ihiento de! Lenguaje Natural, boletin n° 17, Septiembre de 1995 115

Difference Lists and Difference Bags
for Logic Programming of Categorial Deduction

F. Xavier Lloré! and Glyn Morrill!

Dept. I+D/NLU Dept. de Llenguatges

Micro Focus S.A. i Sistemes Informatics
Corsega, 451 Univ. Politécnica de Catalunya
08025 Barcelona Pau Gargallo, 5
xavQiss.es 08028 Barcelona

morrilldlsi.upc.es

Abstract

We show how difference lists can be used for systematically compiled
linear clauses for Lambek categorial grammar and its generalisations, in
analogy with standard Horn clauses for CF grammar. We also consider
use of difference bags for partitioning of linear sequents, and methods for
ambiguity and polymorphism.

Keywords: Lambek calculus, type logical grammar, linear logic, logic pro-
gramming, constraint propagation.

1 Logic programming and CF grammar

Logic programming is a paradigm of computation as proof search. Programs
are presented as sets of constraints expressed by logical formulas; and inputs
are presented as querying whether certain formulas can be shown to follow
from these constraints. Accordingly, program execution is search for proofs and
output comprises the values of input variables for which proof can be shown.
Different logic Programming languages can be obtained by selecting differ-
ent fragments of different logics, choice depending critically on the efficiency
of consequent proof search. Most famously, the PROLOG language programs
exclusively through Horn clauses: formulas having the propositional form Ap Vv
SAI V...V =4, n 2 0 (equivalently: A; A .- AAp — Ag with A; A L NAL
for n=0 defined as the true formula T) where each 4; is an atom. In general
we shall refer to program clauses by PCLS and query clauses by AGENDA;

Procesamiento del Lenguaje Nawral, boletin n® 17, Septiembre de 1995

PROLOG has propositional structure as follows, where we use the right-to-left
implication «— and conjunction and the conjunction identity T.

(1) PCLs u= ATOM — AGENDA
AGENDA = T|GOAL A AGENDA
In PROLOG the notion of GOAL on which these depend is that of atom:
I (2) GOAL u= ATOM

: We represent a sequence of program clauses making up a program by T', and
i : the query as to whether agenda A follows from I' by I' = A. Then PROLOG
' logic programming is guided by the following:

(3) r=7T

L 4) F=8A...AB,AC
F=AAC

A—Biy A ...ANB,ATET

The termination condition is to arrive at the “empty” agenda; the non-determin-
; istie rule {4) is called resolution: working from conclusion to premise a goal is
1 replaced by the subgoals of a program clause with head that goal.

The computational power of such a simple scheme comes from allowing
atoms to be made up of predicate symbols applied to terms, the terms be-
| ing constructed out of function symbols, constants and variables in the usual
| way. Each program clause is understood as iis universal closure. In a sequent
[= A, A is understood as existentially closed, and a successful execution com-
putes terms representing values of the agenda variables such that the sequent is
valid. Taking into account this predicate logical structure the resolution rule is
dependent on the unifiability of the agenda goal and program clause head, and
each time a program clause is selected for resolution its variables are refreshed.

. Where Do represents the result of applying to formula DD a most general unifier
| of A and A’ we have:

1 (5) IT'=>BioA ... ABao ACo - :
3 - A —BA...ANB,ATEeT
. L= AAC

‘ There is a natural relation between CF grammar and PROLOG’s Horn L
clauses (Kowalski 1974; Peirera and Warren 1980). Consider the following sim-
! ple CF grammar.

6) S — NVP

VP — TVN
K N — John
N — Mary

fento del Lenguaje Namral, boletin n° 17, Septiembre de 1995 . : 117

Each rule is translated into a Horn clause thus (j - k: A is application of pred-
icate A to arguments j and k, usually written A(j, k)):

(7) iu—in:AnPfo*i]_:Alf\..._I\in_l—iﬂ:An/\T io,
Ag— Ap ... Aq distinct variables

R

The result is a formulation in which j — k: A is read as stating that the differ-
ence between j and k is a string of words of category A. The markers j and k
can be read either as string positions (left of the first word is position 0, right
of the first word position 1, right of the second position 2, etc.) or as difference
lists with head j and tail k representing the prefix of j that is the difference
between j and k. It is the difference list reading that concerns us here. For
the example grammar we obtain the following (for convenience we abbreviate
Bi AL AB,ATasB A ... AB, a.ndA«—TasA)

8) 1=1-k:5 — i-7NAjj-kVP
2=i-k VP — i-5:TVAj-kEN
3=[Johm|i}- i N
4 = [Maryji] -« N
5 = [likes|i] ~ : TV

In general, to find out whether string { is of category A we query whether the
unit agenda i - []: A A T follows from the program obtained by compiling the
grammar. To recognise ‘John likes Mary’ as a sentence for instance there is the
following.

