
Exploring Automatic Feature Selection
for Transition-Based Dependency Parsing

Explorando la Selección Automática de Caracteŕısticas
para Analizadores Basados en Transiciones.

Miguel Ballesteros
Natural Language Processing Group,
Universitat Pompeu Fabra, Spain

miguel.ballesteros@upf.edu

Resumen: En este art́ıculo se investigan técnicas automáticas para encontrar un
modelo óptimo de caracteŕısticas en el caso de un analizador de dependencias basado
en transiciones. Mostramos un estudio comparativo entre algoritmos de búsqueda,
sistemas de validación y reglas de decisión demostrando al mismo tiempo que usando
nuestros métodos es posible conseguir modelos complejos que proporcionan mejores
resultados que los modelos que siguen configuraciones por defecto.
Palabras clave: Análisis de dependencias, MaltOptimizer, MaltParser

Abstract: In this paper we investigate automatic techniques for finding an opti-
mal feature model in the case of transition-based dependency parsing. We show a
comparative study making a distinction between search algorithms, validation and
decision rules demonstrating at the same time that using our methods it is possible
to come up with quite complex feature specifications which are able to provide bet-
ter results than default feature models.
Keywords: Dependency parsing, MaltOptimizer, MaltParser

1. Introduction

The choice of features to build data-driven
NLP applications is something that needs to
be done to produce good and competitive re-
sults. Besides application parameters, fea-
ture selection is the central way of tuning
a system and it is not an easy task. It is
difficult for researchers without specialized
knowledge and it is also complicated for ex-
perienced researchers because it normally re-
quires a search in a large space of possible
cases. This is time consuming and demands
deep knowledge of the task and the parsing
algorithms involved.

Automatic feature selection is a process
commonly used in machine learning, where
the features that perform better are selected
automatically for a single task. Since the in-
clusion of MaltOptimizer, it is not a matter
of task expertise anymore (Ballesteros and
Nivre, 2012), howewer for other tasks and
parsing packages it still requires a lot of user
action to produce a model capable of provid-
ing results that are comparable to the state
of the art. We believe that this fact is still
an issue in nowadays dependency parsing and
Natural Language Processing (Smith, 2011),

and this is why we took it as an inspiration.

In this paper we introduce and compare
some automatic feature selection techniques,
that are based on the ones implemented in
MaltOptimizer. These techniques find an op-
timal feature set for a transition-based de-
pendency parser: MaltParser (Nivre et al.,
2007). Since MaltParser is based on support
vector machines (henceforth, SVM1), there
is no way to handle previously the weight of
the features, because finding the appropriate
weights for different features is exactly what
a SVM does.

Therefore, we show firstly how it is pos-
sible to produce an optimal feature set for
a transition-based dependency parser. Sec-
ondly, we compare a couple of algorithms and
different criteria when selecting features, and
we show how and why we get different results.
Finally, we show some conclusions and ideas
for further work.

1In our experiments we selected LIBLINEAR (Fan
et al., 2008), to the detriment of LIBSVM (Chang and
Lin, 2001), as training engine due to the inclusion
of MaltOptimizer algorithms which are restricted to
LIBLINEAR.

Procesamiento del Lenguaje Natural, Revista nº 51, septiembre de 2013, pp 119-126 recibido 18-04-2013 revisado 16-06-2013 aceptado 21-06-2013

ISSN 1135-5948 © 2013 Sociedad Española Para el Procesamiento del Lenguaje Natural

2. Automatic Feature Selection

Automatic feature selection techniques have
become a need in many natural language pro-
cessing applications, but at this writing there
is still not a significant amount of publica-
tions in the NLP community facing this prob-
lem (Smith, 2011). The objectives of an auto-
matic feature selection technique are the fol-
lowing: (i) avoid overfitting and improve the
performance, (ii) produce faster and more ef-
fective models and (iii) get more information
from the annotated data.

There are two main approaches of finding
an optimal feature set, others, as the ones
that we show in the present paper, can be
derived from these two:

Forward Selection. The process nor-
mally starts with zero features, and it
adds them one by one, keeping them if
they provide improvements. Besides the
mixed backward-forward selection of Mal-
tOptimizer (Ballesteros and Nivre, 2012), we
can find an example on automatic feature se-
lection carried out in this way for transition-
based parsing (Nilsson and Nugues, 2010).

