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1 Introduction

Using context-lree grammars for the deseription of natural language has regained much aff
in theoretical linguistics in last years [3]. Grammars of this type are well suited to computy

use and it scems feasible that by using them, systems of the future could have natural |
components which are hoth computational efficient and linguistically elegant, in contrag
heuristic approach of many older systems. We are not suggesting that there 1s a con

i
granmiar lor a given natural language. I is probably more appropriate to view the grami

convenient control structure for directing the analysis of the input string. The overall anaf
mobivated by a linguistic model whicl is nol context-free, but which can frequently make
structures determined by the context-free grammar.

Another arca where general context-lree parsing techniques has been considered
recognition [8]. Here, the input language can only be approximately defined, and individualj
can very widely from the norm. Thus, the goal is to find a parse which most closely matd
wput. Ambignity arises, since cach nnit ol the input can be considered to be a distorte
of any of several possible sounds with various probabilities.

At Lhis point, given a sentence in a language delined by a context-free grammar, the;
process consisks in building a tree structure, the parse forest, that shows how this senten
he constructed according to the grammatical rules of the language. In the case of gral
heing the context-free backbone of some natural language, the number of possible pars
niay l)umnv very large when the size ol sentence increases, and may even be infinite for
grammars®, Since, it is often desirable to consider all possible parse trees for semantic prot
il s convenient to merge as much as possible parse trees into a single structure that allow
to share common parts. This sharing save on the space needed to represent the trees, andn
the later processing of these trees stuce it may allows to share between two trees the pw

ol some common parts.

s work was partiadly supported by the ESE project, Eureka Software Factory project, and by the autonomous Gov
Clalicia under project ANUGATOSUIAYS. :
2ywhich seem of liode linguistic uselulness (18], except may be for analyzing ill-formed sentences (6, 12].




- ‘»fi)er we shall call shared forests such data structures used to represent simualtancously
cos for a given sentence. Al this point, several questions may be asked in relation with

»

-onstruct them during the parsing process ?

s the sharing of tree fragments between ambiguous parses, and how can it be

here a relation between the coding of parse trees in the shared forest and the parsing
o ?

1a used 7

gestions are of importance in practical systems becanse the answers impact botl the
ince and the implementation techniques. Tor example good sharing may allow a better
on of the computation that filters parse trees with the secondary features of the language.
entation needed for good sharing or low space complexity may he incompatible with the
éf;‘ sther components of the system. These componeiits may also make assumplions abont
pr sentation that are incompatible with some parsing schemata.

n [4]. Essentially, Lang considers a simple variation of Barley’s dynamic programming
truction {2]. In order to solve the problemns derived from grammatical constraints, the author

o comparing parsers. In this context, the same author proposes Lo represent a parse
of the context-free grammar rules used in a leftmost reduction of the parsed sentence,
than as a parse tree.

his-point, the current paper is a natural continuation of the work developed by Billot and
{1]. So, experimenting with several compilation schemata has shown that sophistication
ave a negative effect on the efficiency of all-path parsing. In effect, sophisticated PDT
truction techniques tend to multiply the number of special cases, thereby increasing the code
the chart parser, but also preventing sharing of locally identical subcomputations hecause
ifferences in context analysis. This in turn results in lesser sharing in the parse forest.
owever, the same work has shown the necessity to formalize the concept of dynamic frame,
resented by Villemonte de la Clergerie in [17]. In essence, the idea consists in disregard the
context-free parsing method applied to obtain the syntactic forest, and to treat the sharing
om the point of view of the practical representation for the data structures nsed in the
tion of the parser. The final goal is to explode the existing relationship between sharing
s and sharing of computations, simply condensing the representation of the first ones.
owing this way, the same author of this paper described in [13] a method to efficiently built

icture

¢ method is linear in a large class of grammars.




non deterministic LALR(H) antomata, and in [13, 15] the corresponding nterpretor, W;l
starting point for this work. ;

1.2 A sunple road map

[ section 2 of this paper, we give a very formal description of general context-free Paréin
on the compilation paradignn. This section is essential to understand the (:()nsideraﬁo'
paper. Section 3 s the kernel of this work and it describes, the criteria to design ang !
pencral context-Tree parser, justifying from a practical point of view tactical decisiong ingE
pet more sharing quality. To illustrate this discussion we shall use G, the pico-grammar of
Laken from [HH, which is giveu by the productions: ‘

W) st (1) S NPVP (2 S5 PP (3) NP—n
(1) NP = dcl n (h)y NP — NP PP (6) PP — prep NP (7) VP =y

tests i relation Lo quality i syntactic sharing. Finally, section 5 is a conclusion aboyt

l)l'(‘H(‘lll-(‘(l.

