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CONNECTIONIST REPRESENTATIONS FOR NATURAL LANGUAGE: dLD AND
NEW

Noel E. Sharkey
Department of Computer Science
University of Exeter

Connectionist natural language processing research has been in the literature for less
than a decade and yet it s already claimed that it has established a whole new way of
looking at representation. This article presents a survey of the main representational
techniques employed In connectionist research on natural language processing and
assesses claims as to thefr novelty value f.e. whether or not they add anything new to
Classical representation schemes.

Connectionist natural language processing (CNLP) research has barely been in
existence for a decade (cf. Sharkey & Reilly, in press, for a potted history) and vet it
has grown enough to attract criticlsm from some formidable guardians of the
Classical tradition. For example, Fodor and Pylyshyn (1988) claimed that
connectionist representations could work for NLP if  and only if they were
implementations of Classical representations. One of their main arguments was that
only Classical representations exhibit the properties of compositionality, and
structure sensitivity and therefore only Classical representations can be used for
natural language processing. While it is not the purpose of this paper to address the
Fodor and Pylyshyn arguments in detail, some of their arguments will be used to
€xamine connectionist representations for their novelty value. The main aim of the
paper is to present a critical survey, and the Classical criticisms are discussed in
this light of the survey. The stance taken here will be that there are novel
connectionist representational types which are compositional {though not in the
Classical sense) and which can be manipulated by structure sensitive operations.

Natural 'language research is normally concemed with two main types of

representation: structural or syntactic representation and semantic or meaning

representation. The latter Is usually divided into the representation of lexical items

and the representation of larger units such as phrases or sentences. In much

connectionist work it is difficult to separate syntactic and semantic representation. .,
Nonetheless, each of the different types will be discussed in turn and a taxonomy will

be proposed.

1. The representation of meaning and structure.

1.1 Semantic representations.
Localist v Distributed.

One of the major debates in connectionist research of the eaﬂg to mid-eighties was
concerned with whether or not individual items in a net should be represented by the
activity on a single unit in a net - a localist representation (e.g. Cottrell, 1985) - or
whether their representation should be a distributed pattern of activation across a
number of units (e.g. Hinton, McClelland, and Rumelhart, 1986). Localist
connectionism became almost synonymous with Jerry Feldman's group at Rochester,
USA, while the roponents of distributed representations resided in San Diego
(UCSD) as Rumerhart and McClelland's Parallel Distributed Processing group (c.f.
Feldman, 1989 for a fuller discussion). _
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implementation. We can extract two simple defining criteria for distril
representations from the Hinton paper. First, an entity that is described by a
term in the descriptive language is represented by more than one element i
connectionist implementation. For example, if the letter 'F Is a term in the descr
language, then the distributed elements in the descriptive language may be the
features ' ', * ' and ° °. Second, each of the elements in the connect
implementation must be involved in representing more than one entity describec
single term in the descrigtlve languat%e. For example, the features that make u
letter 'F' may also be used as part of the representation for the letter 'E'.

Figure 1 shows a fairly typical example of a localist net from the Rochester ;
{Shastri & Feldman, 1986). This is rather like the old semantic network idea in -
each unit in the net represents a single concept and ts linked ta other units by -
positive or negative weights. In most of the early Rochester work the weights we
by hand rather than by a learning algorithm. But there is no reason why Ic
representations cannot be trained using the same algorithms as those ¢
distributed school.
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Both representational types have their advantages and disadvantages. The
advantage of localist representation is its transparency. Each unit is clearly la
and so it is easy to see what its function is in the network. However, it is diffi
see what the novelty value of such representations amounts to. Since eacl
represents a single semantically interpretable symbol, there is no new actiol
does not appear in the Classical tradition. Connectionists using such pu
representations must rely on the novelty value of the processing Implementat
the main thrust of their researchl. '

Memory natwork

As we shall see later, despite their seeming opacity, there are advanta
distributed representation which make them more desirable. Unlike I

lWe have not discussed here the problems of bullding a representational theory using p
representations for whole propositions. Such a theory would have to make the unlikely assi
that mind has a finite number of propositions which can never be unpacked and used to cc
novel proposittons (see Fodor & Pylyshyn, 1988).
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representation, there are number of types of distributed representation. Two broas
classes will be discussed here: symbolic and subsymbolic (c.f. Smolensky, 1988). Al
other types may be subdivided into these two groups..