Backward Selection. The processes
normally start with a big set of features,
which is the case in transition-based pars-
ing (or all the features, if possible) and re-
move them one by one, at each step removing
the one that produces a feature set that per-
forms better in a significant way. In this case,
the concept of significant is normally more
relaxed because a feature set with less fea-
tures is less sensitive to overfitting and prob-
ably more efficient. As we already mentioned,
MaltOptimizer also provides a backward se-
lection of features but it is a merge between
backward and forward.

We can find some relevant work that solve
and study the problem of feature selection in
a similar way as in the present paper in re-
search areas different than NLP. For instance,
the work done by Das and Kempe (2011), in
which they demonstrated that ”greedy algo-
rithms perform well even when the features
are highly correlated”, which is something
that is inherent to transition-based depen-
dency parsing. Similarly, Pahikkala et al.
(2010) show how to speed up a forward fea-
ture selection by applying a greedy search,
which motivated the experiments shown in
the present paper.

In the case that occupies our study, which
is transition-based dependency parsing, we

can have in principle an infinite set of possible
features, but it is possible to isolate a rather
small pool (to be handled automatically) of
potentially useful features for each window.2

We are normally able to tune the part–of–
speech window, morphology, such as gender
or number and features based on the partially
built dependency tree. We can also be able
to provide very useful conjunction features,
which means that two features are considered
as single feature by the parser. All of this can
be done normally within two data structures,
the buffer and the stack, but in some cases,
depending on the parsing algorithm, we can
also have a third (or even fourth) data struc-
ture that can be included in the feature spec-
ification.

3. MaltParser Feature Language

A transition-based parser uses two data
structures (as mentioned above, there could
be some auxiliary data structures, but there
are at least two), a buffer and a stack. The
buffer provides the words that are going to
be used during the parsing process and the
stack stores the words that are producing
arcs from/to them. MaltParser implements
four families of transition-based parsers and
all of them use features over the stack and the
buffer, which basically means that the pars-
ing algorithm would take into account the an-
notated info (or partially built trees) of the
words that are in the first positions of the
stack and the buffer. However it is possible
to define features in any position of the data
structures, and this is why the search may
be very extensive. Figure 1 shows the tran-
sition system of one of the parsing algorithm
families (Nivre’s), and Figure 2 shows how
a transition-based parser works for a given
sentence following it.

MaltParser uses the CoNLL data format
and it is therefore possible to generate fea-
tures over the columns annotated in the
CoNLL files. It is possible to define features
over the stack and buffer slots, containing in-
formation about part-of-speech (fine-grained:
POSTAG, and coarse-grained: CPOSTAG),
simple word (FORM), stemmed version of
the word (LEMMA), a list of morphosyntac-
tic features (FEAT) and dependency struc-

2The concept ‘window’ refers to the different
columns (POSTAG, CPOSTAG, LEMMA, FEATS,
DEPREL) that a CoNLL file has. See http://ilk.
uvt.nl/conll/#dataformat for more information.

Miguel Ballesteros

120

Shift: 〈Σ, i|B,H,D〉 ⇒ 〈Σ|i, B,H,D〉
Reduce: 〈Σ|i, B,H,D〉 ⇒ 〈Σ, B,H,D〉
Left-Arc (r): 〈Σ|i, j|B,H,D〉 ⇒ 〈Σ, j|B,H[i→ j], D[i→r]}〉

if h(i) 6= 0.

Right-Arc (r): 〈Σ|i, j|B,H,D〉 ⇒ 〈Σ|i|j, B,H[j → i], D[j →r]}〉
if h(j) = 0.

Figure 1: Transition System for Nivre’s algorithms (Nivre et al., 2007). B refers to the buffer
and Σ to the stack. H and D conform the partially built dependency structure referring to

heads and dependency labels.

Initial-State

[ROOT] { } [Aquello fué lo que vieron .]

