
Fénix: a flexible information exchange data model for natural
language processing∗

Fénix: un modelo de datos flexible para el intercambio de información en
procesamiento del lenguaje natural

José M. Gómez, David Tomás, Paloma Moreda
Depto. de Lenguajes y Sistemas Informáticos - Universidad de Alicante

Carretera San Vicente del Raspeig s/n - 03690 Alicante (Spain)
{jmgomez,dtomas,moreda}@dlsi.ua.es

Resumen: En este art́ıculo se describe Fénix, un modelo de datos para el intercam-
bio de información entre aplicaciones en el campo del Procesamiento del Lenguaje
Natural. El formato propuesto está pensado para ser lo suficientemente flexible como
para dar cobertura a estructuras de datos, tanto presentes como futuras, empleadas
en el campo de la Lingǘıstica Computacional. La arquitectura Fénix está dividida
en cuatro capas: conceptual, lógica, persistencia y f́ısica. Esta división proporciona
una interfaz sencilla para abstraer a los usuarios de los detalles de implementación
de bajo nivel, como los lenguajes de programación o el almacenamiento de datos
empleado, permitiéndoles centrarse en los conceptos y procesos a modelar. La ar-
quitectura Fénix viene acompañada por un conjunto de libreŕıas de programación
para facilitar el acceso y manipulación de las estructuras creadas en este marco de
trabajo. También mostraremos cómo se ha aplicado de manera exitosa esta arqui-
tectura en diferentes proyectos de investigación.
Palabras clave: modelo de datos, herramientas de PLN, integración de recursos,
intercambio de información

Abstract: In this paper we describe Fénix, a data model for exchanging information
between Natural Language Processing applications. The format proposed is intended
to be flexible enough to cover both current and future data structures employed in
the field of Computational Linguistics. The Fénix architecture is divided into four
separate layers: conceptual, logical, persistence and physical. This division provides
a simple interface to abstract the users from low-level implementation details, such
as programming languages and data storage employed, allowing them to focus in
the concepts and processes to be modelled. The Fénix architecture is accompanied
by a set of programming libraries to facilitate the access and manipulation of the
structures created in this framework. We will also show how this architecture has
been already successfully applied in different research projects.
Keywords: data model, NLP tools, resource integration, information exchange

1 Introduction

Any research work should be motivated by
the idea of sharing knowledge, tools and re-
sources that can be employed by other re-
searchers to jointly improve their area of ex-
pertise. The research carried out in the field
of Natural Language Processing (NLP) relies
heavily on resources and tools previously de-

∗ This research has been partially funded by the Spa-
nish Ministry of Economy and Competitiveness under
project LegoLangUAge (Técnicas de Deconstrucción
en las Tecnoloǵıas del Lenguaje Humano, TIN2012-
31224).

veloped by other community members. For
instance, a text classification system may de-
pend on the output generated by morpholo-
gical tools (e.g., part-of-speech taggers), syn-
tactic tools (e.g., shallow parsers), and se-
mantic tools (e.g., named entity recognizers).
If this system followed a machine learning-
based approach, it could also require as an
input a corpus to train and validate the sys-
tem.

At some point in the process of developing
almost any NLP application, every resear-
cher faces the problem of integrating diffe-

Procesamiento del Lenguaje Natural, Revista nº 52 marzo de 2014, pp 21-28 recibido 14-11-13 revisado 05-02-14 aceptado 06-02-14

ISSN 1135-5948 © 2014 Sociedad Española para el Procesamiento del Lenguaje Natural



rent tools and resources in their frameworks.
In these situations, researches and developers
usually have to do a significant effort to adapt
and integrate their products with previously
existing ones, since different people employ
different input and output formats. Moreo-
ver, this effort has to be done any time a
component is changed by a different one. In a
worst case scenario where n different inputs
for m different tools are available, a total of
n·m conversions between formats must be do-
ne in order to process them all. This problem
could be mitigated by establishing a common
information exchange format, adapting the n
different inputs to this new format. We could
also adapt the m different tools to process
this common format and reduce the need for
conversions to just n + m different possibili-
ties in this case.