2  Coutext-Free Parsing

Though miacl rescarch has been devoted to this subject in the past, most of the practicall &
work has commented on deterministic push-down parsing which is clearly inadequate for
language applications and does not generalize to more complex formalisms®. On the off
there has heen little formal investigation of general context-free parsing, though many pr

systents have been implemented based on some variant ol IBarley’s algorithim. .

e this scuse, our contribution [13, 11, 15] has been to develop a formal model whig
deseribe these variants in a uniform way and encompasses the construction of parse fores
use a not-deterministic PDA as a virtual parsing machine which we can simulate with .
like construction; variations on Farley’s algorithm®. This uniform framework has bee
compare experimentally parsing schemata word. parser size, parsing speed and size
forest. "This is a very important question, since the choiee of a formalisin is essential witl
to compritational tractability if we inteud to use it for mechanical processing of natural lay
as 1L is especially the case for interactive systeims such as nalural language interfaces.

G o= (NN 0,8), where Nois the set ol non-terminals, U the set of terminal symbols, Pt
and S Lhe start symbol. The empty string will be represented by <.

2.1  T'he operational model

we assume a formal delinition that can Gt most usual PDT construction techniques. It
as a N tuple g = (Q.8, N Lo, gos Zu, Q). where: @ is the set of states, Y the set of il
symbols. A the set of stack symbols, 1 the set of output symbols, ¢ the nitial state, Zg

Twhich van be constdered as a very stunple context-free bhackbone of Fnglish.
"lechitigues e teeat peneral context-free parsing may be applied to other finguistic formalisins as tree adjoining grammars
by cucoding thear into definde clanse progeams (DCPs). Heve, the parse forest in context-free parsing case is the pmo“offz
Horn vase. Such proaf forests may he obtaine:d by the sasne techniques that we use for context-frec parsing {14). :
“whieh sulfers fromn an inctlicieney hardly toletable in natural language parsing.




Figure 1: The LR(0) machine for the G grammar
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ymbol and Qy the set of final states. In relation to &, it is a {inite sct of transitions of the
'p,X a)d (¢, Y, u) with p,g € Q; a € LU {e}; X, ¥V € AU {e}, and v e ™.

e re'sent the state of a PD'T in a moment of the parse process, we define a configuration
uplf‘ (p, Xa,ax, u), where p is the current state, X the st ack contents with X on the
.the remaining input where the symbol a is the next to be shifted, @ € X7, and w s the
y:produced output. The application of a transition 7 = é(p, X, a) 3 (q,} -r) resulls in a new
a.tmn (q,Y a,,uv) where the terminal symbol a has |)<‘<\n scanned, X has been popped,
een pushed, and v has been concatenated to the existing oulput w. So, for example, if
inal symbol @ is € in the transition, no input symbol is scanned. [ X is € then no stack

»popped from the stack. In a similar manuer, il ¥ is € then no stack symbol is pushed

0’\
——

ars _;stack whl(h rodu((‘q (ho p()ssllnllly ()f slmlmg (()mpula!l(mx, a Iun(lmn(nial px()hl(m
sitous parsing. We shall now reduce this dependence considering the notion of dynamic

'atlom of the PDF [t s lmp(ntant l() guamnlf\(' llml, all use [ul pdltq of Hmt space are
explored (cf. fairness, comnpleteness), and that uscless or redundant parts are ignored
muc as possible (cf. admissibility). Tt is also necessary to assure that the representation of
figurations by items is compatible with the formalism of transitions. To formalize this idea,
troduce the concept of dynamic frame establishing the conditions over which correctness
completeness of (‘()m]')uta.tions with items are verified in relation to S7. So, given a PD'I’
WAL 11,8, qo, Zo, Qf), we define a dynamic frame as a pair (R, Op) where:

%lsar‘ equivalence relation on the stacks, whose classes are named items. We denote:

- The class of £ as £.