... (some hidden transitions)

Left-Arc

[ROOT] { Aquello } [fué lo que vieron .]

subj

Right-Arc

[ROOT Aquello fué] { } [lo que vieron .]

subj

ROOT

... (some hidden transitions)

Right-Arc

[ROOT Aquello fue lo que vieron .] { } []

subj

ROOT

copul dobj

relat

punc

Figure 2: Parsing example for a sentence
written in Spanish: Aquello fue lo que

vieron [That is what they saw]. The buffer is
the structure on the right, and the stack is

on the left.

tures that are being produced in the parsing
process (DEPREL).

4. Feature Selection Algorithms

In this Section we describe the two imple-
mented approaches that we are willing to
test. Both approaches carry out the steps
implemented in MaltOptimizer but they per-
form the search differently. The algorithms
basically provide a backward and forward
search of features by performing the following

steps: (i) modify POSTAG and FORM fea-
tures , (ii) modify DEPREL and POSTAG-
DEPREL merge features over the partially
built dependency structure, (iii) try with
CPOSTAG, FEATS and LEMMA features
if possible and (iv) add conjunctions of
POSTAG and FORM features.

As mentioned by Ballesteros and Nivre
(2012) the algorithm steps are not the same
for all parsing algorithms; as shown in Sec-
tion 3, the algorithms make use of different
data structures, but the steps and the data
structures are more or less equivalent.

As we mentioned in Section 2, these meth-
ods start with backward selection exper-
iments removing features from the default
feature model with the intention of testing
whether they are useful. After that, they try
with forward selection experiments, by test-
ing features one by one and in combination.
In this phase, a threshold of 0.05% LAS3 (La-
beled Attachment Score) is used to determine
whether a feature is useful or not.

In this Section we describe the two im-
plemented approaches that follow the steps
presented above.

4.1. Relaxed Greedy Algorithm

The Relaxed Greedy approach traverses all
the steps presented above adding one feature
at a time and keeping the feature set that
produces the best outcome. This Relaxed
Greedy algorithm tries with all the back-
ward and forward operations for all the steps
shown at the beginning of Section 4, and it
does not prune the search at all. Therefore,
it can be understood as an exhaustive feature
search that adds two, three or even more fea-
tures at a time. We could think that an ex-
haustive feature search prevents getting stuck

3LAS = Percentage of scoring tokens for which the
system has predicted the correct labeled attachments.

Exploring Automatic Feature Selection for Transition-Based Dependency Parsing

121

in local optima, which is something that intu-
itively could happen to the Greedy algorithm,
presented in next subsection.

This algorithm implies running a high
number of experiments because it just adds
and tries with a big set of experiments, keep-
ing the best feature model after each attempt.
We could therefore expect that this algorithm
overfits the performance in some cases pro-
viding a model with lower training error but
higher test error.

Summing up, we have two different hy-
potheses for this algorithm: (1) it would not
get stuck in local optima, (2) it could overfit
the performance.

4.2. Greedy Algorithm

The Greedy algorithm is the one imple-
mented and included in the MaltOptimizer
distribution (Ballesteros and Nivre, 2012), it
minimizes the number of experiments accord-
ing to linguistic expert knowledge and expe-
rience (Nivre and Hall, 2010). It also follows
the steps shown at the beginning of Section
4. However, in spite of trying with all the
big set of possible features for each step as it
is done in the Relaxed Greedy algorithm, it
does the following:

1. It prunes the search when a backward
feature selection of features provides im-
provements for a specific window, be-
cause it does not try with any forward
selection experiments.

2. It prunes the search when a forward se-
lection of features is not successful for
a specific window, because it does not
try with more forward selection experi-
ments.

Therefore, it drastically reduces the num-
ber of iterations for backward and forward
operations comparing with Relaxed Greedy.

For this algorithm we also have two dif-
ferent hypotheses: (1) it could intuitively get
stuck in a local optima because it reduces the
number of experiments and it could prune the
search very early expecting that the search
may not produce good results and (2) we
could also expect that it underfits the perfor-
mance due to (1). However, it is also worth
remarking that the steps of this algorithm
were developed with deep proven experience.

In the following Section we show an in-
depth comparison between the Greedy and

the Relaxed Greedy algorithms taking some
experimental results into account, we there-
fore show which algorithm is the most accu-
rate in order to get an optimal feature set.