The problem of integrating tools and re-
sources not just only affects the cooperation
between different research groups, but also
intra-group collaboration suffers from that
problem (Moreno-Monteagudo and Suárez,
2005). Taking into account the amount of
tools and resources available nowadays, it
becomes increasingly necessary the develop-
ment of frameworks to easily integrate hete-
rogeneous sources of information to build up
more complex NLP systems. Moreover, stan-
dardizing inputs and outputs not just facili-
tates researchers the consumption of resour-
ces and tools, but also the dissemination of
their work and its citing and reuse by other
community members.

In this paper we present Fénix, an in-
formation exchange data model to facilita-
te sharing of information between different
NLP processes. The purpose of this model
is to provide a standard to encode inputs
and outputs for different process types in
the field of computational linguistics (part-
of-speech taggers, syntactic parsers, text clas-
sifiers, etc.), facilitating in this way the inte-
gration of different NLP resources and tools.
Although this paper focuses in the applica-
tion of Fénix in the area of NLP, the model
is flexible enough to be applied in any process
communication context.

Our proposal tries to bring together the
most relevant features included in previous
models, covering the gaps in existing work.
The most relevant feature of Fénix, which
distinguishes it from other approaches, is the
adaptability. The model proposed is not li-

mited to a fixed set of predefined types, since
new data types can be defined for new pro-
cesses as necessary. This flexibility does not
have an impact in the usability of the mo-
del, since Fénix provides a simple interface
based on a four layer architecture that abs-
tracts the user from implementation details,
such as data structures and storage.

The remainder of this article is organized
as follows. Next section reviews the related
work in the field of NLP processes commu-
nication and integration. Section 3 describes
all the components involved in the Fénix ar-
chitecture. Section 4 provides details on im-
plementation experiences already carried out
with Fénix in different research projects. Fi-
nally, Section 5 summarises conclusions and
future work.

2 Related Work

There are two main approaches in the exis-
ting research works carried out for the inte-
gration of NLP resources and tools: (i) pro-
jects that only define the data format used
by processes to communicate between them;
(ii) projects that take into account data and
tools in a unique platform.

Regarding data integration, we can high-
light the Annotation Graph Toolkit (Maeda
et al., 2001) and the Atlas architecture (Bird
et al., 2000). Both systems propose a three le-
vel architecture, comprising logical, physical,
and application levels. The logical level im-
plements a generalization of the annotation
graph model presented by Bird and Liberman
(2001). Although this logical level provides
independence of the application and the phy-
sical storage, it does not allow separating the
information in different layers. Thus, every
process has to upload all the previous anno-
tations to complete the task.

Another relevant system is EMU (Cassidy
and Harrington, 2001), a system intended for
labelling, managing, and retrieving data from
speech databases. Although EMU is portable
to major computing platforms and provides
integration of hierarchical and sequential la-
belling, the area of application is limited to
speech data.

With respect to data and tools integra-
tion, two systems have been widely employed
by the NLP community: GATE (Cunning-
ham et al., 2011) and UIMA (Ferrucci and
Lally, 2004). The first one offers a framework
and an environment for language engineering.

José M. Gómez, David Tomás, Paloma Moreda

22



As a framework, it provides a set of softwa-
re components that can be used, extended,
and customised for specific needs. As a de-
velopment environment, it facilitates adding
new components. The process of integrating
new components is straightforward in the ca-
se of Java. However, for other programming
languages this process is more complicated
since each resource is treated as a Java class.

On the other hand, UIMA is the result
of the efforts carried out by IBM to crea-
te a common architecture and a robust soft-
ware framework that would be able to reuse
and combine results of its different working
teams, accelerating the process of transfe-
rring the advances made in NLP into the
IBM’s product platform. Although it provi-
des a common framework for combining NLP
components, these components are always li-
mited to IBM products.

Thus, although some efforts have been ma-
de to develop integration platforms in the
field of NLP, none of them is flexible and ge-
neral enough to provide a definite, easy, and
adaptable information exchange model to the
NLP community. In this sense, the propo-
sal described in this paper provides a simple
interface based on a four-layer architecture,
comprising conceptual, logical, persistence,
and physical levels. Previous layer-based mo-
dels usually define three layers, jointly con-
sidering physical and persistence layers. This
distinction in our proposal allows the stora-
ge of information in different formats by just
modifying the persistence layer (see Section
3).