(9) {1,2,3,4,5} =T
{1,2,3,4,5} = [Mary] -[: N
{1,2,3,4,5} = [likes, Mary] - j: TV A j - [I: N2
{1,2,3,4,5} = [likes, Mary] - [: VP
{1,2,3,4,5} = [John, likes, Mary] - 5: N A j - [I: VP1
{1,2,3,4,5} = [John,likes, Mary] - [|: S

Building a parser for CF grammar as a Horn clause program with difference
list arguments is an efficient and elegant way of combining the top down classical
proof procedure with the bottom up constraint propagation of the input string
terminal categories. However there is a price to pay: left recursive rules (rules
with the same category mother and left daughter) lead to infinite cycling in
PROLOG’s depth-first search strategy, and such left recursion can be implicit
in a chain of rules.

Procesamiento del Lenguaje Natural, boletin n® 17, Septiembre de 1995 118

2 Generalised logic programming

A first kind of generalisation is one allowing goals to have universal quantifier
prefixes. Then GOAL is redefined thus:

(10) GOAL == ATOM |VzGOAL

In the case that an agenda goal is of the form Vz A it is required to show that A
obtains for all values of z. This can be done by proving the result of substituting
k for z in A, Alk/z], where k is a new constant (a so-called Skolem constant):
since it is a symbol bearing no special relation to any other (it is new), and
represents an arbitrary value, showing Afk/z] is sufficient to show ¥z A.!

(11) T = Ak/z)A B

Y, k new constant

'=VzAAB
A second generalisation is to also allow goals to be higher order, i.e. implica-
tional:
(12) GOAL :=:= ATOM |VzGOAL | (AGENDA «— PCLS)

For this the added rule is essentially the deduction {meta)theorem:

(13) T, A=18B r=C
DT
r=>(B «—A)AC

Using this expanded formalism an attempt can be made to mode! filler-gap
dependencies by coding fronted elements such as relative pronouns with impli-
cational clauses (cf. Pareschi 1989, Pareschi and Miller 1990). Thus, suppose
we wish to state that [that|i] - j is a relative clause if i — k¥ would be an S if
j - k was an N, i.e. that the body of a relative clause may be a sentence lacking
an object at its right periphery. Then we may add (14).

(14) [that}i] - j: R «— VG - k: S — j — k: N)

Now ‘that John likes’ car be shown as in Figure 1. :

The paradigm of logic programming considered here falls within intuitionis-
tic logic. Each resource of inference (e.g. the Horn clauses compiled from rewrite
rules) may be used once, many times, or not at all in a derivation. This cor-
responds to the way phrase structure grammar locates grammatical properties
in reusable phrase structure rules; the association of words with their lexical

1Gkolemisation is usually seen as applying to existential quantifiers; the occurrence of the

universal in succedent position however is implicitly negative, with a consequent alternation.

In general Skolemisation requires not just constants but Skolern function symbols the argu-

~ ments of which are the variables of the universal quantificrs having the existential within their
scape. In this respect what is presented is a slight simplification.

samiento del Lenguaje Nawral, boletin n® 17, Septiembre de 1995 119

1=i-k:8 — -3 NAjj-EVP
2=i-k:VP - -7 TVAF-EN
3 = [John]i] -i: N
4= [Maryli]-i: N
5 = [likes|f] - i: TV
6 = [thatli] - j: R — Vk(i—k:S—j-kN)
7=0-kN
{1,2,3,4,5,6,7} = T
{1.2,3,4,5,6,7} = [-k: N
{1,2.3,4,5.6,7} = [likes} - j: TV.j — k: N;
{1,2,3,4,5,6,7} = [likes] - k: VP
{1,2,3,4,5,6,7} = [John, likes] — j: N, j - k: VP:
{1,2,3,4,5,6,7} = [John, likes] - k: S (12345627
{1,2,3,4,5,6} = [John,likes] - k: S — [-k: N}
{1,2,3,4,5,6} = Vk([Sohn, likes) - k: S ~— [- k: N)
{1,2,3.4,5,6} = [that,John,likes] - [: R