5. Experiments and Results

As we mentioned in Sections 4.1 and 4.2,
we expect that the Greedy and the Relaxed
Greedy algorithms could underfit and overfit
the performance respectively, we took these
two facts as hypotheses. Therefore, we try
to extract conclusions by running and com-
paring the outcomes of both algorithms. We
train models using data sets for 6 different
languages that were included in the CoNLL-
X Shared Task (Buchholz and Marsi, 2006)
(Arabic, Dutch, Slovene, Spanish, Swedish
and Turkish), and we also test the models
produced over the separate test-sets not used
during the optimization.

With the intention of having a starting
point of comparison we run the first phases of
MaltOptimizer in order to set some param-
eters (phase 1) and select the parsing algo-
rithm (phase 2) that performs the best over
each data set.

In the rest of this section we firstly show
the results of each of the algorithms imple-
mented during the training phase in which
we get the optimal feature set, afterwards, we
show the test results when we test the out-
come model with an unseen test set not used
during the optimization (Section 5.1). Fi-
nally, and considering the results of the first
two experiments, we perform a 5-fold cross
validation strategy to demonstrate its useful-
ness (Section 5.2). We also show three differ-
ent kind of sentence selection strategies for
the folds.

It is worth mentioning that we always
compare our results with the results given by
default feature models to ensure the useful-
ness of our methods.

5.1. Results and Comparisons
between Greedy and Relaxed
Greedy

Table 1 shows the results of the Greedy al-
gorithm and the Relaxed Greedy algorithm
for a selection of languages. Note that these
results are obtained using 80% of the train-
ing set for training and 20% as development
test set, which were obtained using the en-
tire training set and a separate held-out test
set for evaluation. Therefore, these are the

Miguel Ballesteros

122

results obtained during the optimization pro-
cess.

Language DefaultFM Greedy Relaxed Greedy
Arabic 63.84 65.56 (+1.72) 66.00 (+2.16)
Dutch 78.02 82.63 (+4.61) 82.49 (+4.47)
Slovene 68.40 71.71 (+3.31) 72.43 (+4.03)
Spanish 76.64 79.38 (+2.74) 79.62 (+2.98)
Swedish 83.50 84.09 (+0.59) 84.20 (+0.70)
Turkish 58.29 66.92 (+8.63) 67.19 (+8.90)

Table 1: Labeled attachment score with
comparison to default feature model

(MaltParser in its default settings without
feature selection) and the greedy approach

during the optimization process.

We can observe how Relaxed Greedy
seems to beat the results of Greedy, with the
exception of Dutch. Nevertheless, the dif-
ferences are not very remarkable. Relaxed
Greedy always carries out more than 100 dif-
ferent experiments, and Greedy between 40
and 50, depending on the pruning decisions
and results.

This fact means, that the decisions taken
during the development of the Greedy algo-
rithm seem to be the correct ones. This fact
is also evidenced in the Figure 5.1 in which
we show the results of the Greedy and the
Relaxed Greedy algorithms for the Slovene
example.4 We can see how the Greedy al-
gorithm achieves an optimal accuracy faster
than Relaxed Greedy, but in some cases it
seems that it gets stuck (in optimization
time) in local optima because the Relaxed
Greedy approach beats these results finding
eventually a more accurate feature configu-
ration. And finally, it is also interesting to
remark that the Greedy algorithm rarely pro-
duce results that are worse than the baseline
or default feature model in none of its steps,
however Relaxed Greedy does.

In order to find out the second hypothe-
sis, whether the algorithms overfit or underfit
the performance, and also whether our meth-
ods are really useful or not, we tested the
obtained feature model with the real testing
data set used in the CoNLL-X Shared Task,
the Table 2 shows the results obtained.

In this case, most of the differences are in-
deed statistically significant comparing with
the default models results.5 According to

4In the Figure we simulate that the Greedy algo-
rithm is waiting for the Relaxed Greedy before taking
another step.