Symbolic v Subsymbolic.

To understand the distinction between symbolic and subsymbolic representations, w
need to look first at the notion of a microfeature. This is a term that has not bee
used entirely consistently in the literature. All would agree that microfeatures are th
atomic elements in a distributed connectionist representation. However, som
authors (e.g. McClelland & Kawamoto, 1986) use the termn to refer to individusz
elements which are semantically interpretable on their own without examining the;
role in the representation e.g. propositional predicates such as is human, is sof
These sort of microfeatures are symbolic in the sense that they refer to properties i

the world. That are much akin to semantic features, and are sometimes called sem:
localist.

%re 2 shows some of the microfeatures used by McClelland and Kawamoto {1986
ile these are closely related to earlier sernantic feature representations, they hav
the defining criteria for a distributed representation. That i{s, a single term in th
descriptive language, such as the word ‘ball’, is represented by a number ¢
microfeatures in the connectionist implementation i.e. non-human, soft, neute
small, compact, rounded., unbreakable, food. In addition, the microfeature
representing the word ball’ are shared by other words. For example, ‘cheese’ share
non-human, soft, neuter, small, and rounded.

Feature Dimensions & Values

NOUNS
HUMAN human, nonhuman i
SOFTNESS : soft, hard .
GENDER malé, female, neuter
VOLUME - small, mediu large
FORM compact, 1D, 2D, 3D
POINTINESS inted, rounded -
BREAKABILITY ragile, unbreakable .
OBJ-TYPE food, toy, tool, utensil, fumiture
: animate, nat-inan
VERBS
DOER yes, no
CAUSE yes, no-cause, no-change
TOUCH agent, inst, both, none, AisP
NAT-CHGE pieces, shreds, chemical, none
unused
AGT-MVMT trans, part, none, NA
PT-MVMT trans, par, none, NA
INTENSITY low, high

Other authors (e.g. Hinton, 1981; Smolensky. 1988} use the term microfeature
refer to individual elements that are semantically uninterpretable (witho
partic(iipat.ing in further processing) or subsymbolic. By this we mean that no o
individual microfeature refers to a property in the world. Rather, reference to su«
properties emerges from a pattern of activation across several microfeatures. Th
style of representation is more like how many imagine information to be encoded
the nervous system. Each neuron is an unlabelled unit in a large collective fro
which symbolic information emerges.
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There are two main ways in which subsymbolic microfeatures have been devel
the literature. In the first mention of the term. Hinton (1981) arbitrarily set a g
units to represent each word in his s%(stem (although a subvector for eac
represented type information). A set o arbitrary microfeatures used in St
(1989a) Lexical Distance model (shown in Table 1) should give the general pict

Doctor 111000000000000 111000000000000000000000000000
Nurse 111000000000000 000111000000000000000000000000
Knife 000111000000000 000000111000000000000000000000
Fork 000111000000000 000000000111000000000000000000
Bread 000000111000000 000000000000111000000000000000
Butter 000000111000000 000000000000000111000000000000
Dog 000000000111000 000000000000000000111000000000
Bone 000000000111000 000000000000000000111000000000
Foot 000000000000111 000000000000000000000111000000
Shoe 000000000000111 000000000000000000000000111000

Table 1. Arbitrary microfeature sets as used in Sharkey (1989a). Thes
were used for a psychological model of word priming. Hence the vector
of microfeatures are divided into two fields. The first field represent
shared microfeatures between related words, while the second fiel
represents unique microfeatures.

Another way in which microfeatures have been developed is through the use ¢
learning algorithm such as the generalised delta rule (e.g. Hinton, 1986; Miikk:
& Dyer, 1988). Figure 3 illustrates a set of microfeature activations that were -
for use in a prepositional attachment task (Sharkey, 1989b). In this instance
containing two weight layers was given sentences as input and was requ
output a structural interpretation. The leamned microfeatures are the activat:
the hidden units.

thieves stole paintings in musewm MNPA

thieves stole paintings in night VPA

couple admired house with garden NPA

couple admired house with friend VPA

administrator announced cuts in budget NPA
adainistralor announced cutg in maeting VPA

report described govermment’s_programs in education NPA
voport described govermment’s_programs in detail VPA