Figure 1: Derivation with implicational goal

categories of itself says nothing about those words’ distribution. In categorial
grammar, by contrast, distributional properties are encoded in the structured
lexical categories of words. Parsing as deduction inferences based on such prop-
erties are therefore quantified by the occurrences of words in the string to be
analysed; resources must be used, and used but once. This allows us to adopt
as a framework linear logic (Girard 1987) which is much more restrictive than
intuitionistic logic, meaning that the space of proof search in logic programming
is narrowed at the level of implementation. In particular for example the non-
reusability of resources eliminates the possibility of cycling arising from re-use
of left-recursive Horn clauses. It is to linear logic (programming; see Hodas and
Miller 1994) then that we now turn.

3 Linear logic programming

We work with the multiplicative fragment of linear logic: the (logic programming
right-to-left) implication is written o— ; the conjunction ®; and the copjunction
_identity 1. Program clauses, agendas and goals are defined as before, but with

Procesamiento del Lenguaje Natural, boletin n® 17, Septiembre de 1995 120

these new connectives. For example, allowing implicational goals:

(15) PCLS = ATOM o AGENDA
AGENDA = 1|GOAL®AGENDA
GOAL = ATOM | (AGENDA o PCLS)

The propositional linear logic programming rules are as follows. The termina-
tion condition now requires all the program clauses to lzave been consumed so
that the empty agenda only follows from the empty program database:

(16) =1

The resolution rule uses up and therefore removes from the program database
the program clause against which resolution is performed:

(17) I'=B®..©@B.9C
Ae-B1®...@B,®1,T= AC

The deduction theorem rule now distributes the program clauses between its
two premises:

(18) AT=B A= CDT
NA= (Bo—A)@C

This last rule creates problems as it stands, for if the conclusion program
database contains n clauses, there are 2" ways of choosing ' and A. We shall
resolve this by means of constraint propagation through “difference bags” (see
also the “lazy splitting” mechanism of Hodas and Miller 1994). The method
involves firstly naming with a unique index each of the program clauses to ap-
pear in a derivation. Re-presenting the programming rules as they are when the
antecedents are coded by these bags of indices we obtain this:

(199 {}=1

(200 I=B®...8B,8C
{i,I} = A®C

:=AO—BI® ...@B,,@l

(21 {{I}=B J=C
IUJ = (Bo—A)®C

DT,i= A

Now the antecedents can be re-coded not as bags, but as “difference bags”, so
that I - J = A says that A can be (linearly) proved using up those clauses in
I not appearing in J. The task of demonstrating that agenda A follows from
clauses T' is now rendered as that of demonstrating I — {} = A where [is the
bag of indices of I. ‘

lento del Lenguaje Natural, boletin n° 17, Septiembre de 1995 121

(22) I1-I=1

(23) I-J=B®...8B,8C
iz=Ao-B1®...0B,®1
{i,I} -J = AQC

24y {iiI}-J=>B J-K=C
I-K=(BeA4)aC

DT,i=A,~i€J

The DT condition requires that the hypothetical clause 7 is used up in proving
the first premise. Assuming a depth first search starting with the first premise,
a check is made before passing to the second that it is not in the residue J being
passed on as available. We shall see examples when we come on to proofs with
linear clauses compiled from categorial logic.

4 Categorial grammar

The types (or: formulas) of implicational Lambek calculus are freely gener-
ated from primitives by binary infix connectives / (“over”) and \ (“under”).
A sequent, I' = A, comprises a succedent formula A and one or more formula
occurrences in the antecedent configuration I' which is organised as a sequence
for the associative calculus L of Lambek (1958). The Gentzen-style sequent
presentation enjoys Cut-elimination: every theorem can be generated without
the use of Cut. In the following the parenthetical notation I'(A) represents a
configuration containing a distinguished subconfiguration A.

(25) a. A=A id T4 A4)=B
Cu
A(T) = B
b. T=A AB)=>C AT=B
A(T, A\B) = C T= A\B'
c. I'=A4A AB)=C I‘,A::-B/
A(B/AT) = C T = B/A

By way of example, the theorems “lifting” A => B/(A\B) and “composition”
A\B, B\C = A\C are generated as follows.