5We run the statistically significant tests by using

McNemar’s test we got significant improve-
ments for Dutch, Slovene, Spanish and Turk-
ish while the ones obtained for Arabic and
Swedish are not better enough. Moreover, for
the languages in which we have statistically
significant improvements, these ones are for
p<0.01 and for p<0.05 and the Z value varies
from 2.687 in the case of Spanish to 12.452
in the case of Turkish. Taking into account
the size of the testing data sets these results
are quite remarkable.

Language DefaultFM Greedy Relaxed Greedy
Arabic 64.93 66.01 65.71
Dutch 72.63 77.23 76.89
Slovene 69.66 73.68 73.26
Spanish 78.68 80.00 79.84
Swedish 83.50 83.81 83.85
Turkish 56.32 64.11 64.31

Table 2: Labeled attachment score with
comparison to default feature models and

the greedy approach for a selection of
languages using the optimized models.

Comparing the Greedy algorithm and the
Relaxed Greedy algorithm we can conclude
that the Greedy one (which is much faster6)
is more capable of providing a competitive
feature model for the real case (in which the
user would need to parse sentences that are
not included neither in the test set nor in
the training set) because the Relaxed Greedy
models seem to be overfitted to the test set
in most of the cases. Running the McNe-
mar’s test most of the differences are not sta-
tistically significant neither for p<0.01 nor
for p<0.05, but for the Slovene treebank
there is a statistically significant difference
for p<0.05 with a Z value of 2.171, taking
into account that the test sets are small -
5000 tokens- this is an interesting result. In
summary, the outcomes given over most of
languages nevertheless strongly suggests that
the simple Greedy algorithm is more accurate
and it does not underfit the performance.

These results led us to think that we
should consider more conservative criteria for
accepting improvements during feature selec-
tion. Therefore, in the following section we
show a more informative approach, a K-Fold
cross validation experiment for the Greedy al-

MaltEval (Nilsson and Nivre, 2008)
6Every step of the algorithm requires to train a

parsing model and test with the separate held-out
test set, and depending on the size of the training
treebank it could take a while

Exploring Automatic Feature Selection for Transition-Based Dependency Parsing

123

Figure 3: Results obtained by Greedy and Relaxed Greedy in every step of the algorithms for
the Slovene treebank. The X axis shows the number of steps in the optimization process and

the Y axis shows the performance achieved.

gorithm, because it is the one that provides
better results in the present experiment and
it is the only one that provides a statisti-
cally significant difference compared to Re-
laxed Greedy.

5.2. 5-Fold Cross Experiment

We decided to carry out a 5-fold cross vali-
dation experiment to be included in the val-
idation step of the Greedy algorithm due to
the results obtained in the real case with
Greedy and Relaxed Greedy and taking into
account that one of the best ways of estimat-
ing the generalization performance of a model
trained on a subset of features is to use cross-
validation, as shown in (John, Kohavi, and
Pfleger, 1994).

We divided the corpus in 5 folds in order to
have similar number of sentences in the folds
as we had in the previous experiments, when
we divided the corpus in 80% for training and
20% for testing.

It is well known that there are various
ways of extracting the folds from the training
corpora. For the present experiment and in
order to get a more complex and interesting
comparison we try two different approaches:
(i) Extracting the sentences in an iterative
way, by doing a simple split, firstly the sen-
tences for fold 1, then sentences for fold 2 and
so on and (ii) a pseudo randomize selection of
sentences which provides more heterogeneous
folds. We could come up with the following
hypotheses: we could expect that the simple
split selection of sentences will underfit the
performance and we could also expect that
the pseudo randomize selection will provide
better results.

We also decided to implement three differ-
ent criteria in order to decide whether a fea-
ture set is worth to be included in the final
feature model: (i) considering that the aver-

age LAS over all folds must beat the result
of the best feature model so far, (ii) consider-
ing that the majority of folds (in this case 3
of 5) must beat the result of the best feature
model so far, and (iii) considering that all the
folds must beat the result of the best feature
model so far. Therefore, we could come up
with the following hypotheses regardless or
whether we use the simple split selection of
sentences or the pseudo-randomize selection
of sentences:

1. We could expect that (i) and (ii) will
provide similar results, and it seems that
both of them will neither underfit nor
overfit the performance.

2. We could also expect that (iii) is going
to underfit the performance in most of
the cases.

In the following Subsections we show a set
of experiments in which we discuss whether
our hypotheses are corroborated or falsified.