I read article in magazine NPA

I read article in bathtub VPA
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One disadvanta%e of using symbolic microfeatures is that the task of choosing =
sufficient set of microfeatures is in the hands of the researcher. This can be
_problematic in that it is difficult to determine, a priori, what microfeatures would be
required for a %grgn task. At its worst, the use of symbolic microfeatures can lead t¢
the sort of ad "tuning” from which much of Al research has suffered i.e run thse
system and, if it doesn't work, try some different microfeatures (though it may be
possible to circumvent part of this problem by conductin% an empirical investigatior

with humans to determine a sufficient set of microfeatures

With semantically uninterpretable microfeatures, these problems need not occur. It i
possible for a net to develop_a sufficlent set of semantically uninterpretabl
microfeatures for a required task? (e.g. Miikkulainen & Dyer, 1987).

Some advantages of Distributed representations

Distributed representations require less memory than localist ones. More distributec
items can be represented per vector element (for vectors with more than tw
elements). A classic example is McClelland and Rumelhart’'s (1981) representation ¢
the 26 letters of the alphabet with a 16 element vector of visual features. A localis
scheme would require a 26 element vector.

Localist networks can encode up to n items, where n is the dimension of th
representation space; while distributed networks have the capacity to encode 27-(n+1
items. In Example 1, a comparison is given, of localist representations versu
distributed representations using a four-bit vector. Note that the localist vector hold
only 4 items while the distributed vector holds 11.

Localist representations
1000 0100 0010 0001

Distributed representations
1100 1010 0110 1110 1001 0101 1101 0011 10110111 1111

Example 1. Comparisons of a distributed versus localist representation on a four-bit
vector.

The difference in storage capacity becomes more agparent as the size of tt
representing vector gets larger as shown in Table 2. With only 10 bits, 101
distributed representations may be encoded, whereas a localist representation wi
have a storage capacity of only 10 items.

NO Bits Localist Distributed

1
4
11
26
57
120
247
: 502
10 10 : 1013
Table 2. Comparisons of the storage capacity for localist and distributed systems.

i
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Another important advantage of distributed representations is that they have built
generalisation properties. In localist representations, all of the vectors representi
items are, by definition, perpendicular to one another and equidistant (Hamming
Euclidean distance). Thus it is difficult to capture similarities and differences betwe
items in localist regresentatjon space (although it can be done by explicit markir
On the other hand, distributed representations can form a denser representat
space. For example, for simplicity of exposition, imagine that a set of distribu
representation vectors are unit normalised (i.e. are all set to length 1). These vect
may then be described geometrically as points on a unit hypersphere as illustratec
the sphere in Figure 4.

Figure 4. Two clusters of vectors, a and b, are shown on the surface of a unit sphe

The point here is that similar items will cluster on the surface of the hypersphere |
clusters are showm at a and b in Figure 4. It is then relatively easy to deveic
process model in which similar items produce similar or identical results.

example, if a net was trained to take microfeatural representations of HORSE, (
and COW as input and map them onto ANIMAL in the output, then we would ex
a microfeatural representation for DOG, which was not in the training set, to

produce the response output ANIMAL. That is, we would expect the ve
representation for DOG to be sufficiently close to the vector representation for
other animals to have a similar effect.

A third advantage of distributed representations for CNLP is that they provi
natural basis for content addressable memory (e.g. Hogﬁeld. 1982). at i
network can be trained such that given a partlal description (a subse
microfeatures), it will complete the pattern. Sharkey {1989¢) has taken advantaj
this property to "fill in" information not explicit in a text. This is the connectic
equivalent of default reasoning,but it comes automatically as a standard featu:
distributed representations.

In summary, the various types of semantic representations for CNLP have |
examined here. It was also proposed that the most powerful representation, in t4
of memory efficiency, pattern completion and storage efficiency, was the distrib
subsymbolic. But there is another important reason for favouring subsym
representations. Their examination represents a research tolgc that is uniqu
connectionism. Distributed symbolic representations have been a plied in
Classical tradition in areas such as speech recognition. However, as shall be ar
later. the study of subsymbolic representation is a new departure.
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1.2 The Representation of Structure

A distinction can be drawn between those connectionist structures which are
syntactically accessible and those which are syntactically implicit. Syntacticall
explicit representations are those in which structural operations rely on the actua
spatial layout of theelements in the representations. Syntactically implici
representations, on the other hand, are not spatially concatenative and do no
contain explicit representations ot their constituent tokens. This distinction wil
become clearer as the different styles of structural representation are discussed ii
turn.

