SEPLN - VIII Congreso 217
USING TYPED FEATURES LOGICS TO REPRESENT COMPLEX

Keywords: Lexicography, feature logic

‘;f‘? LAXICAL DATA

Lee Fedder

I The Centre for Computational Linguistics
1 UMIST

E- lee @ uk.ac.umist.ccl

%é

Abstract

The ESPRIT project MULTILEX aims to produce standards
and tools for the construction and exchange of large re-useable
computational lexica. The proposed structure of the lexical entries
is complex, and poses some particular representational problems.
In this paper, we show how a Typed Feature Logic (TFL) based
representation language provides an elegant formalism for
recording this lexical structure. A prototype has been encoded
using the POLYGLOSS TFS sysiem version 4 running on a
Macintosh LC.

Introduction

The MULTILEX project is developing standards and tools for
the construction and exchange of large, re-useable, computational
lexica. This, it is hoped, will prevent the repetition of effort
currently involved in building lexica for new applications such as
ranslation and word processing.

SEPLN - VIII Congreso

SEMANTIC

FIGURE1 - LEXICAL STRUCTURE

In this paper, we show how this data structure can be
recorded using a TFL based representation language, provided it
has the right properties.

The TFL Based Representation

Typed Feature Logics are a recent development in
computational linguistics. They represent a merging of the
concepts of unification grammars, from linguistics, and ideas about
object-oriented representation and data typing, from the world of
computer science.

There are currently several implementations of TFL
systems, each with different characteristics dictated by the
intended application. We have the ACQUILEX system (Copestake
1991), the Carnegie-Mellon system (Carpenter 1990) and the
POLYGLOSS system (Emele and Zajac 1991). The formalism we
have proposed for MULTILEX is ciosely based on the POLYGLOSS
system, and this has enabled us to prototype the MULTILEX
lexical entries using the POLYGLOSS software. Where our
formalism requirements differed from POLYGLOSS, we were able
to simulate using existing POLYGLOSS facilities.

SEPLN - VII Congreso 219

TFL offers a space-efficient, declarative, theory independent
and linguistically relevant way of recording large amounts of
lexical information, along with a lot of built-in data structure and
consistency checks. These qualities make it attractive as a medium
for building large lexical databases such as MULTILEX.

We begin by describing the basic elements of the TFL.
These are all taken from the POLYGLOSS system, and use
POLYGLOSS syntax. There are three data structures. Typed
attribute-value matrices (AVMs), a hierarchy of types, and
macros.

Typed AVMs

Each AVM is "typed”. A type constrains the structure of the
AVM, and can be atomic or complex. An atomic type is simply a
list of values, and a complex type gives the attributes allowed in
an AVM, along with type declarations for each of the values. An
AVM may not contain attributes which do not appear in its type
declaration. In the following example, the type "AGREEMENT" is
complex, having the attributes “person” and “number”, and types
"PERS" and "NUM" are simple. The symbol "I" should be read as
disjunction.

AGREEMENT = [person: PERS,number: NUM].
PERS =11213,
NUM = sing | plur.
The following is a well-formed AVM of type "AGREEMENT".

AGREEMENT[person: 3,number: sing].

The Type Hierarchy

The types are ordered in a subsumption hierarchy in which
the constraints are inherited monotonically from type to sub type.
Muitiple inheritence is allowed, and the hierarchy can be defined
top down or bottom up, using the "I" and "&" operators as follows.

SUPER-TYPE = TYPE1 | TYPE2 | TYPE3
TYPE4 = TYPELl & TYPE2

This gives the hierarchy shown in Figure 2.

220 SEPLN - VIO Congreso

Figure 2. A Type Hierarchy.

Macros

Macros are nsed where the same data structure is needed in
more than one place. They are like types, except that they do not
participate in the type hierarchy.

3PS := AGREEMENT(person: 3,number: sing]

TFL and the MULTILEX lexical structure

Looking at the MULTILEX lexical structure, we can see that
we must allow for the case where a lexical entry has a set of
GPMUs, and for the case where a GPMU or GPMU set is
common to several lexical entries. Using TFL to satisfy this
combination of requirements is the key issue addressed by this

paper.