Another relevant feature of Fénix is the
possibility of distributing the information in
different sources. For instance, the result of
a part-of-speech (POS) tagger could be sto-
red in a file, whereas the original text could
remain in a different file, providing links bet-
ween the initial tokens and the POS labels
assigned. In this way, unlike many previous
approaches, it is not necessary to load all the
information for every process, focusing only
on the data necessary to accomplish a parti-
cular task.

Fénix was originally conceived as part of
the InTime architecture (Gómez, 2008), an
integration platform for NLP tools and re-
sources. In this platform, Fénix provides the
data model to facilitate the information ex-
change between heterogeneous processes. As
part of this architecture, there is a set of li-

braries available for developers to create, ac-
cess, and modify Fénix objects.

3 Fénix Architecture

Fénix is a data model for information exchan-
ge between computational linguistics proces-
ses. Due to the heterogeneity of systems and
tasks in this research area, it is very difficult
to define all the possible types of data struc-
tures that may be necessary in this field. That
is why Fénix’s philosophy is based on a logic
model flexible enough to incorporate both cu-
rrent and possible future data structures. In
order to achieve this goal, Fénix is divided
into four separate layers: conceptual, logical,
persistence, and physical. Figure 1 shows how
different layers are related in our model.

 

Persistence

layer

Phisical

layer

Figura 1: Fénix four-layer architecture.

The conceptual layer is in the top level and
it is used to define the conceptual objects, ca-
lled object wrappers in Fénix. These objects
will provide the input and output public in-
terfaces in order to abstract the logical layer
and its structure to the end user. For instan-
ce, if we add a text string into Fénix, the end
user will use a wrapper interface to interact
with it. In this case, a Fénix object is created,
which represents an instance of the text con-
cept in the model. The interfaces of this ob-
ject will have the necessary public methods,
for instance getText() and setText(), to access
from or store into Fénix text objects. Each ty-
pe of wrapper has its own interface and invol-
ves different model concepts. For example, an
input text, a classification result, tokens from
a given text, or a search result will be con-
sidered different concepts, and thus different
wrapper types in the Fénix model.

Fénix: a fleixble information exchange data model for natural language processing

23



The conceptual layer is based on the lo-
gical layer, which defines complex informa-
tion elements and their structure. The lo-
gical layer consists of information elements
called unit. These elements are indivisible
and represent the result of a process, whe-
re a process can generate more than one in-
formation unit. Each unit represents a ty-
pe of data that could be considered simple
(e.g., a string) or complex (e.g., the result of a
text classification or an information search),
containing a type that reveals its structure
and what information is included. That is,
unit elements of the same type have the sa-
me structure. For example, the unit type
plain text could store a text string, an op-
tional source, and the start and final position
of the text (the relative position from the be-
ginning of the document where the string was
located). The source is a reference to a rela-
ted set unit elements, indicating from what
unit elements was the information obtained.
For instance, we could obtain a text plain
element without stopwords from the original
text which included these terms.

The persistence and physical layers are
in the lowest level. The physical layer defi-
nes how the Fénix model is implemented and
which programming languages can be emplo-
yed to process the model. On the other hand,
the persistence layer defines how to import
and export each Fénix object and in what
formats can the data be persistent. In fact,
different objects can be stored in different for-
mats, also offering the possibility of distribu-
ting the information on disk and memory to
optimize the use in several tasks. Moreover,
the user can decide which objects are finally
stored and which are not.

Figure 2 shows the structure of the dif-
ferent modules of Fénix model and its com-
ponents. For clarity, the physical layer is not
shown in this scheme, but it is the basis to
implement the entire structure of the model.

A unit is composed of one or more com-
plex information structures called item. This
item represents a part of the information con-
tained in a unit, but they become useful only
when considered together with other item
elements of the unit. An XML representa-
tion of this model is shown as follows:

<fenix version="1.0.0">

<unit id="unit_id" type="unit_type"

[tool="tool_name"]>

<item id="item_id_1" data_type="simple">

<info id="id_1.1" data_type="info_type">

value

</info>

</item>

<item id="item_id_2" data_type="vector">

<item id="0" data_type="item_type">

...

</item>

<info id="1" data_type="info_type">

value

</info>

<item id="2" data_type="item_type">

...

</item>

<info id="3" data_type="info_type">

value

</info>

...

</item>

<item id="item_id_3" data_type="struct">

<item id="id_3.1" data_type="item_type">

...