- "The set of items as [, », or simply It when the context is clear.
e Op is an operator of the form:

Op: 6 — {lFxBU{e) — [tt x I1%)
7 o~ Op(r): 1" xS u{e} - [ x II”

verifying the following conditions:
ying g

Compatibility: all computation in ST must have its corresponding counterpart, j, lh
S 3
dynamic frame.

~ Completeness: all final configuration in ST has its corresponding counterpart, in{f
dynainic frame. g
Correctiess:  all final configuration in the dynamic frame has its correspongiyy
comnterpart in ST '

where 1 and me depend on the nature ol the transition. More exactly, they repre
respectively the namber of items over which we apply the transition, and the numbery
items resulling of this apphication.

Dynanic frames were originally introduced by Villemonte de la C lu&eue in [17] to formalize
notion of item in relation o the use of logical push-down automatd” for constructing efficg
and complete definite clause programs compilers. The consideration to our particular case >81
proposed by the same anthor of this paper in [13, 14].

I practice; only two dynaic [rames are (()llbld(‘l('d St and S%. Both of them construct iters
[rom the notion of mode. A mode is a d-tuple (p, .\,b““,h’;"), where p i1s the current state iy
PDT, X the last recognized symbol from state p, St a pointer to the position @ in the input sidy
w containing the liest token derived frows the symbol X, and S¥ is a pointer to the positi \

of the token enrrently analized. The ouly difference between S' and S? consists in the numb
ol modes considered. So, ST cousiders an item as an structure composed by an only mode whi
S considers items constructed by two modes in the form {(p, X, 51, 5¥), (q,Y, 5", S¥)], whe
the final conliguration of the PD'T is given by the first mode. This unplies, in essence, thaﬂ
represents the current configuration of the PD'T by the top of the stack while S? uses alsg th
preceding element o the stack.

2.3 The syntactic formalism

A apparently major dilference with most other parsers is thal we represent a parse as the cha

ol the context-free grammar rules used in a leftmost reduction of the parsed sentence, rather

as a parse Lree, When the sentence has several distinet parses, the set of all possible parse chaf

is represented in finite shared lorm by a context-lree grammar that generates that possibly mﬁm
- However, this dilference is only appearance.

In clfeet, context-free grammars can be represented by AND-OR graphs that in our case’d
precisely 1|u‘ shared-lorest. graph. More exactly, OR-nodes are represe mnted by the non-termii
categories, and AND-nodes arve represeuted by the rules ol the grammars. There are alsole
nodes corresponding to the terminal categories. The OR-node corresponding to a non- t.umma]
has exiting arcs leading to each AND-node u representing a rule that defines X. If there isd
such are, that is represented by placing w immediately under X. The sons of an AND- node are(

Tewsentially, PDAs that store atoms and substitutions on theie stack, and use unification to apply transitions. They are- d“
Lang {5), which obtaius an exponential reduction in (umpl« xity over the traditional resolution methods. :




. matical categories found in the right-hand-side of the rule, in that order. The couvention for
:.enti_ng the arcs is l.;hai. they leave a node from below and reach a node from above.

‘A characteristic of the AND-OR graph representing a grammar is that all nodes ave different.
els. Conversely, any labeled AND-OR. graph such that all node labels are different, may he
canslated into a contexl‘.—fref' grammar such tl;la.t AND-unode labels are rule names, OR-node
“lahels represent non-terminal calegories, and leal-node labels represent terminal categories. As an

vex'amPIE, we show a modification of the pico-grammar of English in figure 2, using an AND-OR
- graph.

Figure 2: A representation of the pico-grammar of Enghsh using AND-OR. graphs

" The parser

e-assume thal using a standard technique we produce a recognizer for the language £(G) based
omaPDA, possibly non-deterministic, from the context-free grammar G.