Syntactically structured representations

A common form of structural representation in Al is the sentence frame (e.g. Minsky
1975)3. In this notation, propositions or concepts are described as structures explici
containing a number of slots that have constraints on what items may fill them. Fo
example, Schank (1972} developed the notion of conceptual dependeneY in whic.
there were a small number of action frames (approximately 12). For example,

John drove mary to the station.

would be represented as:

—> STATION
JOHN <==> PTRANS --> MARY —

—< ?HOME?
where PHOME? is a default value. This can also be represented as a frame with slots

agent action object to from

JOHN DROVE MARY STATION |?HOME?

Hinton (1981) described a distributed representation for propositions which shares
number of prtz})erties with these sentence frames. In Hinton's system, binary vecto:
representing distributed propositional triples are conceptually divided into thr
parts. The elements of the nth partition, by analogy with frames, represent all ar
only the permissible fillers of the nth slot." Thus the only constraint on what iten
may fill a slot is only that the appropriate vector partition has bits for representir
the items. There are defaults for Fﬁling in missing values in the partitions/slots, b
these fall out of the pattern completion process in Hinton's system.
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These vector frames are syntactically explicit because the vector partitions
slots in a structured frame4. Thus it’is easy to tell at a glance what are the
the constituents. Probably for this reason, vector frames have been used wid
McClelland & Kawamoto, 1986; St.John & McClelland. in press; Touretzky &

1988). Their main use is as input and output buffers to make the inputs and
comprehensible. '

Although very useful, vector frames suffer from three particularly bad pr
First, there can be considerable redundancy in the representations. For e
most items that could appear in an Object partition could also aPpear in the
partition, and so they have to be represented twice by different elements. The
problem relates to the first in that the representation for the same item
partitions is entirely different. Thus the system has no way of "knowing; t
example, the book in the Object partition is the same as the book in the
position. A third problem with vector frames is that they have a fixed length o
number of partitions. Thus all of the input sentences can be only of that lengt

A number of ways have been found to get around this fixed length restriction
having a processing window that moves along the input vector (e.g. Sejne
Rosenberg, 1986). Other researchers have taken the alternative appr
employing recurrent networks (e.g. Elman, in press) which accept sequential
We shall return to examine these representations in more detail in the sec
Encoding temporal structure.

The vector frame representation, it could be argued (c.f. Fodor & Pylyshyn, 1
simply a connectionist implementation of symbolic case frames. ny being
implementational, vector frames add nothing new to the theory of langu:
cognition. For a connectionist representation to add something new it r
difterent from classical representations. Nontheless, vector frames are us
input and output representations. They can act as a symbol surface or
connectionist representations can emerge for the researcher to check out w
been happening undemeath. We now turn to examine distributed represent:
structure which are syntactically implicit.

Syntactically unstructured representations.

Saying that a representation is syntactically implicit means that it does not
concatenative constituent structure. The most common form of syntactically
representations are those that result from a mapping of an input space onto
of lower dimensionality. For example, Hinton (1981} mapped propositiona
onto a lower dimensionality PROP assembly using fixed random weights. Th
triple, in a sense, recruits a set of PROP units to represent it in a synt
implicit form. Through a leamning process, it is possible to map the PROP ac!
back onto the higher dimensional Triple space, and thus recreate the st
Coarse coding, as Hinton called it, is discussed at length in Hinton, McClelle
Rumelhart, (1986). :

. Variations of this type of compact representation are common in the literat
Touretzky & Hinton, 1988; Touretzky and Geva, 1987; Willshaw & von der M
1979; Cottrell, Munro, and Zipser, 1989) and may be set up by a simple algor
in conjunctive coding (e.g. McClelland & Kawamoto, 1986), or may be leame

4A similar technique was employed in McClelland and Rumelhart's (1981) model of word re

The vertar nartitinne In that inctanra wrara nead tn renrscant nnacitinnal infarmatinn Af tha 1.
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by supervised (e.g. Hinton, 1986) or unsupervised techniques (e.g. Kohonen, 1982
Regardless of the learning technique used, the representation encodes statistic:
regularities of the input (usually) by reducing the pattern environment to a low
dimensional feature space. When required, the lower dimensional coding can t
decoded onto the symbol surface again.