</item>

<info id="id_3.2" data_type="info_type">

value

</info>

<item id="id_3.3" data_type="item_type">

...

</item>

<info id="id_3.4" data_type="info_type">

value

</info>

...

</item>

...

</unit>

...

</fenix>

The unit has the attribute tool that indi-
cates from which tool has been obtained the
data of this unit. This attribute is optional
and cannot be set if it is unknown or the unit
represents the input data. All unit, item and
info elements contain an identifier. Whereas
the unit identifier must be unique (cannot
exist two unit with the same identifier), the
item or info identifier must be unique only
at the level of its container (a unit or anot-
her item). For example, the following code
represents the output of a question answering
system that returns three information units:
the input question, the question language de-
tected by the system, and the answers found.

<fenix version="1.0.0">

<unit id="input_question" type="plain_text">

<item id="text" data_type="simple">

<info id="value" data_type="string">Who is the

president of Spain?</info>

</item>

</unit>

<unit id="question_lang" type="lang" tool="jirs">

<item id="sources" data_type="struct">

<info id="text" data_type="id">input_query</

info>

</item>

<item id="lang" data_type="simple">

<info id="value" data_type="string">en</info>

</item>

José M. Gómez, David Tomás, Paloma Moreda

24



 

Unit

Object Wrappers

Item

Inf

ItemInf

Inf

Item

Inf

ItemInf

Inf

Unit

Item

Inf

ItemInf

Inf

Item

Inf

ItemInf

Inf

…

… … … … … … … …

XML BD Others…Objects

ExportImport

Persistence

Figura 2: Module structure in Fénix.

</unit>

<unit id="answers" type="answers" tool="jirs">

<item id="sources" data_type="struct">

<info id="question" data_type="id">

input_question</info>

<info id="lang" data_type="id">question_lang</

info>

</item>

<item id="results" data_type="vector">

<item id="0" data_type="struct">

<info id="text" data_type="string">Mariano

Rajoy</info>

<info id="score" data_type="float">1.0</info

>

</item>

<item id="1" data_type="struct">

<info id="text" data_type="string">Jos Luis

Rodrguez Zapatero</info>

<info id="score" data_type="float">0.8</info

>

</item>

</item>

</unit>

</fenix>

category in the Fénix model. It should be
noted that these are only a small sample of
the established unit types, and the model
is open to include new types with its own
internal structure and wrappers.

As we can see in the previous example, all
the identifiers (id) of a unit are different.

Nevertheless, the item sources appears in
question lang and answers entries, whereas
item identifiers text and score occur in se-
veral subitems of results. Although any id
is repeated in the same scope, cannot exist
neither two item sources as children of the
unit answers, nor two info text as children
of the item answers.results.1. The label
unit can be assigned many different types
and it is open to new types of information
to be incorporated in the future. Whenever a
new unit type is created, the XML specifica-
tion is added in the project Wiki.1 Some unit
types already implemented are: plain text,
for plain texts; categories, to store diffe-
rent categories for a classification process;
and classification which relates a sam-
ple with its category in the Fénix model. It
should be noted that these are only a small
sample of the established unit types, and the
model is open to include new types with its
own internal structure and wrappers.

The item data type, however, can only be
one of three different types: simple, vector,

1http://intime.dlsi.ua.es/fenix/.

Fénix: a fleixble information exchange data model for natural language processing

25



and struct. An item of type simple con-
tains only one info element; an item of ty-
pe vector contains a sequence of item or
info; finally, an item of type struct con-
tains a complex structure formed by other
item or info elements, which could be refe-
renced by an identifier id. As shown in the
previous example, item may contain other
item elements or basic format information
info, the terminal nodes of the model. The-
refore, information units may be composed of
various combinations of item and info ele-
ments, considering two limitations: info ele-
ments must have an item parent and should
be the terminal nodes of the model, i.e., they
must contain a basic data type and cannot in-
clude other item or info elements. The info
elements can only pertain to one of the follo-
wing basic types:

character: individual characters

string: sequence of characters

integer: integer value without decimal part

float: simple precision floating point num-
ber

double: double precision floating point
number

date: date/time in different formats depen-
ding on location

object: programming object

id: reference to another Fénix element

It is worth noting the object and id da-
ta types. Since Fénix, apart from a model
is a framework for data exchanging between
different processes, we considered necessary
to allow the storage of programming objects
in the info elements. For instance, we could
store in a process the database connection as
a JAVA object, passing it to another process
instead of opening a new database connection
every time.