" The algorithm proceeds by building a collection of items. We associates a set of items S,
habitually called wemset, for each word symbol w; at the position z in the input. string of length
;:m: New items are produced by applying transitions to existing ones, until no new application is
ogsible. However, generation of items is dependent on the type of dynamic frame. S0, in % the
ocess is exactly the same applied on ST. The re

ason is simple, transitions on the PDT depend
the first, and also perhaps the second element in the stack, but this information is always

able in S%. Analytically, given a transition 7 = (p, X,a)5 (q,Y,u
withe form of a transition Op(t) given by:

B({(p. X, S, S¥). (r, 2, S, S2 )], a)

) in ST we translate it to

3 (l(9,6,52,5),(p, X, 5, $)], &) if V=X
8(1(p, X, 5. 52), (r, 2,57, SEa) 3 ([(p, Y, 52, 5%, ), (p, X898, Iy—a) if Y=a
8(((p, X, 57, 51), (r, 2,5, 5")],a) 3 (P Y, 5P, 81, (r, 7,5, 5m)], I = 1) if YenN
5([(p,6.5}“,5,’”),(q1Y,SL”,S'}“)].G) 3 ([(a.6,5¢.5%),(r, Z, 51, 5], [y — Iils) if ¥V =¢

V{(a.Y. 57,50, (r, 2,57, 50

6t xDuUfe}) — 11

Io={(p. Y. 5S¢, S51), (1 2,81, 5¢)) 1 = [(p, Y, SESE) (XL S, 8]
Iy =[(p, X, ¢ ;' S (r, 2,57, SEN Ia=|(q.¢, qi_‘ VS, 2, S5
I ={(q. Y. 52, S8 (n. 2,52, S8 Is = [(q.¢,. ¥ S, 2,57, 50
tthe set of all items developed in the parsing

process, and Il is given by a sct. of context-free
irectly built from items. Succinctly,

we can describe the preceding cases as follows:




L. Corresponds Lo a goto action from the state p to state ¢ under transition X.

2. Corresponds to a push of terminal ¢ from state p. The new item belongs to the itemset S
3. Corresponds Lo a push of non-terminal ¥ from state p.

1. Corresponds Lo a pop action [rom state p, where g is an ancestor of state p under tran
X i the antomnaton. Al this point, we must remark that the item I, can already exists
be generated. T this sense, we use the term ol items to see again Lo refer them. Intuit
we can recover the conliguration resulting from the application of pop actions usin
information represented by the second mode of the item in the top of the stack in our PD]

In relation to 8%, S' considers a more compact representation for the stack. That 18
iportant point, since the more compact are these representations, the more successful will
the sharing of computations, and later of syntactic structures. Given a transition 7 = o(p, X
(g, Yyu) in ST, we translate it to ST in the form of a trausition Op(T) given by:

L, 6([1}, NSPLSELa) 3 (e, 58, 5P, £) if
LM XS ST 3 ([ Y, Se, ST, Io — a)

30 M N, SE,5E)a) 3 ([p Y, 5%, 5%, L= L) if
I b([p,E SELSEa) 3 by (fg, e, 50, 9%), a) 3 ( (l4, £,97", 5_;-"], I3 — 1415)

Vq € Qsuch that: 36(¢, X,€) 3 (p, X, €)

r

IIJ)‘

with:
bl x MU le) — {fLud) x Itr ba:ltxLU(e} — It
and . o _
ly = []J Y, 5’5“ A w l] { = [p, Y '7"-" k'f"] = [p \’,S]'-U,S;u]
Iy = [q. 2, .s',‘“, .s';"] Iy =[q. X, 5, 5Y] 15 = [p.e, 8P, 52

where by is called the sot of dynamnie transitions.

The deseription of the transitions 1,2, and 3. is the same preceding considered in 32
relation to the transition numbered 4., it corresponds to a pop action from state p, where q 18!
ancestor of state p under transition X in the antomaton. In this case, we do not generate a
ieny, hut a dynamic transition 74 Lo treat the absence of inforination about the rest of the s

I is important to connment the behavior of the algorithin face to a pop action, the last
vepresented. Ineffect, given that our compact representation of the stack is its top, we i
consider a protocol to treat the absence of information about the rest of the stack. The soluti
relies Lo the concept of dynamic lransition. Briefly, it consists in generating a new trans
[rom that wnplying the pop action. This new transition must be built in such a manner that
applicable not only to the conliguration resulting of the lirst one, but also on those to be genet
and sharing the same syntactic structure. A detailed explanation about this is given by the:
author of this paper in [13, 15].

