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Resumen: Los aśı denominados Phone Log-Likelihood Ratios (PLLR), han sido
introducidos como caracteŕısticas alternativas a los MFCC-SDC para sistemas de
Reconocimiento de la Lengua (RL) mediante iVectors. En este art́ıculo, tras una
breve descripción de estas caracteŕısticas, se proporcionan nuevas evidencias de su
utilidad para tareas de RL, con un nuevo conjunto de experimentos sobre la base de
datos Albayzin 2010 LRE, que contiene habla multi-locutor de banda ancha en seis
lenguas diferentes: euskera, catalán, gallego, español, portugués e inglés. Los sistemas
de iVectors entrenados con PLLRs obtienen mejoras relativas significativas respec-
to a los sistemas fonotácticos y sistemas de iVectors entrenados con caracteŕısticas
MFCC-SDC, tanto en condiciones de habla limpia como con habla ruidosa. Las fu-
siones de los sistemas PLLR con los sistemas fonotácticos y/o sistemas basados en
MFCC-SDC proporcionan mejoras adicionales en el rendimiento, lo que revela que
las caracteŕısticas PLLR aportan información complementaria en ambos casos.
Palabras clave: Reconocimiento de la Lengua, Phone Log-Likelihood Ratios, iVec-
tors

Abstract: Phone Log-Likelihood Ratios (PLLR) have been recently proposed as
alternative features to MFCC-SDC for iVector Spoken Language Recognition (SLR).
In this paper, PLLR features are first described, and then further evidence of their
usefulness for SLR tasks is provided, with a new set of experiments on the Albayzin
2010 LRE dataset, which features wide-band multi speaker TV broadcast speech on
six languages: Basque, Catalan, Galician, Spanish, Portuguese and English. iVector
systems built using PLLR features, computed by means of three open-source phone
decoders, achieved significant relative improvements with regard to the phonotactic
and MFCC-SDC iVector systems in both clean and noisy speech conditions. Fusions
of PLLR systems with the phonotactic and/or the MFCC-SDC iVector systems
led to improved performance, revealing that PLLR features provide complementary
information in both cases.
Keywords: Spoken Language Recognition, Phone Log-Likelihood Ratios, iVectors

1. Introduction

In the last years, two complementary types
of Spoken Language Recognition (SLR) sys-
tems prevail: (1) those using low-level (typi-
cally, short-term spectral) features; and (2)
those using high-level (typically, phonotac-
tic) features. Among the first type of sys-
tems, the so called Total Variability Fac-
tor Analysis approach (also known as iVec-
tor approach) has been recently introdu-
ced, using Mel-Frequency Cepstral Coeffi-
cients and Shifted Delta Cepstra (MFCC-

SDC) features (Dehak et al., 2011b). The
iVector approach maps high-dimensional in-
put data, typically a Gaussian Mixture Mo-
del (GMM) supervector, to a low-dimensional
feature vector (an iVector), hypothetically re-
taining most of the relevant information.

Due to its high performance and low com-
plexity, the iVector approach has become
a state-of-the-art technique. Besides MFCC-
SDC, other alternative features have been al-
ready tested under this approach, such as
prosodic features (pitch, energy and dura-
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tion) (Mart́ınez et al., 2012) or speaker vec-
tors from subspace GMM (Plchot et al.,
2012). It has been reported that these sys-
tems alone do not yield outstanding results,
but performance improves significantly when
fusing them with a system based on spectral
features.

Among high-level approaches, best results
are reported for the so called Phone-Lattice-
SVM approach (Campbell, Richardson, and
Reynolds, 2007), which uses expected counts
of phone n-grams (computed on phone lat-
tices provided by phone decoders) as featu-
res to feed a Support Vector Machine (SVM)
classifier.

There have been some efforts to use
phonotactic features under the iVector ap-
proach. In (Soufifar et al., 2012), expected
counts of phone n-grams are used as featu-
res, reaching the same performance as state-
of-the-art phonotactic systems. In (DHaro et
al., 2012), phone posteriorgrams (instead of
phone lattices) are used to estimate n-gram
counts, and the iVector approach is then ap-
plied to reduce the high-dimensionality of
the resulting feature vectors. Both approa-
ches yield reasonable good results, and the
latter is reported to fuse well with a SLR sys-
tem based on short-term spectral features.