The last basic type of Fénix information is
id. All Fénix elements (unit, item and info)
have an identifier and can be referenced by
an info element of type id. These identifiers
are hierarchical, being unit the top level ele-
ment that can be referenced, and info the
lowest one. Therefore, references of type id
are formed by concatenating the identifier of
all parent nodes to the element you want to
reference, separated by dots. Consider the fo-
llowing example:

<unit id="search_result" type="snippets" [tool="

tool_name"]>

<item id="sources" data_type="struct">

<info id="query" data_type="id">input_query</

info>

</item>

<item id="results" data_type="vector">

<item id="0" data_type="struct">

<info id="url" data_type="string">url_1</

info>

<info id="title" data_type="string">title_1<

/info>

<info id="snippet" data_type="string">

snippet_1</info>

<info id="score" data_type="float">score_1</

info>

</item>

<item id="1" data_type="struct">

<info id="url" data_type="string">url_2</

info>

<info id="title" data_type="string">title_2<

/info>

<info id="snippet" data_type="string">

snippet_2</info>

<info id="score" data_type="float">score_2</

info>

</item>

...

</item>

</unit>

The unit type snippets is employed
for storing the results of a search engi-
ne. If we would like to reference the URL
of the second snippet, the identifier will
be search result.results.1.url, where
search result is the information unit iden-
tifier, results is the identifier of the second
item which contains the snippet list, 1 is
the item number inside of the result vector
results, and url is the info element with
the information to retrieve.

In the previous example, an item with the
identifier sources is also present. This spe-
cial item can occur in any information unit
and it is employed to know from which in-
formation unit or units it was obtained. Fo-
llowing the previous example, thanks to this
item we know that the search result has been
obtained from a query whose text is in the
unit with the input query identifier. Thus,
if needed, we can track back the information
to the source and retrieve intermediate re-
sults which would otherwise be missed. For
example, if we model a POS tagger, the re-
sult of this tool would be a list of values that
correspond to each POS tag from the initial
text. But if we want to display the final result
(the POS tags) and the original terms toget-
her, we could use these backward references.

José M. Gómez, David Tomás, Paloma Moreda

26



4 Applications

Fénix has already been successfully applied
to several projects developed in our research
group. The two main applications where this
model were used are Java Process Manager2

(JPM) and InTime.3

structure of Project 1 was notably sim-
plified, allowing to make simpler and more
independent processes.

JPM is a development framework for crea-
ting processes in the area of NLP. It is fo-
cused on developing modular and customiza-
ble tools for researchers to easily test diffe-
rent modules for the same NLP task, just by
changing the system parameters. Moreover,
JPM allows integrating both native and ex-
ternal processes, independently from the pro-
gram language or the operating system em-
ployed. A JPM application defines its beha-
viour thanks to a configuration file that indi-
cates which processes are executed, in which
order and conditions. One of the main advan-
tages of this framework is the possibility of
changing the tool process architecture by just
modifying the configuration file. For example,
we could convert a pipeline to a client/server
architecture, a parallel processing, a distribu-
ted processing or a combination of them. One
of the most relevant problems of JPM, befo-
re the inclusion of the Fénix model, was how
to share the data between processes. Thanks
to Fénix, the configuration file structure of
JPM was notably simplified, allowing to ma-
ke simpler and more independent processes.

On the other hand, InTime is a distributed
integration and exchange platform of tools
and resources based on P2P technology. The
goal of InTime is to provide researchers with
a simple shared platform to discover and use
tools developed by other researchers. Emplo-
ying Fénix was basic in order to provide a
shared space of data exchange between pro-
cesses.

Other applications in which Fénix has
been successfully employed are: GPLSI Dos-
sier,4 an application to classify news based
on customers criteria; GPLSI Classifier, a
text classifier based on different NLP pro-
cessing tools (tokenization, lemmatization,
n-gram extraction, etc.); MONEI,5 a meta-

2http://gplsi.dlsi.ua.es/gplsi11/content/jpm-31.
3http://gplsi.dlsi.ua.es/gplsi11/content/intime-

platform.
4http://gplsi.dlsi.ua.es/gplsi11/content/dossier.
5http://intime.dlsi.ua.es:8080/monei/.

search engine for business opportunities in fo-
reign markets; Pyramid, an Internet crawler
which is able to process hundreds of thou-
sands of web pages per day; and Social Obser-
ver,6 an application which monitorizes tweets
and gives them a value according to their sen-
timent polarity.