5.2.1. Simple Split Selection of
Sentences

The simple split selection of sentences only
provides improvements for Slovene and Turk-
ish for the average and the majority criteria,
producing 70.24 LAS in the case of Slovene
and 66.00 LAS in the case of Turkish. It
seems that this selection of sentences is not
very representative of the data set and this
fact misleads the results when considering 5-
fold cross validation.

The average and the majority criteria
even come up with the same feature set and in
the real case (training with the whole train-
ing set and testing with the test set) they
got 73.52 LAS in the case of Slovene, and
64.45 LAS in the case of Turkish. These re-
sults compared with the ones that we got ap-
plying the simple Greedy step wise approach

Miguel Ballesteros

124

are better for Turkish (+0.3) and worse for
Slovene (-0.2). These differences are not sta-
tistically significant according to McNemar’s
test, neither for p<0.01 nor for p<0.05.

5.2.2. Pseudo Randomize Selection
of Sentences

We believe that the pseudo randomize selec-
tion of sentences is more representative of the
real case. Our methods provide the results
of Table 3, which also shows the results of
the Greedy algorithm without making use of
the 5-fold cross validation. Moreover, Figure
5.2.2 shows the results of the 5 folds, with av-
erage criterion, pseudo randomize selection of
sentences and the Slovene corpus, we can see
how all the folds produce high results if we
compare with the simple split selection.

Language DefaultFM Greedy Average Majority All
Arabic 63.84 65.56 66.44 66.62 65.33
Dutch 78.02 82.63 82.32 82.29 81.42
Slovene 68.40 71.71 72.00 72.00 69.46
Spanish 76.64 79.38 79.29 79.29 76.64
Swedish 83.50 84.09 83.50 83.50 83.50
Turkish 58.29 66.92 67.11 67.01 67.37

Table 3: Labeled attachment score with
comparison to default feature model and the
greedy approach for a selection of languages
from the CoNLL-X shared task (Buchholz
and Marsi, 2006), reporting the results of

the 5-fold cross validation.

As we can see the results of the 5 fold
cross validation strategy are more informa-
tive, intuitively, we can rely more in the fea-
ture models obtained during the process be-
cause they have been tested over 5 different
folds and represent the real case in a more
accurate way. In order to demonstrate this
fact, we set up Table 4 which shows the re-
sults of the obtained feature model when we
test them with the test set of the CoNLL-X
Shared Task.

As observed in Table 4, the 5-fold cross
validation produces higher results for Ara-
bic, Spanish and Turkish, while the simple
Greedy algorithm produces better results in
the other 3. The All criterion seems to be
very restrictive because it leads to underfit-
ting, however, average and majority produce
similar and robust results.

Nevertheless, the differences for Slovene
are statistically significant according to Mc-
Nemar’s test in favor for the Greedy algo-
rithm for p<0.01 and for p<0.05. But, the
differences for the Turkish algorithm are sta-

Language DefaultFM Greedy Average Majority All
Arabic 64.93 66.01 66.21 66.27 65.61
Dutch 72.63 77.23 76.97 76.39 75.73
Slovene 69.66 73.68 73.32 73.32 71.64
Spanish 78.68 80.00 80.46 80.46 78.68
Swedish 83.50 83.81 83.59 83.59 83.59
Turkish 56.32 64.11 64.85 65.01 64.99

Table 4: Labeled attachment score with
comparison to default feature model and the
greedy approach for a selection of languages
from the CoNLL-X shared task (Buchholz
and Marsi, 2006), reporting the results of
the 5-fold cross validation, making use of
the training and test set of the CoNLL-X

Shared Task

tistically significant in favor of the 5-fold
cross experiment (for the three cases) run-
ning McNemar’s test only for p<0.05 and a
Z value of 2.296. The rest of the differences
are not significant.

We can conclude that the Greedy algo-
rithm by itself can provide results as good
as an approach that follows more informa-
tive criteria, in this case, K-Fold cross vali-
dation. Nonetheless, it seems worth to carry
out both experiments because in some cases
we can find statistically significant improve-
ments when we check over 5 different divi-
sions of the corpus (or folds) and vice versa.