At this point, itenis are not only elements of the computation process, but also non-term
ol the output gramunar. That allows us to identify items with nodes in the resulting parse fo
since Lhis output grammar will be our syntactic formalism to represent the resulting shared fo

L relation to fairness and completeness, an cquitable selection order must be estabhshe
treal items, We use a techuique of merit ordering. n essence, we process the items in an items
order, performing none or some transitions on cach one depending on the form of the item. T
operations may add more states o the current itemset and may also put states in the ite
(umspumlmb to the following token to he analyzed from the input string. To i ignore redus
items we putin place a simple subsumption relation based in the equality.




Sharing Forests

e shall now display the mechanisms that cause the phenomenon of tree duplication. As a
nsequence, we shall also find criteria to avoid duplication of computations during the parsing
ocess since nodes in the parse forest are items in the computation process. That is, it will he
simple to establish a criterion to decide the quality of the syntactic sharing: ‘Fhie munber of
rated items. To illustrate the following discussion, we shall analyze the ambiguons sentence
aw a man with a telescope”, using the pico-grammar of English.

Figure 3: How shared forest are built using an AND-OR. formalism
ee
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Bottom-up parse tree Top-down parse tree

Dependence on the syntactic formalism

ur formalism, when the sentence has several distinct parses, the set of all possible parse strings
represented in finite shared form by a context-[tee grammar that generates thal possibly infinite
‘This technique is interesting by a lot of reasons:

The syntactic data structures are the same used in the computation process. That allows us:

— To establish a simple relationship hetween sharing of comnputations and syntactic sharing.

~ Given that, from a syntactic point of view, actions on the PDA depend on the first
and possibly second elements in the stack; the output grammar is a 2-form one. As a
consequence, we obtain two interesting features that are not usual in olher context-lree
parsing algorithms:

* Time complexity for the parser is O(n®), where n is the length of the sentence.
This result is achieved without requiring that the langnage grammar be in Chomsky
Normal Form.

* Sharing of a tail of sons in a node of the resulting forest is possible. More exactly,
bottom-up parsing may sharc only the rightmost constituents, while top-down parsing
may only share the leftmost ones. The reasou is simple and relies to the type of searcly
used to built the forest. Breadth first search results on bottom-up constructions and
depth first search results on top-down ones, as it is shown in figure 3.

‘We can simply represent a possible infinite set of trees.

In definitive, syntactic sharing quality seems to be better using a descriptive formalism based
ND-OR graphs to represent shared forest. To show that from a practical point of view, it
sufficient to study the shared forest tepresented in figure 4. In effect, the syntactic formalisin
3ed'to represent these forest is not the classic, which allows us to share the tail of sons indicated
i icon with an airplane. This would not be possible using a classic representation because in
‘case sharing is only applicable to proper nodes, as it is shown in figure 5.

At this point, it is important to remark that in our examples, we have only considered bottom-
pproaches. A reason to do it is that, in general, the consideration of §' will be only possible

)
en




Figure 4: 1CE representation, using a LALR(1) kernel in $?
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when the parsing algorithin representing the kernel of the syslem assures t
absence of information represented by the second mode of the S2.
parsers®, where the algorithim cannot ignote the information given by the second mode beca
their predictive bebavior, which does not allow to the parser to recover during pop transitions
the information previously predicted. For a more detailed explanation about that, the reader ¢
consult [13]. ‘

hat it can complet;
This is not the case of top-do

Figure 5: Classic tepresentation, using a Lé\ LR(1) kernel in S
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3.2 Dependence on the parsing scheme

Weshall now turn our attention to the properties relying to the
the existence of different syntactic contexts when analyzing a given input. Formally, given a PD
Tg = (Q,%, AL, Qus Lo, ), Wy an iuput string, and € a stack corresponding to the analys
ol w ;, i< 5 we say that wiy is analyzed in a left syntactic context £.