Finally, Fénix is currently being employed
in the LegoLangUAge7 project, as the basis
to build up the basic information units called
L-Bricks. These units define the data structu-
res and their relations between other L-Bricks
and the ontology of the system. Fénix was
chosen among other data models due to its
flexibility and coverage to all the needs of the
LegoLangUAge project.

Regarding the application of Fénix to the-
se projects, building Fénix objects was just
a matter of building a wrapper based on
the basic structures described before: units,
structs and infos. Objects created in this
way were shared by means of Subversion8 in
a Sourceforge repository,9 being immediately
available for any user. We developed templa-
tes for Netbeans10 providing the basic wrap-
per’s structure and methods to work with it.
Developing a wrapper can be performed in
less than an hour for someone with a reaso-
nable knowledge of the model. Once created,
the further use of the wrapper by other re-
searchers is straightforward.

5 Conclusions and Future Work

In this paper we have presented Fénix, a data
model designed for information exchange bet-
ween NLP processes. The data model propo-
sed is flexible and scalable, intended to pro-
vide a generic data representation relying on
a reduced set of basic tags to codify a wide
coverage of NLP tools and corpus.

The Fénix architecture is accompanied by
a set of programming libraries to facilitate
the access and manipulation of the structu-
res created in this framework. We have al-
so presented a set of research projects and
tools where this architecture has been already
successfully applied. The application of Fénix
allowed simplifying the integration and com-
munication between processes in all the con-

6http://gplsi.dlsi.ua.es/gplsi11/content/gplsi-
social-observer.

7http://gplsi.dlsi.ua.es/legolang.
8http://subversion.tigris.org/.
9http://sourceforge.net/.

10https://netbeans.org/.

Fénix: a fleixble information exchange data model for natural language processing

27



texts described.
As future work, we plan to continue with

the application of the model as the core of the
information exchange in our current and next
developments, with a particular focus on set-
ting the basis in LegoLangUAge to build up
the basic information units called L-Bricks.
We also plan to further release new libraries
in different programming languages to faci-
litate accessing Fénix to the NLP research
community.

References

Bird, S., D. Day, J. Garofolo, J. Hender-
son, C. Laprun, and M. Liberman. 2000.
Atlas: A flexible and extensible architec-
ture for linguistic annotation. In Procee-
dings of the second international conferen-
ce on Language Resources and Evaluation,
LREC ’00.

Bird, S. and M. Liberman. 2001. A for-
mal framework for linguistic annotation.
Speech Communication, 33(1-2):23–60.

Cassidy, S. and J. Harrington. 2001. Multi-
level annotation in the emu speech data-
base management system. Speech Com-
munication, 33(1–2):61–77.

Cunningham, H., D. Maynard, K. Bontcheva,
V. Tablan, N. Aswani, I. Roberts, G. Go-
rrell, A. Funk, A. Robert, D. Damljanovic,
T. Heitz, M. A. Greenwood, H. Saggion,
J. Petrak, Y. Li, and W. Peters. 2011.
Text Processing with GATE (Version 6).

Ferrucci, D. and A. Lally. 2004. Uima:
an architectural approach to unstructu-
red information processing in the corpo-
rate research environment. Natural Lan-
guage Engineering, 10(3-4):327–348.

Gómez, J. M. 2008. Intime: Plataforma de
integración de recursos de pln. Procesa-
miento del Lenguaje Natural, 40:83–90.

Maeda, K., S. Bird, X. Ma, and H. Lee. 2001.
The annotation graph toolkit: software
components for building linguistic anno-
tation tools. In Proceedings of the first in-
ternational conference on Human langua-
ge technology research, HLT ’01, pages 1–
6, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Moreno-Monteagudo, L. and A. Suárez.
2005. Una propuesta de infraestructura

para el procesamiento del lenguaje natu-
ral. Procesamiento del Lenguaje Natural,
35.

José M. Gómez, David Tomás, Paloma Moreda

28