To make the notion of compact representations clearer, from the perspective of bot
semantic and structural representation, we turn now to briefly analyse one of tt
learning algorithms in more detail.

1.3 Representation in a back propagation net

In this section, we discuss how the generalised delta learning rule construc
representations. This is perhaps the most commonly employed learning algorithm i
connectionist natural language research. We begin gy discussing its application in
feedforward net architecture with two layers of weights (as shown in Figure 5).

0000-500#.00000'0

i .
: Figure 5. An illustration of a standard back gropagatlon net with 2 layers of weight

The circles represent the units and the lines between are partial representation of tt
weights.

4 Before running the learning, all of the weights, from the input units to the hidde

units and from the hidden units to the output units, are usually set to small rando
4 values in the range -1 to +19. In the forward operation of the net, the input vector
» 1s set to the binary states of the first inFut pattern. This vector is then maPped on
i the hidden unit vector h (normally of lower dimension than v) by muitiplying v 1
5 the first weight matrix W1 and applying the squash function S:Wjiv -> h (where S
i 1/1+e’X | x = W)v). Then h is mapped onto the output vector o using the san
€. squash function S:Woh -> o

During learning o is compared with a target vector t to determine its correctness. If
. >t -0 >0 then an error correction procedure is set in motion which adjusts tt
8 weights matrices W) and W2 such that o is closer to t. The mathematics ar
& rationale of the weight adjustment have been given full treatment in many sourc
3’! (e.g. Rumelhart, Hinton, and Willlams, 1986; Hinton, 1989) and so will not |
¢ repeated here.

* 3A smaller range of initial values iIs sometimes used. Kolen and Pollack (1990) demonstrate the
importance of initial conditions to learning In monte carlo simulations and show that under certain

g —~
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What we are interested in at present is how the representations develop over
Our first question must then be: where are the representations. Up until nc
concern has only been with representations that are patterns of activation ac
set of units. In this sense, the hidden unit activations are the representatio
discussed in sections 1.1 and 1.2), while the lower weights are part of the en
function (S:Wiv -> h) and the upper weights, are part of the decoding fu
(S:Wah -> o).

However, we may also describe the encoding and decoding weights as represent
themselves. It is instructive to view the leaming process geometrlcaﬁy to ;
intuitive grasp of the notion of weight representation. The first step in learnin
adjust the upper (decoding) weights so that the weight vectors for output uni
want to be 'on’ are moved closer to the current vector of hidden unit activation
the weight vectors for outputs that want to be ‘off are moved away from the ¢
hidden unit vector. Secondly, the lower {(encoding) weights are adjusted to pu
vector of hidden unit activations even closer to the weights whose outputs shc
'ont’ and further away from weights whose outputs should be “off’.

The upshot of this learning is: (i) input patterns that are required to produce :
outputs will learn to produce similar hidden unit activations and thus they wi
to have similar ‘projective’ weights; (i) similar outB:lJt patterms will have ti
similar ‘receptive’ weights. It is possible to examine this similarity using a Eut
distance metric, where the distance between two vectors v] and v in RIl
length of vi - vo l.e. distance d = |lvy - vall, where length livll = v.v.
Euclidean distances can then be fed into a cluster analysis program which pl
similarities on a 2D dendogram.

The point to be made here is that it is not just unit activations that may be «
under the representational umbrella. The weights can also be thought
representations. It can be argued that the projective weights from the inputs .
representations of individual elements and the hidden unit activations z
compositional representation of strings of the individual elements.