From an intuitive point of view, the left syntactic context represents the informatio
accumulated by the system during the preceding parse. This information strongly determin
which will be the continuation of the parsing process, since the current state of our virtual machin
depends on i, As a consequence, if we parse a same input in different left syntactic contexts
the resulting forest will depend on those and sharing will not be guaranteed. To illustrate thi
when the kernel is an extended LALR(1) automaton, the reader can casily verify in figure 1 tha
the production 2 — prep NP can be analyzed in two different syntactic contexts represented b
the states numbered 3 and 12, We can trauslate that in a lost of efficiency in relation to syntact;
sharing whichever it is the syntactic formalism considered in cach case. So, for example, using a

parsing process itself. In particula

©w

$also called predictive parsers.
an b as the case when ambiguitics arise,




Figure 6: 1CE representation, using a LALR(1) kernel in S1

r"I ---------------------------------- B -I_'Nil
m o e
2 l—"l—I_N" s te [T
1 l_r_NII'—cr‘Nil 6 prep l"—[—’—Nn AT
3 n AR el el A S [T M

ynamlc frame. C onsoquently, ”l(’ quallty of lh(' syntactic qhalmg is better whvn (hv kernel is
orithm of simple precedence, as it is shown in figure 7, since here the concept of state cannot
ntiate between irrelevant syntactic contexts. In this last case, we can share the previous
, but also its father in the forest indicated by an icon representing a black hand.

Figure 7: 1C'E representation, using simple precedence in $1 or §*
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4 det n

At this point, it is clear that sharing of computations and sharing of structures is guaranteed
then the left syntactic context is the same for several parsing process working on a same input
tring. This has a practical interest when analyzing a natural language. In clfect, usually
imbiguities are local in the sense that we can unify them in a same node of the parse forest.
\t this moment, the left context is the same and sharing is total hetween the trees affected by
hat ambiguity as it is represented in figure 8. In our example, this lllll[l(‘dLIOH is only posml)lo
ince we have reduced the two possible analysis {or the ambiguous node S,

Figure 8: Cases to be considered in syntactic sharing
Local ambigulty Local sharing during context-Iree transitions

A
I’ \\
" “

”
[ shared nodes \ /
Pty

{1 unshared nodes

However, it is possible that sharing will be feasible even on different contexts, for certain
ransitions in the automaton. A particular interesting case is represented by push and horizontal
ransitions!?, that is, those depending only on the top of the stack. In this scuse, given a PDA

10which do not change the stack configuration.




A= (Q,2,A,8,q0,20,9Q)) and &, &, two different stacks, we say that there is a contez
derivation in nsteps from &y to €, when: :

o There exists a sequence £, ,,—, verifying that &_; |- &, Vi € {1,
o Vie {1,...,n}, 3E not empty, such that & = €.

and we shall denote il as E(,ﬂ £n.
ldl\lllb ag,cuu into account that no(leb in tlu. 1e:ultmg shared forest are 1tems in the pa

ac Lually being (I.lldlYZ( (l is uot depcudent on the contcxt This is, for example, the case of
nodes indicated by icons representing a hand with a pencil in figure 6.

In relation with the preceding discussion, one essential guideline to achieve better shar
to try to recoguize every grammar rule in only one place of the generated chart parser code,
at the cost of increasing non-determinism. So, we can guarantee that sharing will be effe
as much as possible, since the number and the extension of different left syntactic con
will be winimized and therefore sharing quality will be maximized. This is a simple idea
which we base the formalization of the sharing problem on ambiguous parsing. More exactl
A=(Q,8,0,0,qu, 4y, Q) is a PDA, then we have that :

3¢, defs ¢de & Yk, de]= Cdw

Intuitively, this implies that both push and horizontal transitions are only dependent on th :
ol the stack, thal is, on the last performed parsing action. In essence, this result introduces:
origin of the different behavior exhibit, in relation to syntactic sharing, by parsing algorit
bascd on a same approach to produce the parse tree!!, but considerating different determiniz
techniques. Tn effeet, most of these, as the classic LR(k) ones, Lias as consequence the deform '
of the initial grammar by virtue of the application of a predictive technique in the generatis
the parser'. Tu fact, we are talking about the kuown state splitting phenomenon of LR(k) pat
that can introduce diflerent syntactic contexts, since some grammar rules can be recognize
several schiees in the PDT. Such a deformation has habitually as origin some of the follos
two ones:

e I'he use of lookahead techniques, as in the case of the LR(k) algorithms, when k > 1.