Procesamiento del Lenguaje Natural, boletin n° 17, Septiembre de 1995

(26) A=A B=>BL B=B C=C
A, A\B =>-B/R A=A B, B\C:»C\L
A = B/(A\B) A, A\B,B\C::»CR\

A\B, B\C = A\C

In Morrill (1995c¢) it is shown how L can be compiled into linear logic clauses
according to relational models for L (van Benthem 1991). Each formula is
interpreted as a relation (= set of ordered pairs) over a set V:

(27) D(A\B) {{v2, v3)|¥(v1,v2) € D(A), (n1,v3} € D(B)}
D(B/A) {(v;,vz)]V(vg, ‘03) € D(A), (vl,vs) € D(B)}

We can compile the categorial logic of Lambek calculus into linear logic by
coding the directional information in the interpretation of the former in the
predicate-logical structure of the latter. Hence:

(28) 2. VYi(i-1mB o i-p:A)
B - A\B

b. Vk(e-k:B o pB-kA)
a—-f: BfA

Clauszl form can be obtained by omitting positive universal quantifiers, leaving
their variables free and implicitly universally quantified. For negative univer-
sal (i.e. existential) quantifiers we can substitute Skolem constants at compile
time.2 Then the compilation appears as follows (see also Moortgat 1990a, 1992,
Oechrle 1994), regulated according to polarity p; 7 is the polarity complementary
to p.

(29) a. e-7:BP o a-f AP .
o new variable/constant as p 4/~

B -y A\BF
b. a-7:B° o B-v: AP
y new variable/constant as p +/—
a - §: BfA?

The clausal compilation of CF grammar iz first order Horn clauses applies
to a representation in either difference lists or string positions. The present
article aims to show that the compilation of categorial logic in higher order
linear clauses likewise applies not only for string positions (as in Morrill 1995¢)
but also for difference lists.

2 Again, a simplification of normal Skolemisation.

Procesamiento det Lenguaje Natwral, boletin n° 17, Septiembre de 1995 123

We compile a type assignment a: A by unfolding [a}j] - j: At where jisa
tail variable. Consider compilation as follows for a transitive verb assignment
to ‘likes’.

(30) 1-k: St o~ [I-[likes|j}: N~
[likes|j] — £: N\ST o— Jj-kN-
[likesl] - j: (N\S)/N+

The nested implications will be flattened into “uncurried” form so that the sub-
goals needed to demonstrate the head of a clause already form a unit. Otherwise
there is no further manipulation. For an atomic assignment such as John: N
the result of compilation is simply [John|j] — j: N. The entire lexicon can be
precompiled in this way, schematising over the tail variable. For the analysis of
an actual string however the tail variables for each word occurence are instan-
tiated for the position of occurrence. By way of example then for ‘John likes
Mary’ there is the following.

(31) 1 = [John,likes, Mary] - [likes, Mary]: N
2=1-k: So~I - [likes, Mary]: N® [Mary] - k&: N
3=[Mary]-[}: N

{}-{}=1

{3} - {} = Mary] -[|: N)
{1,3} - {} = [John, likes, Mary] - [likes, Mary]: N ® [Mary] - []: N2
{1,2,3} - {} = [John, likes, Mary] - []: S

Consider now compilation for the higher order type of a relative pronoun.
(32) i-k8 o k-k:Nt
[that]j] - k: R* o j—k:S/N-
[that|j] - j: R/(S/N)*

There is the derivation of Figure 2 for the relative clause ‘that John likes’.
The compilation given above makes no special ordering of the goals on an
agenda. In the case of Horn clauses for CF rules there was a left-to-right ordering
according to which the head list of the head atom equals the head of the first
(leftmost) subgoal, the tail list of the head atom eqguals the tail of the last
(rightmost) subgoal, and the tail of the nth subgoal equals the head of the
n+1th. This gives a flow of information whereby the head of the n+1th goal
at the moment of call is instantiated to the tail of the nth goal just computed.
We note here that the same heuristic ordering of linear clauses can be chosen:
choosing as first subgoal the goal sharing its head list with that of the head

-~

Procesamiento del Lenguoaje Natural, boletin n° 17, Septiembre de 1995 124

[that, John, likes] ~ k: R o~ ([John, likes] - k: So—k ~ k: N)
[John, likes] - [likes]: N

m - n: So-m - [likesl: N@[l - n: N

0-k: N

N N
woannm

{}-J=1
{a1-J = I]—k:N-‘.'J:{} _
(4,2} - J = [John, likes] - [likes}: N®[] - k: Nz
{4,2,3} - J = [John, likes] - k: S G-0=1
{2,3} - {} = [John,likes] - k: So—[] - k: N1
{1,2,3} - {} = [that, John,likes] - []: R

Figure 2: Linear derivation with implicational goal

atom, and choosing as n + 1th that sharing its head list with the tail list of the
nth.