Best results are usually obtained by fusing
several acoustic and phonotactic systems. In-
creasingly sophisticated fusion and calibra-
tion techniques have been applied, including
generative Gaussian backends (Singer et al.,
2003; BenZeghiba, Gauvain, and Lamel, Sep-
tember 2009) and discriminative logistic re-
gression (Brümmer and van Leeuwen, 2006;
Brümmer and de Villiers, 2011; Penagarikano
et al., 2012).

The development of SLR technology has
been largely supported by NIST Language
Recognition Evaluations (LRE) (NIST LRE,
2011), held in 1996 and every two years since
2003. As a result, the datasets produced and
distributed for such evaluations have become
standard benchmarks to test the usefulness of
new approaches. NIST LRE datasets consist
mostly of narrow-band (8 kHz) conversatio-
nal telephone speech.

Aiming to fill the gap of SLR technology
assessment for wide-band broadcast speech,
the Albayzin LREs have been organized
(Rodriguez-Fuentes et al., 2010; Rodriguez-
Fuentes et al., 2011), with the support of the
Spanish Thematic Network on Speech Tech-

nologies (RTTH, 2006) and the ISCA Special
Interest Group on Iberian Languages (SIG-
IL). For the Albayzin 2008 LRE, the four
official languages spoken in Spain: Basque,
Catalan, Galician and Spanish, were used as
target languages. In (Varona et al., 2010) an
in depth study was carried out, the main ve-
rification system being obtained from the fu-
sion of an acoustic system and 6 phonotactic
subsystems.

The set of Iberian languages was comple-
ted in the Albayzin 2010 LRE by adding Por-
tuguese as target language. Due to its inter-
national relevance and its pervasiveness in
broadcast news, English was also added as
target language in the Albayzin 2010 LRE.
A new condition was introduced, depending
on the presence of background noise, mu-
sic and/or conversations (overlapped speech),
leading to two additional tracks which invol-
ved clean speech and a mix of clean and noisy
speech, respectively.

In a previous work (Diez et al., 2012),
we proposed and evaluated the use of log-
likelihood ratios of phone posterior probabi-
lities, hereafter called Phone Log-Likelihood
Ratios (PLLR), as alternative features to
MFCC-SDC under the iVector approach. We
found very promising results in language re-
cognition experiments on the NIST 2007 and
2009 LRE datasets.

In this paper, a more detailed study of the
PLLR features is undertaken. A new set of
experiments has been carried out on the Al-
bayzin 2010 LRE dataset (Rodriguez-Fuentes
et al., 2012) to prove their effectiveness. Th-
ree iVector systems have been built using
three open-source phone decoders to com-
pute the PLLR features. These systems are
compared to (and fused with) various state-
of-the-art baseline systems, namely: (1) an
acoustic iVector system using MFCC-SDC as
features; and (2) three Phone-Lattice-SVM
systems built on the same decoders used to
compute the PLLR features.

The rest of the paper is organized as fo-
llows. Section 2 provides some background
and describes the computation of the phone
log-likelihood ratios used as features in this
work. Section 3 describes the experimental
setup. Section 4 presents results and compa-
res the performance of the proposed approach
to that of state-of-the-art approaches. Fina-
lly, conclusions are given in Section 5.
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2. Phone Log-Likelihood Ratio
(PLLR) features

In (Biadsy, Hirschberg, and Ellis, 2011),
a new dialect recognition approach mixing
acoustic and phonetic information was pre-
sented, based on the assumption that certain
phones are realized in different ways across
dialects. Acoustic models were trained for dif-
ferent phonetic categories, based on the pho-
netic segmentation provided by a phone deco-
der. Scores were computed based on differen-
ces between acoustic models corresponding to
the same phonetic category in different dia-
lects.

That work encouraged us to search for
similar but more sophisticated approaches.
After exploring the possibility of using pho-
ne posteriors at the frame level to smooth
the phonetic segmentation, we came to the
idea of using phone posteriors alone as fea-
tures. The non-Gaussian distribution of pho-
ne posteriors was addressed by transforming
phone posteriors into phone log-likelihood ra-
tios, which carry the same information but
show approximately Gaussian distributions,
as illustrated in Figure 1. Under this confi-
guration, phone models perform as a sort of
reference system and phone log-likelihood ra-
tios at a given frame can be interpreted as the
location of the speech segment being analy-
zed in the space defined by those models.