o The differentiation of the recoguition of a symbol in function of the rule context in which
it has been perfored. This is typically the case for LR(0) approaches and all algorithi
taking as basis the CIPSM'™, such as LALR(K) and SLR(k) methods. This is also one of

canses of state splitting in LR(k), when & > L.

[ this sense, from the point of view ol the sharing quality, pure bottom-up techniques as sir
precedence are more efficient. In effect, it takes only into account grammatical features.
reverse of the coin is represented by its more restrictive deterministic domain, which we
translate into an inefliciency in the treatment ol the local determinisi phenomenon. Thus, as
have before commented, ambiguities have usually a local behavior and during most of the
deterministic parsing would be possible.

Y fundiunentally Lottot-up and top-down methods.

2in (e case of the LRREK) algoriths this implies the generation of the corresponding finite state machine that differences’
symtactic coutests in function of the state where (he parsing process is.

Bihat is, the Churacteristic Finite State Machine of the LIR(0) parsers.




Dependence on the dynamic frame

shall now disregard the general context-free parsing method applied to obtain the forest,
ve shall treat the problem from the point of view of the stack representation used during
parsmg process. More exactly, we shall turn our attention to the two most commonly used
amic frames, denoted S and S2.

ntuitively, it is not difficult to predict the consequences of the use of a given dynamic frame. In
t, items in S' will permit a better sharing of structures, since they contains only one mode'
herefore the length of the context-free derivations can be longer. In relation to this, &2
ot be considered as optimal because the continuous dependence on the context represented
“the second mode of the items. We can illustrate this situation in our example, conside ring the
icular case of extended LALR(!) automata. So, in figure 6 we can share the node indicated
n icon representing a hand with a pencil, while in figure 4 this is not possible. The reason
the first one corresponds to an analyze in S' and the sccond one to an analyze in S2. o
his behavior it is sufficient to consider which are the configurations of the slln(k in the
R 1) automaton once we have scanned the substring "I saw a man with a telescope™, Lo later
yin sequence the reductions corresponding to the rules:

(4) NP — det n
(6) PP — prep NP
reader can see such a configurations in figure 9, where it is easily verifiable that in the case

€- 51, all pop actions can be shared during the reduction of the rule numbered (1). "This is
otithe case in S?, because the dependence on the second mode of the items.

Figure 9: Sharing stack configurations in S' and S2
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... after the scanning of "f saw a man with a telescope*

At this point, the only problem to solve is to {ind the conditions under which we can consider
L or S? as dynamic frame. In effect, given that in ST actions depend on the first and perhaps

in essence, the top of the corresponding stack in S7.
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also the second element in the stack, compatibility, completeness and correctness are assuréd
all cases when we work in 52, However, we have seen that the best possibilities do not corresp
to 5%, bhut to 5. So, we can summarize the advantages of S! compared to S? in three point;
of them related to the use of a inore complex structure in S%:

o ctter space complexity.

o lligher subsurniption posstbilities.

o Belter shiaring ellficiency.

As a consequence, our initial problem can be reduced to verify the conditions under which §
be considered, in other cases 5% will be the most adequate dynamic frame. )
[Lis also important to remark that although the systematic use of S! guarantees the best sh
quality for a given parsing algorithm, this does not necessarily imply that the resulting forests
always prelectly shared, but only that the computations are reduced to the strictly necessaryi{d
the point of view of the parsing algorithm. In our example, this kind of phenomena is loc
i figure 6 where it is not possible to share those nodes representing the reduction of rul
because they are in different syntactic contexts in the LALR(1) automaton. If we try to-§
them, using such an operational formalism, the result is not a reduction of the computation
the augmentation in the complexity of that computation process. ‘
Summiing it up, the choice of a particular dynamic frame is central to assure a good shat
computation process, essential to guarantee efficiency in a non-deterministic context. In praci
the situations justilying the consideration of S? instead of S limit us to the case of the u§
prediclive parsers.