2. Recent issues in natural language representation.

2.1 Encoding Temporal Structure

One problem for researchers employing the standard feedforward back pro
nets discussed in 1.3, has been how to represent temporal sequences. In readi
and speech understanding, the input Is structured in time, and thus the beha
a system cannot be determined so elty on the basis of the current input elemen
is required is some sort of memory for previous elements in a sequence (or se
to be combined with the current element. Up until now, the intﬂut representat
have examined involve presenting each whole sequence to the system as
input. This is equivalent to buffering the input stream until a sequence st
completed, before acting on it. The question then reverts to how to struct
contents of the buffer. o

The main approach examined here has been the vector frame (e.g. Hinton
McClelland & Rumelhart. 1981). Another approach is that of Rumelh:
McClelland (1986). They adapted Wicklegren's (1969) proposal for the represe
of words as sequences of context sensitive phoneme units (Wicklephones
represent each phone as the phone itself. its predecessor, and its successor |
vowel in the word “"cat” would be represented as gat). Thus a set of overlappin;
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Wicklefeature is a single unit that conjunctively coarse codes a feature of the central
phoneme, a feature of its predecessor, and a feature of its successor. A different
method. employed by Sejnowski and Rosenberg {1986) for their NETtalk system,
employed a window containing 7 letters that moved across an input text. The central
element of the window, on each successive move was encoded using the three
elements on either side of it as context.

An alternative solution to the encoding of sequential structures, without using a
buffer, was proposed by Elman (1988) with the introduction of a neétwork architecture
for predicting successive elements of a sequence (sentence). This is a variant of the
feedforward multi-layer perceptron which allows feedback or recurrent links from the
hidden units to the input. As each element of a sequential structure, such as a
sentence, is coded onto the input units, the previous hidden unit vector is copied
onto memory units in the input stream®. In this way, the meaning of an element of a
sequence will be shaded by the context of the prior elements. In a sense each input
cycle contains a memory ot the previous cycles in the sequence.

Elman (1989) has conducted a number of simulations using the simple recurrent net
architecture (SRN). He presented short sentences to the net, one word at a time,
using the next word as a target. Thus the task for the net was to predict the next
word in a sentence. Elman found that the network had developed hidden unit
representations for the input patterns that reflected information about the possible
sequential ordering of the inputs e.g. the net knew that the lexical category VERB
followed the lexical category NOUN. Cluster analyses of the hidden unit activations
revealed that the verb category is broken down itno those verbs which require a direct
object and those for which a direct object is optional. Furthermore, the analyses
showed that the nouns were divided iInto animates and inanimates with a further
subdivision for human and non-human. In a larger scale analysis, Elman also
discovered that the tokens of particular types clustered together?. Thus, hidden unit
representation in the simple recurrent net, after learning, can be shown to exhibit a

number of properties needed for a lexical category structure and type/token
hierarchies.

Elman (1989) also investigated the representation of grammatical structure in a study
which used a phrase structure grammar to generate the input sentences. This
grammar allowed recursion through the use of a relative clause category that
expanded to NPs that permitted further relative clauses. The results suggest that the
net had learned to represent abstract grammatical structure. For example, when.
presented with a subject noun the net correctl Fredicted a verb which agreed with
the number of the subject noun (l.e. singular/plural), even when a relative clause
intervened. In addition, given a particular noun and verb, the net was shown to
correctly predict the class of the next transition allowed by the mar, thus
demonstrating the representation of verb argument structure. Finally, the results
from the recursive representations showed limitations. These representation were
found to degrade after about three levels of embedding.

The same type of SRN was employed by Servan-Schrieber, Cleeremans, and
McClelland (1989) in a study which involved leaming a finite-state grammar. There
were many interesting results from this study. But the most important results, for

SElman's recurrent net is actually a varlant of Jordan's (1986} sequencing net. Jordan tcok his
recurrent links from the output units or from the training vector to the input units whereas Elman's
recurrent links are from the hidden units to the input units.
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our purposes, are: (a) the net learned to be a perfect recogniser for a finit
grammar (at least for the Reber (1967) grammar they used). (b) under
conditions, long distance sequential dependencies were exhibited, even
embedded sequences. The latter result was best when the dependencies were re
at each step. Moreover, performance across embedded strings deteriorated
length of the string increased.

In sum, by extendinc% the backprotpagation algorithm in a simple recurrent net,
been possible to add a number of features to the compact representations the
discussed in Section 1. Primarily, SRNs allow the representation to encode seq
information such as the order of the input, and the path from one element to ai
They also exhibit a certain ability to allow the encoding of long range seq
dependencies across embedded sequences.

2.2 Recursive distributed representations

One aspect of natural language processing that has been problematic |
connectionist community is that natural languages are recursive. We have :
seen, in the last section, how this posed difficulties for SRNs. In this section, w
discuss two recent attempts at representing recursive structures.