It is also worth noting that comparing the
results of the simple split selection of sen-
tences (shown in Section 5.2.1) for Slovene
and Turkish (which are the ones that provide
improvements) with the corresponding out-
puts produced by the pseudo randomize se-
lection of sentences by running McNemmar’s
test. We get a statistically significant differ-
ent in favor of the pseudo randomize selection
for p<0.05. Therefore, we can also conclude
that the results produced by the pseudo ran-
domize selection are not overfitted and the
ones produced by the simple split selection
of sentences are underfitted by a misleading
selection of sentences.

6. Conclusions

We have demonstrated that different criteria
for automatic feature selection in the case of
transition based dependency parsing can be
accomplished successfully and produce vari-
ant and strong results in the final perfor-
mance. Moreover, both search algorithms
presented produce consistent improvements
over the default settings using different vali-
dation procedures. According to our results

Exploring Automatic Feature Selection for Transition-Based Dependency Parsing

125

Figure 4: Results obtained by the 5 fold cross experiments with pseudo randomize selection of
sentences in every step of the algorithm for the Slovene treebank.

and taking into account that all of our results
are inherently based on the same Greedy al-
gorithm, we believe that it is better to follow
proven experience and linguistic expertise in
this kind of experiments.

It is worth mentioning that we tried to
alter the order between the different steps
shown in Section 4, but we did not get any
improvement nor any significant differences
between the different feature sets and the dif-
ferent algorithms. A specific order for a tree-
bank was useful and better, but it was not the
same for a different treebank. Therefore, we
plan to carry out an in-depth comparison fol-
lowing different experiment orders, not sim-
ply altering the order between the steps but
making a cross experimental comparison.

Acknowledgments

Thanks to Joakim Nivre, who guided me in
the development of MaltOptimizer and the
algorithms that are explained in the present
paper.

References

Ballesteros, Miguel and Joakim Nivre. 2012.
MaltOptimizer: A System for MaltParser
Optimization. In Proceedings of the
Eighth International Conference on Lan-
guage Resources and Evaluation (LREC).

Buchholz, Sabine and Erwin Marsi. 2006.
CoNLL-X shared task on multilingual de-
pendency parsing. pages 149–164.

Chang, Chih-Chung and Chih-Jen Lin,
2001. LIBSVM: A Library for Support
Vector Machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Das, Abhimanyu and David Kempe. 2011.
Submodular meets spectral: Greedy al-
gorithms for subset selection, sparse ap-
proximation and dictionary selection. In

Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11),
ICML ’11, pages 1057–1064, New York,
NY, USA, June. ACM.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-
R. Wang, and C.-J. Lin. 2008. LIBLIN-
EAR: A library for large linear classifica-
tion. Journal of Machine Learning Re-
search, 9:1871–1874.

John, George H., Ron Kohavi, and Karl
Pfleger. 1994. Irrelevant Features and
the Subset Selection Problem. In Interna-
tional Conference on Machine Learning,
pages 121–129.

Nilsson, Jens and Joakim Nivre. 2008. Mal-
teval: an evaluation and visualization tool
for dependency parsing. In (LREC’08),
Marrakech, Morocco, may.

Nilsson, Peter and Pierre Nugues. 2010. Au-
tomatic discovery of feature sets for de-
pendency parsing. In COLING, pages
824–832.

Nivre, Joakim and Johan Hall. 2010. A quick
guide to maltparser optimization. Techni-
cal report.

Nivre, Joakim, Johan Hall, Jens Nilsson,
Atanas Chanev, Gülşen Eryiǧit, Sandra
Kübler, Svetoslav Marinov, and Erwin
Marsi. 2007. Maltparser: A language-
independent system for data-driven de-
pendency parsing. Natural Language En-
gineering, 13:95–135.

Pahikkala, Tapio, Antti Airola, and Tapio
Salakoski. 2010. Speeding up greedy
forward selection for regularized least-
squares. In ICMLA, pages 325–330.

Smith, Noah A. 2011. Linguistic Structure
Prediction. Synthesis Lectures on Human
Language Technologies. Morgan and Clay-
pool.

Miguel Ballesteros

126