4 Experimental Results

Once introduced the essence of the problem of syntactic sharing, our goal is now to prov
veracity of this reasoning, in practice. We use the syntax of ambiguous arithmetic express
to show efficicucy of the parsing process in relation to the dynamic framework considered.
is nolan example of natural language, but at this point of the discussion it is clear that ¢
mlo evidence the behiavior face Lo sharing properties, a small context-free grammar with a
density of ambiguitics is the most appropriate.

Results are shown in table | for the number of computations in the parsing process an
table 2 for the statistics in relation to sharing of these couputations. The grammar is giv
the following productions:

(0) §=8+ 8 (1) S=5+85 (2) S=(S) (3) S— number

[n relation to the nature of the tests, we must take into account sotne points:

Lo Al tests have been performed using an extended LALR(1) parser generated by ICE 1.
15, 16], which has 17 shift /reduce conflicts. : :

2. All tests have been performed using the same input programs.

3. 'lest prograuns are of the form:

b{+b}*




where 7 is the
have a numbe

-tests have show

number of +'s. As the
v ol ambiguous parse

l if 7=
(-"i = 2?‘ ] . .
; I—*-\l if 7>

n the better hehavior of §! face

Table L: Statistics on the nuber of ite

0,1

ms generated by 1C'E

grammar contains a rule § — & 4 S,
's which grows exponentially with o

these programs

This number is:

to other dynamic frames as §2 and ST,

Table 2: Statistics on the numbe

v of stacks configurations shared by ICE

Awmbiguities [0 | 2 |5 1 ] 42 ] 132 [ 429 [ 1.430c¢ +3 | 4.867¢ +3 ] 1.6796e + 4
S’ itcins Bl 22938148 [59 [ 73 84 Y8 T
S? items 8122322158 172 92 112 134
ST items 161 28 | 44 | 64 | 88 116 | 148 184 |2
Ambiguities | 5.8786¢ + 4 | 2.08012¢ +5 | TA29¢ +5 [ 2.67444e + 6 | 9.6948450 +6
ST itews 113 129 116 1G4 183
S* items 158 184 212 242 274
ST iteins 268 316 368 124 184
Ambiguities [ 3.535767¢ 1 7 1.2964479¢ + 8 | 4.776387¢ + & L76T26319¢ +9
ST items 203 224 246 293
5% items 308 344 382 164
ST items 548 616 688 844

ith a maximum shar

resulting forests.
More exactly, the

practice, the published general context-fre
ontext-free parsing is due to a ¢

syntactic data structure and the general par
efficiency. So, the best results have bee

Summary and Conclusions

their presentation. In

lescribed work exposes close

dered when the kernel for t

omproinise between the sh

Ambiguities 0 [ 2 | 5 4142 132|429 [ 1 430¢ + 3 1.862¢ +3 | 1.679G¢ + 4
ST jtems Oj2 71152640 |57 |71 100 126
S° items 02 61220030 |42 {56 72 90
Ambiguities | 5.8786¢ + 14 | 2.08012¢ +5 | T429c +5 [ 2.67444e + 6 | 9.699815¢ +6
S' items 155 187 222 260 301
5% itemns 110 132 156 182 210
Ambiguities | 3535767 + 7 1.2964479¢ + 8 | 4.776187¢ + 8 L76726319c 4+ 9 |
ST items 345 17392 422 551
S? items 2410 272 306 380

‘e parsing algorithims do not, always give shared forest,
ing. This may result in forest that are larg

eror more complex. However this
characteristic does not invalidate

effect, we have shown that the elliciency in

aring of computations and the sharing
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sing framework,
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'y we cannot always use §!

in order to get computational
1amic frame S', where wo can
sers with a moderate
as dynamic frame. In particular,
he parser is a fon-dawn ane L con .
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additional drawback in relation to the classic one for top-down algorithms: Working throug
input from left to right, this class of methods consider many useless alternatives when predi
how the parse tight contiuue. For a large grammar with a high level of ambiguities, as it is the
of context-free backboues for natural languages, this slow down the parsing process consid
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