p,nltext);}

7 %%

When the generated program is applied to a text with 2 occurrence of "escrever” in paragraph
12 and 34 the following output would be produced:

12-escrevi
34-escrevendo

If line 6 was:
& {*ROOT=escrever, N=s,P=3*} [_ .. }

just the verbal forms in the third person of the singular of any tense would be selected.
A more complex example is discussed in Appendix A.

3.2 NLlex used as lexical analyzer

When NLlex works as a lexical analyzer the tasks to be executed are similar to the traditional
use of lex when it works with yacc: when a symbol is found, its type and attributes are returned.
Therefore NLlex rules look like:

NLlex-Pattern { return ...}

When lexical ambiguity is possible, the function vyset is used in order to return multiple
values (see Appendix B).

Procesamiento del Lenguaje Natural, Revista n® 19, Septiembre de 1996

3.3 Interface to Prolog

NLlex generated code can be connected to Prolog. This connection was developed with Sicuu
Prolog but can also be easily adapted to other Prolog systems. In the current version there 1-. -
Prolog module “nllex.pl” that offers (between other predicates):

e lex (+word, ~cat, -sem) to get category and semantics from word with backtrackn-
capabilities to get all the word analyses

e set_file(+string) to set current input to be scanned by 1ex2 predicate
e set_string(+string) to setcurrent input to be scanned by lex2 predicate
® lex2(~word, —cat, -sem) to get next word, category, and semantics

Predicate 1ex/3 calls the function generated by NLlex in order to get a list of analysi:
that will be returned one at a time. Each analysis has a semantic part (traditionally a func
tion of the word radical) and a category part (traditionally a term agglutinating the relevani
features). NLlex just builds the sem and cat term strings stack and nllex.pl builds the cor-
respondent terms. The module nllex.pl also takes care of backtraking details using Prolog'
nternal database.

A more detailed explanation of this module and DCG variant to deal with NLiex is available
and 1t is called YaLLG [1].

4 Conclusions and future work

Every NLP application needs a morphological/lexical analyzer. For corpus based NLP, dictio-
naries, and morphological rules are “heavy” modules.

Different tools often need different views of the words and specific processing/translation
of some details.

Different corpora use different formats, markup languages, and non-text element processing.

NLIlex has shown to be a useful tool to adapt morphological analyzers to taggers, NLyacc
parsers, Yacc parsers, prolog-DCGs, and others.

Work has began in extending NLlex to deal with probabilities and some automatic tag reso-
lution.

References

[1] J. Joao Almeida. Yalg - extending dcg for natural language processing. In Carlos Martin

Vide, editor, Actas del XI Congreso de Lenguajes Naturales e Leanguajes Formales Sevilla,
1995.

[2] J.Jodo Almeida and Ulisses Pinto. Manual de utilizador do J Spell. Manual, Universidade
do Minho, Julho 1994,

E Procesamiento del Lenguaje Natural, Revista n® 19, Septicmbre de 1996 87

[3] Ted Briscoe and John Carroll. Generalised probabilistic Ir parsing of natural language
(corpora) with unification-based grammars. Technical Report Number 224, University of
Cambridge Computer Laboratory, 1991.

{4) Jean-Pierre Chanod and Pasi Tapanainen. Tagging french - comparing a statistical and a
constraint-based method. In EACL-95, 1995,

[5] Hiroaki Saito Masayukilshii, KazuhisaOhta. An efficient parser generator for natural lan-
guage. COLING, 1994,

[6] M. Tomita. An efficient context-free parsing algorithm. Computational Linguistics, 13:31-
46, 1987.

[7] M. Tomita, editor. Current Issues in Parsing Technology. Kluwer Academic Publishers,
Norweil, MA, 1991.

A A Naive tagger

In this appendix, a naive tagger is meant to show how adaptation of classes and non textual
elements can be processed in NLlex. In a real tagger, NLIex would work as scanner, mor-
phological analyzer and guesser and could be linked with some statistical or constraint-based
disambiguation module [4].