Tensor product representations

The tensor product system (Smolensky, in press) combines lexical items wil
syntactic roles in a way which is mathematically equivalent to outer product 1
(cf. Sharkey, 1989). That is, a vector representing an item (or role filler), 1, is br
a vector representing a role, r by the outer product riT. This is a tensor of rz
and results in a square matrix of activations. However the formalism goes bey
simple outer product in that it enables the construction of recursive represe
for., say, syntactic trees by using 3rd, 4th, or nth order tensors. A third orde:
is a cube of unit activation and orders beyond the third are hypercubes.

There are two main problems with tensor products. First, with deep embedc
reFresentation could grow exceedingly large. Second., when the input vect:
filfers for the roles) are not orthogonal the tensorial representations hav
constructed by more complex incremental learning methods (e.g. the delta
linearly independent pattern sets, or back propagation). This makes tht
process less manageable as it is not at all obvlous how such learning wot
place8. However, processing and memory considerations aside, Smolensky |
an elegant and formally tractable theory of recursive representation. We can
to later research to work out how to develop it In real time and how to u
recognition.

Recursive auto-associative memory (RAAM)

Hinton (1988) outlined an idea for handling embedded clauses by Inserting a
description of them into larger representations. However, he did not detail a
by which such representations could be learned. This challenge has been takt
Pollack (in press) who shows how such a reduced description can be lean
Recursive Auto-Associative Memory (RAAM). The RAAM architecture is the

the standard feedforward net with two layers of weights (for encoding and «
the hidden unit representations) and the standard back propagation algo
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employed for learning. Pollack has shown the power of the RAAM system for encodiny
a sequential stack with PUSH and POP and also for encoding and decoding syntactis
trees. The whole trees are represented in a single layer of hidden units and can b
decoded in cycles until the terminal symbols appear as the outputs. The differenc
between RAAM and the usual back propagation net rests on the method fo
presenting the input patterns.

we shall briefly describe the operation of a RAAM system here using the example of
simple binary tree: ((A B) {C D)). First the input space is divided into n partitions, wit!
Ic units In each partition. The size of n depends directly on the maximum valency ¢
the tree to be represented (in our simple example n = 2). Since this is a
autoassociative net the output vector is identical to the input vector; both have n
units and there are k hidden units.

The representation of the binary tree would be formed as follows: (i) A and B ar
presented in the two vector partitions and autoassociated. The resultin% hidden un
representation Rj is kept to one side (on an external stack or somesuch); (if) C and
are presented and autoassociated and the resulting hidden unit representation Ro :
put to one side; (iii) R] and Rg are presented as input and autoassociated. Th
resulting hidden unit vector R3 is a representation of the entire tree. R3 can k
decoded by presenting it directly to the hidden units and the outputs will be R) an
Ro. These are then presented in turn until the terminals have been decoded.

Pollack (in press) presents a range of interesting simulation results which sho
RAAM to be a very effective method for encoding and decoding recursive structure
The only problem’is that the method of presentation of inputs relies on an extern
stack and it is not altogether clear what a pure connectionist implementation of th
would be. However, regardless of how the representation is constructed, Pollack h:
demonstrated how unstructured representations can encode recursive representatic
in a compact form.

2.3 Compositionality and structure sensitivity

In Section 1, connectionist representations were classified into different types. Son
of these, as we have seen, are very similar to their Classical counterparts in that th
contain explicit symbol tokens and/or have concatenative constituent structure (e.
localist concept notes, symbolic microfeatures, vector frames), and some are weak
{e.g. localist proposition nodes). It is not the aim here to cast doubt on the value
the research using these representation schemes, but to consider whether or not t
representations themselves (not the research) have novelty value.

From the review above, it should be quite clear that compact subsymbo
connectionist representations are different than Classical syntactic structu
representation. This style of representation, Fodor and Pygrshyn (1988) argue, is r
compositionally structured. However, as Van Gelder (1990) points out, Fodor a
Pylyshyn are “implicitly discussing only one type of compositionality: spatia
concatenative composition. in this mode of composition, the spatial layout of t
symbols (reading from left to right) is important (indeed crucial) for syml
manipulation and inference. Van Gelder states that for a mode of combination to
concatenative, "... it must preserve tokens of an expression’s constituents (and t
sequential relations among tokens) in the expression itself.”.