5 Discontinuity

We turn now to treatment of categorial logics generalising Lambek calculus
(Morrill 1994b). One broad kind of generalisation gives sequent calculus for
“multirodal” Lambek calculi in which we have several families of connectives
{/i»\i}ieq1,...n} (Moortgat and Morrill 1991). The sequent configurations are
structured by a labelled binary bracketing; further structuralrules can be added:

(33) id r=>A A(4)=B
A=A Cut
A(l)=B
(34) a. T=24 A(B)::.C‘L [.-A,I‘]=>B‘R
AT, A\B) = C T = A\,B
b T4 AB)=C iLA=5
A(BJ:iAT) = C T = BfiA

Multimodal calculi of discontinuity for discontinuous functors, quantifier
phrases, gapping, subject and object oriented reflexives etc. are developed in
Solias (1992), Morrill and Solias (1993) and Morrill (1994b, 1995b), surmount-
ing technical difficulties with Moortgat (1988, 1990b, 1991). The treatment of

kmiento del Lenguaje Natural, boletin n° 17, Septiembre de 1995 125

Morrill (1994b, 1995b) is a multimodal calculus with three families of connec-
tives: in addition to the implications, {/,\} of L, there are implications forming
“split strings”, {<,>}, and implications for “interpolation” {1, |}, each defined
with respect to their adjunction in a total algebra: + (associative, “surface”),
(; -) (non-associative, “split”), and W (non-associative, “interpolate”) with the
structural interaction sy+ss+s3 = (51, sa)Wsa. The discontinuity calculus for-
mulates the logic of split strings and interpolation in split strings, adding this
to the L logic of concatenation. In Morrill (1995a) the implicational fragment
is implemented using groupoid labelling in higher order linear clauses.

The discontinuity calculus of Morrill (1994b, ch.4) provides a natural space
within which to work, but in constructing types freely under the type-forming
operators it includes abstractions which are not required, and while it is con-
ceptually harmless, computationally such unwanted abstraction creates unwar-
ranted complexity. Intuitively we want to work more concretely with strings
and split strings rather than with a homogeneous total algebra. Quite gener-
ally, when this situation arises it is normal to impose a discipline of typing or
sorting on a formalism. The appendix of Morrill (1995b) therefore presents a
formulation of the discontinuity calculus which is a variant and refinement of
that of Solias (1992) and Morrill and Solias (1993) with prosodic data types (or:
sorts). This sorting restricts the class of types available, while still including
all those of linguistic significance, and in so doing reduces the complexity of
computation involved in what is otherwise partially associative and partially
commutative groupoid unification.

In Morrill (1994a) this version with sortal restrictions on the formation of
category formulas (corresponding to the prosodic data types string and split
string) is implemented using simultaneous string position/relational interpre-
tation and groupoid labelling. The groupoid labelling was needed because
groupoid Skolemisation was needed to control use of hypothetical resources.
However, groupoid terms require some computation of unification under asso-
ciativity. In the present work the indexical management of resource use allows
us to dispense with the groupoids; and as above, we represent substrings not by
string positions, but by difference lists. '

We give the sorted discontinuity a relational interpretation with respect to
set V as follows. Let us assume that atomic formulas A are of sort string.
The formulas F of sort string and G of sort split string are defined by mutual
recursion thus:

(35) F
G

Formulas of sort F (strings) are interpreted as subsets of V x V; formulas of

Al F/F|F\F|G<F | F>G | G|F
FiF

i i

Procesamiento del Lenguaje Nawral, boletin n° 17, Septiembre de 1995

sort G (split strings) subsets of V x V x V x V.
(36) D(A\B) {{v2, vs}|¥{v1,v2) € D(A), {v1,v3) € D(B)}