$initnlex port
$feat CAT G N TR T P /* features from dict */

%%

[0~-971+ {printf (" (number) %s ", yytext) ;)

[A-2]\. (printf (" (abrev %s) ",yytext);} /* a name abrevi.*/
\NS["$1\S {printf (" (math)<%s> ", yytext);}/* math in LaTeX */
{P} {printf (" (parag)");} /* a paragraph */
Fword

{*CAT=n, G=m*} {printf (" (nm)");}

{*CAT=n,G=f*} {printf("(nf)"); }

{*CAT=v, T=i*} {;} /* ignore imperative tense analysis */
{*CAT=v,ROOT=ser*) {printf (" (ser)™);} /* special verb (ser=to be) */
{**} {printf (" (%s)", CAT);) /* by default tag=CAT */
<<EQW>> {printf("%s ", nltext);}

Sundef /* guesser part */

{*CAT=v*} {printf("(v?—%s)",ROOT);}
{*CAT=n*} {printf("(n?~%s)",ROOT);}
{(*UC*} {printf (" (pn?)");} /* Uppercase -> prop.noun? */
{*AUC*} {printf (" (abrev?)");) /* all uppercase —-> abrev? */

{**} {printf (" (%s-2)", LETT);}

Procesamiento del Lenguaje Natural, Revista n® 19, Septiembre de 1996

<<EQW>> {printf("%s ",nltext);}

o0
o\?

B ELR parser using NLyacc and NLlex

Extended LR(ELR) parsing [6, 7, 3, 5] was designed to deal in a deterministic way with ambi.
guity of grammars and lexica.

NLyaccf5] is a parser generator with a syntax that is a superset of yacc implementing ELR

In this example a simple NL parser is shown. Lexical analysis is done by a module generated
from NLlex and parsing is done by a medule generated by NLyacc. Lexical ambiguities are
processed by NLlex by multiple calls to yyset in order to return multiple values.

In this example, the NLlex has some extra tasks:

e to translate the features’ pattems over the morphological analysis to the right terminal sym-
bol class

¢ to deal with some non text elements
* to deal with lexical ambiguity

Parsing ambiguities produces multi-parsing trees. To keep it simple, no code was written
to process attributes (other then UNDEF-str) and no control actions were inserted in NLyacc.
Control actions would enable the pruning of situations that would not fit the agreement con-
straints, |

———({gram.nl)-—————m—mm e

51

#include <string.h>

#define yyset (x) yysetvalue(x) /* NLyacc way of process. multiple */
/* lexical values */

extern YYSEMTYPE yysval;
extern YYSTYPE yylval;
%)

%initnlex port

2feat CAT G N ...

ole

[0-91+ ({yyset (INTE); return 0; }
[A-Z)\. {yyset (ABR); return 0; }

{P} {yyset (EOF); return 0; } /* paragraph returns EQOF *f

A"{W}\" {yyset (PN); return 0; } /* a quoted word is like a PN!*/
Sword
{*CAT=n*} { yyset (NOUN);}

{*CAT=v, T=inf*} { yyset (INF);} /* verb in the infinitive */

iento del Lenguaje Natural, Revista n® 19, Septiembre de 1996 89

CAT=v, T=ppa} { yyset(PPA);} /* verb in the past part. */

CAT=v, ROOT=ter} { Yyset(TER);} /* auxiliar verb {TER=HAVE) */
'CAT=v*} { yyset(VERB);} /* a verb in the other cases */
' [*CAT=a_nc*} { yyset (NOUN); /* this type of CAT returns 2 */
3 yyset (ADJ);} /* values!! */
<<EQW>> { return 0 ;}
fundef
{**) { fprintf(stderr, " (Undefined %s) \n", nltext);

yylval.str=strdup(nltext);
yyset (UNDEF) ; }

<<EQW>> { return 0 ;}

k%

o {gram. y) e
typedef union {char * str;} t
tdefine YYSTYPE t

ftype <str> UNDEF

%token NOUN VERB DET PUNCT UNDEF PPA ADJ INTE ABR PN TER INF
%5

SS : S PUNCT { puts("S "); }
| NP PUNCT { puts{"NP ");} ;

: NP VP ;

NP : NP1 | DET op inte NP1 ;

op inte : | INTE;

NP1 : NOUN | c_ PN | ADJ NP1 | INF oNP ;

c_PN : ABR c_PN

| PN c PN
| UNDEF {printf("<<%s/CAT=pn>>/n", 51);} c PN
| PN ;

VP : VERB oNP | TER PPA oNP

’

ONP : | NP ;

X

%%
#include "gram.c" /* generated by NLlex */
main()
{ yyinitialize();
yyparse();
yyterminate(); }