To compute the PLLRs, let us consider a
phone decoder including N phone units, each
of them represented typically by means of a
model of S states. Given an input sequence of
acoustic observations X, we assume that the
acoustic posterior probability of each state s

(1 ≤ s ≤ S) of each phone model i (1 ≤ i ≤
N) at each frame t, pi,s(t), is output as side
information by the phone decoder. Then, the
acoustic posterior probability of a phone unit
i at each frame t can be computed by adding
the posteriors of its states:

pi(t) =
∑

∀s

pi,s(t) (1)

Assuming a binary classification task with
flat priors, the log-likelihood ratios at each
frame t can be computed from posterior pro-
babilities as follows:

LLRi(t) = log
pi(t)

1
(N−1)

∑
∀j 6=i pj(t)

i = 1, ..., N

(2)

The resulting N log-likelihood ratios per
frame are the PLLR features considered in
our approach.

3. Experimental setup

3.1. PLLR iVector system

As a first step to get the PLLR features, we
applied the open-software Temporal Patterns
Neural Network (TRAPs/NN) phone deco-
ders, developed by the Brno University of
Technology (BUT) for Czech (CZ), Hunga-
rian (HU) and Russian (RU) (Schwarz, 2008),
which include 42, 58 and 49 phonetic units,
respectively, plus 3 non-phonetic units. No-
te that BUT decoders represent each phone-
tic unit by a three-state model and output
the transformed posterior probabilities pi,s(t)
(Diez et al., 2012) as side information, for
each state s of each phone model i at each
frame t.

Before computing PLLR features, the th-
ree non-phonetic units —int (intermittent
noise), pau (short pause) and spk (non-speech
speaker noise)— were integrated into a sin-
gle 9-state non-phonetic unit model. Then,
a single posterior probability was computed
for each phone i (1 ≤ i ≤ N), according to
Equation 1. Finally, the log-likelihood ratio
for each phone i was computed according to
Equation 2. In this way, we get 43, 59 and
50 PLLR features per frame using the BUT
decoders for Czech, Hungarian and Russian,
respectively.

As shown in (Diez et al., 2012), adding
first order dynamic coefficients improved sig-
nificantly the performance of the PLLR-
based iVector system. Therefore, PLLR+∆
were used as features also in this work. Voi-
ce activity detection was performed by remo-
ving the feature vectors whose highest PLLR
value corresponded to the integrated non-
phonetic unit. A gender independent 1024-
mixture GMM (Universal Background Mo-
del, UBM) was estimated by Maximum Like-
lihood using the NIST 2011 LRE training set.
The total variability matrix (on which the
iVector approach relies) was estimated as in
(Dehak et al., 2011a), using only target lan-
guages in the NIST 2011 LRE training set. A
generative modeling approach was applied in
the iVector feature space (as in (Mart́ınez et
al., 2011)), the set of iVectors of each langua-
ge being modeled by a single Gaussian distri-
bution. Thus, the iVector scores were compu-
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Figure 1: Distributions of frame-level likelihoods (lh, first row), log-likelihoods (llh, second row) and

log-likelihood ratios (llr, third row) for five Hungarian phones (A:, E, e:, i and O).

ted as follows:

score(f, l) = N(wf ;µl,Σ) (3)

where wf is the iVector for target signal f , µl

is the mean iVector for language l and Σ is
a common (shared by all languages) within-
class covariance matrix.

3.2. MFCC-SDC iVector system

In this case, the concatenation of MFCC and
SDC coefficients under a 7-2-3-7 configura-
tion was used as acoustic representation. Voi-
ce activity detection, GMM estimation and
total variability matrix training and scoring
were performed as in the PLLR iVector ap-
proach.

3.3. Phonotactic systems

The three phonotactic systems used in this
work have been developed under the phone-
lattice-SVM approach (Campbell, Richard-
son, and Reynolds, 2007) (Penagarikano et
al., 2011). Given an input signal, an energy-
based voice activity detector was applied in
first place, which split and removed long-
duration non-speech segments. Then, the
BUT TRAPs/NN phone decoders for Czech,
Hungarian and Russian (Schwarz, 2008) we-
re applied. Regarding channel compensation,
noise reduction, etc. the three systems relied
on the acoustic front-end provided by BUT
decoders.