D(B/A) {1, v2)¥{v2, vz) € D(A), {v1,v3) € D(B)}

D(A)B) = {(US) U4)|V(‘Dl, 1.)2) € D('A)l (vls U2, V3, 1.34) € D(B)}
D(B<A) = {{v1,v2){¥(va,vs) € D(A), {v1,v2,v3,vs) € D(B)}
D(ALB) = {(vz,v3)I¥{va, v2,vs,v4) € D(A), (01, vd € D(B)}
D(B1A) = {{wn,v2,va, vg)|[V{ve, va) € D(A),{v1,v4) € D(B)}

We spell out all the unfoldings:
(37) -7 B o a-p: AP
B -y A\B?
a-v:BF o -1 A
a - f: BfAP

& new variable/constant as p +/—

k new variable/constant as p +/—

38 a-B,y-6:B o a-f A

(38) a, # new variables/constants as p +/—
¥ - 6: A>BF

a-f8,v-8B o y-5AF
a - : B<AP

y,6 new variables/constants as p +/—

(39) «-6:8 o a-fy-656AF)
7 5 &, § new variables/constants as p +/—
—

a-6:B° o B-T AP
a-B,y-6 BTAP

A subject quantifier example is as follows.

(40) [someonelk] - k: (STN)LS, [runs|j] - j: N\S = [someone, runs] — {|: §

The quantifier phrase and intransitive verb unfold thus:
(41) i-1St o [someonelk] - k: N~
i-1:St o i - [someonelk], k - I: STN~
f[someone|k] — k: (STN){S+

m-3j S o~ m-[runs|j]: N”

[runs|j] - j: N\S*

miento del Lenguaje Natural, boletin n° 17, Septiembre de 1995 - 127

The derivation using difference bag indexed linear logic programming rules is as
shown in {42).

(42) 1=1i-16:So~(i ~ I: So— [someone, runs] - [runs]: N)
2=m-[:So—m- [runs|: N
3 = [someone, runs] - [runs]: N

{}-I=1 3. 7=
{3} - J = [someone, runs] - [runs]: N
{2,3} - J = [someone,runs] - [J: § {-{3=10

{2} - {} = [someone, runs] - [J: S - {someone, runs] - [runs): N1

{1,2} - {} = [someone,runs] - [J: S

6 Lexical ambiguity and polymorphism

We conclude with a couple of observations on the prospecis of the present meth-
ods regarding treatment of lexical ambiguity and polymorphism.

In cases of homonymy, such as the ambiguity of English ‘that’ between ar-
ticle, relative pronoun, etc., in which the different roles are not a manifestation
of polymorphism, i.e. combinatorial flexibility of the same semantics, it is nat-
ural to assume distinct lexical entries. The method of indexing then provides
a simple way to manage lexical ambigunity without restarting the entire search
process for each combination of lexical categorisations of words in the string to
be analysed. All of the lexical categorisations for each word can be entered in
the program database under the same index. Use of any one of these categories
removes the index from the bag of available indices, and thereby excludes use
of the other categories. Thus a successful derivation will use exactly one lexical
assignment for each word, but the choice is delayed and subject to the search
for proof. :

Finally, in relation to polymorphism itself, Morrill (1994b, ch.6) advocates
using conjunction in positive position (e.g. (((N\S)\(N\S))JA(CN\CN)}/N for
a preposition, projecting prepositional phrase modification of both nouns and
verbs) and disjunction in negative position (e.g. (N\S)/{NV(CN/CN)) for ‘is’,
allowing both identification—‘John is the chief’—and predication—‘John is
rich’). These require addition to the linear logic programming scheme of non-
multiplicative conjunction and disjunction. Whether there is a consequent im-
provement in efficiency depends on how the proof algorithm operates. It can be
seen for instance that the former method should work well bottom-up, when the
preposition’s object, once found, would serve equally for both the verb modify-
ing possibilities and the noun modifying possibilities. The latter method on the

Procesamiento del Lenguaje Natwral, boletin n° 17, Septiembre de 1995 128

other hand works well top-down, for then we need to unify a goal against the
head only once, as opposed to twice for two distinct clauses. For this then the
notion of goal may be generalised with say the additive linear disjunction &:

(43) GOAL == ATOM | (AGENDA—PCLS) | (GOALDGOAL)
The unfolding of negative disjunction is given in (44).
(44 a-p:A- @ a-p-B"

a- 0 AvB~

The rules of proof are as follows.

(45) I-J=A8C ® I-J=B8B8C ®
I-J=(A®&B)®C I-]=(A®B)&C
References

van Benthem, J.: 1991, Language in Action: Calegories, Lambdas and Dynamic
Logic, Studies in Logic and the Foundations of Mathematics Volume 130,
North-Holland, Amsterdam.