There are several strategies we might adopt. The first is to
use a facility included in the ACQUILEX TFL system whereby one
lexical entry may inherit information from another lexical entry.
This is done by allowing a value to identify an attribute path
which includes the name of the other lexical entry.

5
e
1
i
7
ey
¥
s,
o
. Ko
: A
; ko
e
b
A
R
=
=
=

SEPLN - VII Congreso 221

bankl = [gpmu : [canonical-form: "bank”,
phonology: 'banc’],
syntax: [head: [syncat: nounl],
semantics: "financial institution”].

bank2 = [gpmu: [bankl:gpmul, ;; Inherit from bankl
syntax: [head: [syncat: noun]],
semantics: "edge of a river'].

However, in MULTILEX we need to allow for sets of GPMUs,
and it is difficult to see how lexical inheritance can cope with this.

A second possibility is to use the inheritance hierarchy. This
can be done by declaring the GPMU as a type, which is then
inherited by any lexical entry that needs it.

BANK-GPMU = [gpmu: [canonical-form: "bank”,
phonology: 'banc']].

bankl = [gpmu: BANK-GPMU,
syntax: [head: [syncat: noun]],
semantics: "financial institution”].

bankZ = [gpmu: BANK-GPMU,
syntax: [head: [syncat: noun}],
semantics: "edge of a river"].

If a set of GPMUs is required, the GPMU can be declared as a
super-type, where the sub-types are the alternative GPMUs. The
normal behaviour of the hierarchy leads the alternative GPMUs to
be handled as a set of alternatives.

SUPER-GPMU = GPMU1 | GPMU2 | GPMUI

This is a neat solution, but it means an extension to the type
hierarchy for each lexical entry. This is rather contrary to the
concept of typing, and would .lead to a huge type system.

The final possibility, which we have adopted, is to use the
macro facility. The GPMU is declared as a macro. If a set of macros
is required, each is declared as a separat€ macro, and a disjunction

222 SEPLN - VIII Congreso

of macros is included in the lexical entry. This provides exactly
the properties we need, without overloading the type system.

BANK-GPMU := [gpmu:[canonical-form: "bank",
phonology: 'banc’]].

bankl = BANK-GPMU &
[syntax: [head: [syncat: noun]],
semantics; "financial institution”].
bank2 = BANK-GPMU &

syntax: [head: [syncat: noun]],
semantics: "edge of a river"].

And if a set of GPMUs is needed,

bank2 = BANK-GPMUI1 & BANK-GPMU2 & BANK-GPMU3
syntax: [head: [syncat: noun}],
semantics: "edge of a river").

In the POLYGLOSS system, disjunction of macros is not
allowed, so the prototype uses macros where no set of GPMUs is
necessary, and the abovementioned method of declaring the
GPMU as a type where sets are required.

Conclusion

Using a TFL based representation language for the
MULTILEX Internal Format poses particular problems because of
the structure of the lexical entries. In this paper, we present a
neat solution which has been implemented using the POLYGLOSS
TFS system. ‘

Acknowledgements
"Thanks to the ACQUILEX team at Cambridge University, and

the POLYGLOSS team at Stuttgart University for their help with
this work.

SEPLN - VI Congreso

Bibliography

Copestake, A. 1991, Using the LKB. In Proceedings of the
ACQUILEX workshop on default inheritence in the lexicon.
By Briscoe et al. (eds). Technical Report 238. The
Computer Laboratory, Cambridge University.

Carpenter, K. 1990. Typed feature structures: Inheritence, (in)
equations and extensionality. In Proceedings of the first
International Workshop in Inheritence in Natural Language
Processing. Tilburg, The Netherlands.

Emele, M. and R. Zajac 1990. Typed Feature Grammars.

In, Proceedings of the 13th International Conference on
Computational Linguistics, Helsinki.

223