Phone posteriors output by BUT decoders
were converted to phone lattices by means
of HTK (Young et al., 2006) along with the

BUT recipe (Schwarz, 2008). Then, expec-
ted counts of phone n-grams were compu-
ted using the lattice-tool of SRILM (Stolc-
ke, 2002). Finally, a SVM classifier was ap-
plied, SVM vectors consisting of expected fre-
quencies of phone n-grams (up to n = 3). A
sparse representation was used, which invol-
ved only the most frequent features according
to a greedy feature selection algorithm (Pe-
nagarikano et al., 2011). L2-regularized L1-
loss support vector regression was applied, by
means of LIBLINEAR (Fan et al., 2008).

3.4. Dataset

The Albayzin 2010 LRE dataset (KALAKA-
2) contains wide-band 16 kHz TV broadcast
speech signals for six target languages. The
Albayzin 2010 LRE (Rodriguez-Fuentes et
al., 2011) featured two main evaluation tasks,
on clean and noisy speech, respectively. In
this work, acoustic processing involved down-
sampling signals to 8 kHz, since all the sys-
tems were designed to deal with narrow-band
signals.

The training, development and evalua-
tion datasets used for this benchmark match
exactly those defined for the Albayzin 2010
LRE. For the primary clean-speech language
recognition task, more than 10 hours of clean
speech per target language were used for trai-
ning. For the noisy-speech language recog-
nition task, besides the clean speech sub-
set, more than 2 hours of noisy/overlapped
speech segments were used for each target
language. The distribution of training data,
which amounts to around 82 hours, is shown
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Clean Speech Noisy Speech
Hours # 30s segments Hours # 30s segments

Language Train Devel Eval Train Devel Eval
Basque 10.73 146 130 2.25 29 74
Catalan 11.45 120 149 2.18 47 55
English 12.18 133 135 2.53 60 69
Galician 10.74 137 121 2.23 60 83
Portuguese 11.08 164 146 3.28 77 58
Spanish 10.41 136 125 3.70 83 79
TOTAL 66.59 836 806 16.17 356 418

Table 1: Albayzin 2010 LRE: Distribution of training data (hours) and development and
evaluation data (# 30s segments).

in Table 1. Only 30-second segments were
used for development purposes. The deve-
lopment dataset used in this work consists
of 1192 segments, amounting to more than
10 hours of speech. Results reported in this
paper were computed on the Albayzin 2010
LRE evaluation corpus, specifically on the 30-
second, closed set condition (for both clean
speech and noisy speech conditions). The dis-
tribution of segments in the development and
evaluation datasets is shown in Table 1. For
further details, see (Rodriguez-Fuentes et al.,
2012).

3.5. Fusion

The FoCal multiclass toolkit was applied to
perform the calibration and fusion of SLR
systems (Brümmer and du Preez, 2006).

3.6. Evaluation measures

In this work, systems are compared in terms
of: (1) the average cost performance Cavg as
defined in NIST evaluations up to 2009; and
(2) the Log-Likelihood Ratio Cost (CLLR)
(Brümmer and du Preez, 2006).

4. Results

Table 2 shows the performance of the base-
line systems (the acoustic MFCC-SDC and
phonotactic systems) and the proposed ap-
proach (using the BUT Czech (CZ), Rus-
sian (RU) and Hungarian (HU) decoders)
on the Albayzin 2010 LRE closed-set clean-
speech and noisy-speech 30-second task. Re-
garding clean-speech, most of the systems
performed similarly, except for the propo-
sed PLLR iVector system when trained on
the HU decoder PLLR features, which clearly
stands out as the best single system, yielding
1.41 Cavg × 100, which means a 33% relative

improvement with regard to the MFCC-SDC-
based iVector approach and a 40% relative
improvement with regard to the respective
HU phonotactic approach. Performance dif-
ferences across decoders were found on both
PLLR and phonotactic approaches (e.g. the
performance of the phonotactic RU system
degraded with regard to that of other phono-
tactic systems).