Girard, J-Y.: 1987, ‘Linear Logic’, Theoretical Computer Science 50, 1-102.

Hodas, J. and D. Miller: 1994, ‘Logic Programming in a Fragment of Intuitionistic
Linear Logic’, to appear in Journal of Information and Computation.

Kowalski, R.A.: 1974, ‘Logic for problem solving’, DCL Memo 75, Dept. of Al,
University of Edinburgh.

Lambek, J.: 1958, “The mathematics of sentence structure’, American Math-
ematical Monthly 65, 154-170, also in Buszkowski, W., W. Marciszewski,
and J. van Benthem (eds.): 1988, Categorial Grammar, Linguistic & Lit-
erary Studies in Eastern Europe Volume 25, John Benjamins, Amsterdam,
153-172. :

Moortgat, M.: 1988, Categorial Investigations: Logical and Linguistic Aspects of
the Lambek Calculus, Foris, Dordrecht.

Moortgat, M.: 1990a, ‘Categorial Logics: a computational perspective’, Proceed-
ings Computer Science in the Netherlands.

Moortgat, M.: 1990b, “The Quantification Calculus: Questions of Axiomatisa-
tion’, in Deliverable R1.2.A of DYANA Dynamic Interpretation of Natural
Language, ESPRIT Basic Research Action BR3175.

Moortgat, M.: 1991, ‘Generalised Quantification and Discontinuous type con-
structors’, to appear in Sijtsma and Van Horck (eds.) Proceedings Tilburg
Symposium on Discontinuous Constituency, Walter de Gruyter, Berlin.

pesamiento del Lenguaje Natural, boletfn n® 17, Septiembre de 1995 ' 120 |

Moortgat, M.: 1992, ‘Labeiled Deductive Systems for categorial theorem proving’,
OTS Working Paper OTS-WP-CL-92-003, Rijksuniversiteit Utrecht, also
in Proceedings of the Eighth Amsterdam Colloguium, Institute for Language,
Logic and Information, Universiteit van Amsterdam.

Moortgat, M. and G. Morrill: 1991, ‘Heads and Phrases: Type Calcujus for
Dependency and Constituent Structure’, to appear in Journal of Larguage,
Logic, and Information.

Morrill, G.: 1994a, ‘Higher-Order Linear Logic Programming of Categorial De-
duction’, Report de Recerca LSI-94—42-R, Departament de Llenguatges i
Sistemes Informatics, Universitat Politécnica de Catalunya.

Morrill, G.: 1994b, Type Logical Grammar: Categorial Logic of Signs, Kluwer
Academic Publishers, Dordrecht.

Morrill, G.: 1995a, ‘Clausal Proofs and Discontinuity’, to appear in the Bulletin
of the Inlerest Group in Proposilional and Predicate Logic.

Morrill, G.: 1995b, ‘Discontinuity in Categorial Grammar’, to appear in Linguis-
tics and Philosophy.

Morrill, G.: 1995¢c, ‘Higher-order Linear Logic Programming of Categorial De-
duction’, Proceedings Meeling of the European Chapler of the Association
for Computational Linguistics, Dublin.

Morrill, G. and T. Solias: 1993, *“Tuples, Discontinuity and Gapping’, Proceed-
ings Meeling of the European Chapler of the Association for Computational
Linguistics, Utrecht, 287-297.

Oehrle, R.T.: 1994, ‘Term-Labeled Categorial Type Systems, Linguistics and
Philosophy 17, 633-678.

Pareschi, R.: 1989, Type-driven Naiural Language Analysis, Ph.D. thesis, Uni-
versity of Edinburgh.

Pareschi, R. and D. Miller: 1990, ‘Extending Definite Clause Grammars with
Scoping Construets’, in D.H.D. Warren and P. Szeredi (eds.) 1990 Interna-
tional Conference in Logic Programming, MIT Press, 373-389.

Pereira, F.C.N. and D.H.D. Warren: 1980, ‘Definite Clause Grammars for Lan-
guage Analysis—A Survey of the Formalism and a Comparison with Aug-
mented Transition Networks’, Ariificial Intelligence 13, 231-278.

Solias, T.: 1992, Gramdticas Categoriales, Coordinacidon Generalizada y Elision,
Ph.D. dissertation, Universidad Auténoma de Madrid.