In contrast, to Classical concatenative representation, the type of comp:
connectionist representation we have been discussing may be considered to haw
different mode of combination. That is, "pure” connectionist representations are |
concatenative, but are functionally compositional nonetheless. It is worth quoting +

. Gelder again on this point. "We:have functional compositionality when there
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general, effective and reliable processes for (a) producing an expression giver
constituents, and {b) decomposing the expression back into those constitue
Connectionist models can certainly perform (a) and (b) as well as meet the cri
that the processes must be general, effective. and reliable. By general, van G¢
means that that the process can be applied. in principle, to the construction
decomposition of arbitrarily complex representations. We have seen how a si
feedforward back propogation net can learn to encode and decode representatic
To be effective the processes must be mechanistically implementible and to be rel
they must always generate the same answer for the same inputs. Oru
connectionist net has finished learning it meets both of these criteria.

Given that connectionist representations are functionally compositional, the que
is: do such seemingly unstructured representations carry structural informa
And a subsiduary, though perhaps more important, question Iis: do |
representations allow direct structure sensitive operations? The short answer t
first question is obviously "yes". Even in the early Hinton (1981) model of sem
nets. the vector frames of structured input representions were coarse coded ol
compact representation such that they could be accurately reconstructed ont
identical vector frame. To be reconstructed, the coarse coded representation
have been carrying structural information. In fact, they were carrying inform
about concatenative structure without themselves being concatenative.

The subsiduary question, as to whether connectionist representations allow stru
sensitive operations, is partly addressed by the answer to the previous que!
However, it might be argued that even the functionally compositional connect
representation may be a variation on the Classical theme because the connect
representations must emerge onto the symbol surface before they can be structi
manipulted. For example, Fodor & McLauglin (1990) claim that in order to su
structure sensitive operations, compositional representation must contain ez
tokens of the original constituent parts. This position has been subjected to a 1
empirical investigation by Chalmers (in press) which refutes it.

Chalmers constructed compact recursive distributed representations of syntact
structured sentences using Pollack's (in press) RAAM system (described in 2.2 a
After training the net to develop compact representations for both active and p:
sentence structures, Chalmers set out to test the structure sensitivity ¢
representation. He did this by attempting to train the transformation of the co
active sentences into the compact representation of the passive sentences.
experiment was successful in that it demonstrated that connectionist represen
can be structurally manipulated (passivisation) without recourse to emergence (
symbol surface.

3. Conclusions

The main classes of connectionist representation for natural language proc
have been -examined in this paper. For convenience these were divided into ser
representations (Section 1.1) and structural representations {Section 1.2). In &
1.1, semantic representations were clasified into major types: localist and distri
and a number of advantages were pointed out for distributed represeni
(memory efficiency, content addressibility. and built-in generalisation). In au_:l
two flavours of distributed representation were pinpointed: symbolic
subsymbolic. On the question of the novelty of connectionist semantic represen
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the subsymbolic was shown to be the only contender. Distributed symboli
representation have a lot of similarities with Classical feature theory.

On the syntactic side. a distinction was drawn between representations which ar
syntactically explicit and syntactically implicit. It was a’rl%ued that only the latte
could be considered to be representationally novel. e syntactically implic
representations were discussed further in Section 2.3. It was argued that they wer
functionally compositional (as opposed to concatenative) and could be sensitive {
structural manipulations without recourse to decoding into the original symboli
tokens of their constituent parts.

This paper displays optimism about the development and utility of uniqu
connectionist representations i.e. subsymbolic, syntactically implicit representation:
We have seen only one connectionist study in which these representations have bee
shown to be structure sensitive. However, this is just the beginning. We have als
seen (Section 2.1) how non-concatenative distributed representations can camn
information about temporal structure, long distance dependencies, lexical catego
structure and the type/token distinction. We have also seen how they can represei
finite state grammars. In section 2.2, we saw how research on connectioni
representation had begun to overcome one of the hardest problems for CNLP, tt
representation of recursive structures.

All in all, despite (and to some extent thanks to) Fodor and Pylyshyn's critique
connectionist representation, it looks as though the prognosis for CNLP is goo
Judging by the losion of research we have seen up until now, the next few yea
are expected to yield many exciting new results.
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