When focusing on the noisy speech con-
dition, differences in performance were mo-
re noticeable. MFCC-SDC-based iVector sys-
tem attained great performance (3.95 Cavg ×

100), but was once again outperformed by
the HU PLLR iVector system (3.17 Cavg ×

100). All PLLR iVector systems outperfor-
med their respective phonotactic counter-
parts (yielding between 5% and 56% relative
improvements).

Since the HU PLLR iVector system sho-
wed the best performance among individual
systems, we selected the HU decoder-based
systems to analyze system fusions. Table 3
shows the performance of different fusions in-
volving the baseline MFCC-SDC iVector sys-
tem, the HU phonotactic system and the HU
PLLR iVector system (for a better compa-
rison, single system results are also inclu-
ded in Table 3). All pairwise fusions yielded
high performance. The fusion of the MFCC-
SDC iVector and phonotactic systems, led to
great improvements with regard to single sys-
tem performance (1.10 Cavg × 100). A simi-
lar figure was achieved by the fusion of the
PLLR iVector and phonotactic system (1.09
Cavg × 100), closely followed by the fusion
of the MFCC-SDC and PLLR iVector sys-
tems (1.20 Cavg × 100). The fusion of the th-
ree systems yielded great performance: 0.97
Cavg × 100, meaning a 31% relative impro-
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Clean Noisy
System Cavg × 100 CLLR Cavg × 100 CLLR

MFCC-SDC iVector 2.12 0.176 3.95 0.325
Phonotactic 2.15 0.215 7.00 0.664

CZ
PLLR iVector 2.33 0.223 6.66 0.546
Phonotactic 2.35 0.218 7.28 0.621

HU
PLLR iVector 1.41 0.127 3.17 0.308
Phonotactic 2.85 0.244 6.54 0.571

RU
PLLR iVector 2.34 0.225 4.38 0.352

Table 2: Cavg × 100 and CLLR performance for the baseline systems, the PLLR iVector system
and different fusions on the Albayzin 2010 LRE primary task on clean and noisy speech.

Clean Noisy
System Cavg × 100 CLLR Cavg × 100 CLLR

MFCC-SDC iVector (a) 2.12 0.176 3.95 0.325
Phonotactic (b) 2.35 0.218 7.28 0.621

HU
PLLR iVector (c) 1.41 0.127 3.17 0.308
(a)+(b) 1.10 0.106 2.43 0.211
(a)+(c) 1.20 0.109 2.65 0.227
(b)+(c) 1.09 0.092 2.65 0.228

Fusion

(a)+(b)+(c) 0.97 0.086 1.86 0.168

Fusion ALL (7 systems, Table 2) 0.82 0.075 1.74 0.169

Table 3: Cavg × 100 and CLLR performance for the baseline systems, the PLLR iVector system
and different fusions on the Albayzin 2010 LRE primary task on clean and noisy speech.

vement with regard to the best individual
system (PLLR HU iVector). Finally, the fu-
sion of all the systems led to the best re-
sult: 0.82 Cavg × 100, that is, a 41% relative
improvement with regard to the PLLR HU
system.Note, however, that this improvement
was achieved by fusing 7 systems, more than
two times the number of systems used to ob-
tain the second best result.

Results for the noisy-speech condition are
consistent with the ones attained on clean-
speech. The fusion of the acoustic and PLLR
iVector systems yielded the best pairwise per-
formance. As on the clean-speech condition,
the fusion of the phonotactic and MFCC-
SDC iVector systems yielded the same per-
formance than the fusion of the phonotac-
tic and PLLR iVector systems, and the best
fusion involved the three systems, with 1.86
Cavg × 100, meaning a 41% relative impro-
vement with regard to the best individual
system. Once again, the PLLR iVector sys-
tem seems to provide complementary infor-
mation to baseline systems under all configu-
rations. The fusion of the 7 subsystems shown

in Table 3 yielded again the best result on the
noisy speech condition: 1.74 Cavg × 100, that
is, a 45% relative improvement with regard
to the best individual system.

Table 4 shows the confusion matrix for the
fusion of PLLR HU iVector, HU phonotactic
system and MFCC-SD iVector system on the
clean condition of the Albayzin 2010 LRE. As
expected, the most confused languages we-
re Spanish and Galician, followed by Spanish
and Catalan, and Galician and Catalan. On
the other hand, significantly low miss and fal-
se alarm probabilities were reached for the
Basque, Portuguese and English languages.

5. Conclusions and future work

In this paper, further evidence of the suitabi-
lity of Phone Log-Likelihood Ratio (PLLR)
features for improving SLR performance un-
der the iVector approach has been presented.
The performance of a PLLR-based iVector
system has been compared to that of two ba-
seline acoustic (MFCC-SDC-based iVector)
and phonotactic (Phone-Lattice-SVM) sys-
tems, using the Albayzin 2010 LRE dataset
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Target Language
Basque Catalan English Galician Portuguese Spanish

Basque 0.00 0.00 0.00 0.00 0.00 0.00
Catalan 0.00 1.34 0.00 0.00 1.34 1.34
English 0.00 0.00 0.00 0.00 0.00 0.00
Galician 2.48 3.31 0.00 3.31 0.00 14.05
Portuguese 0.00 0.00 0.00 0.00 0.00 0.00T

es
t
au

d
io

Spanish 0.00 0.00 0.00 7.20 0.00 0.80

Table 4: Confusion matrix for the fusion of the PLLR HU iVector, Phonotactic HU and
MFCC-SDC iVector systems on the clean condition of the Albayzin 2010 LRE. Miss

probabilities (%) are shown in the diagonal and false alarm probabilities (%) out of the
diagonal.

as benchmark. The PLLR-based iVector sys-
tem not only outperformed the baseline sys-
tems, but also proved to contribute comple-
mentary information in pairwise fusions with
both of them. Finally, the fusion of the th-
ree approaches led to very competitive per-
formance. The high performance achieved on
noisy speech conditions opens a new track for
PLLR features, which will be explored in fu-
ture work on other databases, such as the Al-
bayzin 2012 LRE dataset, featuring speech on
more noisy and challenging conditions.
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lliers J. Cernocký. 2012. Speaker vectors
from Subspace Gaussian Mixture Model
as complementary features for Language
Identification. In Odyssey: The Speaker
and Language Recognition Workshop, pa-
ges 330–333.

Rodriguez-Fuentes, L. J., M. Penagarikano,
G. Bordel, and A. Varona. 2010. The
Albayzin 2008 Language Recognition Eva-
luation. In Proceedings of Odyssey 2010:
The Speaker and Language Recognition
Workshop, pages 172–179, Brno, Czech
Republic.

Rodriguez-Fuentes, L. J., M. Penagarikano,
A. Varona, M. Diez, and G. Bordel. 2011.
The Albayzin 2010 Language Recognition
Evaluation. In Proceedings of Interspeech,
pages 1529–1532, Firenze, Italia.

Rodriguez-Fuentes, L. J., M. Penagarikano,
A. Varona, M. Diez, and G. Bordel. 2012.
KALAKA-2: a TV broadcast speech data-
base for the recognition of Iberian langua-
ges in clean and noisy environments. In
Proceedings of the LREC, Istanbul, Tur-
key.

RTTH, 2006. Spanish Network on
Speech Technology. Web (in Spanish):
http://lorien.die.upm.es/∼lapiz/rtth/.

Schwarz, P. 2008. Phoneme recognition based
on long temporal context. Ph.D. thesis,
Faculty of Information Technology, Brno
University of Technology, Brno, Czech Re-
public.

Singer, E., P. A. Torres-Carrasquillo, T. P.
Gleason, W. M. Campbell, and D. A. Rey-
nolds. 2003. Acoustic, Phonetic and
Discriminative Approaches to Automatic
Language Identification. In Proceedings
of Eurospeech (Interspeech), pages 1345–
1348, Geneva, Switzerland.

Soufifar, M., S. Cumani, L. Burget, and
J. Cernocky. 2012. Discriminative Clas-
sifiers for Phonotactic Language Recog-
nition with iVectors. In Proc. IEEE
ICASSP, pages 4853–4856.

Stolcke, A. 2002. SRILM - An extensible
language modeling toolkit. In Interspeech,
pages 257–286.

Varona, Amparo, Mikel Penagarikano,
Luis Javier Rodriguez Fuentes, Mireia
Diez, and Germán Bordel. 2010. Verifica-
tion of the four spanish official languages
on tv show recordings. In XXV Congreso
de la Sociedad Espäı¿1
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