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Abstract: This paper presents a system to normalize Spanish tweets, which uses preprocessing 

rules, a domain-appropriate edit-distance model, and language models to select correction 

candidates based on context. The system is an improvement on the tool we submitted to the 

Tweet-Norm 2013 shared task, and results on the task’s test-corpus are above-average. 

Additionally, we provide a study of the impact for tweet normalization of the different 

components of the system: rule-based, edit-distance based and statistical.  
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Resumen: Este artículo presenta un sistema para la normalización de tweets en español, que usa 

reglas de preproceso, un modelo de distancias de edición adecuado al dominio y modelos de 

lenguaje para seleccionar candidatos de corrección según el contexto. Se trata de un sistema 

mejorado basado en el que presentamos en la tarea compartida Tweet-Norm 2013. El sistema 

obtiene resultados superiores a la media en el corpus de test de la tarea. Presentamos además un 

estudio del impacto en la normalización de los diferentes componentes del sistema: basados en 

reglas, en distancia de edición, y estadísticos.  
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edición, modelo de lenguaje 

 

1 Introduction 

Studies on the lexical normalization of Spanish 

microtext are scarce, e.g. Armenta et al. 2003, 

which predates Twitter and focuses on SMS. 

Newer studies are (Pinto et al., 2012) and  

(Oliva et al., 2013), which also focus on SMS. 

Other recent studies are (Mosquera et al., 2012), 

which discusses the normalization of Spanish 

user-generated context in general, and (Gómez 

Hidalgo et al., 2013), which presents a detailed 

microtext tokenization method that can be 

employed for normalization.  

A larger body of literature exists for English 

microtext normalization (see Eisenstein, 2013 

for a review). Some approaches rely on large 

amounts of labelled training data, e.g. (Beaufort 

et al., 2010) and (Kaufmann and Kalita, 2010), 

which examine SMS normalization. However, 

such resources are not available for Spanish. An 

approach that performs normalization of 

English Tweets without the need of annotated 

data is Han and Baldwin, 2011. 

As an initiative to explore the application of 

different microtext normalization approaches, 

and to help overcome the lack of resources and 

tools for such a task in Spanish, SEPLN 2013 

hosted the Tweet-Norm Workshop
1
 (Alegría et 

al. 2013a). 

The system for Spanish tweet normalization 

presented in this study comprises data resources 

to model the domain, as well as analysis 

modules. It is an improvement on the tool we 

submitted (Ruiz et al., 2013) to the Tweet-

Norm 2013 shared task.  

The paper is organized as follows: the 

system’s architecture and components are 

presented in Section 2, resources employed in 

Section 3, and settings and results-evaluation in 

Section 4. Conclusions and future work are 

discussed in Section 5. 

                                                      
1
 http://komunitatea.elhuyar.org/tweet-norm/ 
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Figure 1: System Architecture 

 

2 Architecture and components 

The system’s architecture and components are 

shown in Figure 1 and explained in following.  

 

2.1 Rule-Based preprocessing 

The preprocessing module was rule-based, 

relying on 110 hand-crafted mappings between 

patterns that match out-of-vocabulary (OOV) 

items and a correction for the expressions 

matched by the patterns. The mappings were 

implemented as case-insensitive regular 

expressions.  

The first set of mappings (46 rules) was used 

to identify abbreviations, and expand them if 

needed. A second set was used to resegment 

tokens commonly written together in microtext 

(21 rules).  

The final set of mappings (43 rules) detected 

emoticons and delengthened OOV items with 

repeated characters, besides mapping OOVs to 

DRAE
2
 onomatopoeias. Repeated letters were 

reduced to a single letter, unless a word with a 

repeated letter was found in Aspell’s Spanish 

inflected form dictionary (v1.11.3)
3
. E.g. vinoo 

                                                      
2
 Spanish Academy dictionary, www.rae.es 

3
 aspell -l es dump master | aspell -l es expand 

was preprocessed to vino, but creeeen was 

reduced to creen.  

These regex-based mappings were based on 

the most common errors in a corpus of  

1 million tweets crawled by ourselves and 

spellchecked with Hunspell (v1.3.2). Microtext 

expressions such as RT (retweet) or HT (hat 

tip) were considered in-vocabulary. 

 

2.2 Correction-candidate generation 

The correction candidates generated were 

validated against a dictionary for in-vocabulary 

(IV) items, and against entity lists.  

 

2.2.1 Dictionary candidates 

The base-form (BaseED) to generate candidates 

from was either the original OOV or the 

preprocessed form of the OOV.  

Prior to candidate generation, BaseED was 

lowercased if all of its characters were in 

uppercase and it had a length of more than three 

characters.  

Candidates were generated for BaseED using 

two methods: minimum edit distance and 

regular expressions. With both methods, the 

candidates that were not found in Aspell’s 

dictionary were rejected and did not proceed to 

further steps in the normalization workflow.  
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Using minimum-edit distance (Damerau, 

1964), up to two case-insensitive character edits 

(insertions, deletions or substitutions) were 

performed on the edit-base form BaseED. The 

cost of each edit operation was not uniform: 

edits that result in correcting a common error 

were given a lesser cost than edits that correct 

uncommon errors. This method is context-

insensitive: the cost of an edit operation did not 

take into account the characters adjacent to 

those undergoing the edit, or the position in the 

word of the characters being edited (word-

initial, word-final, etc.).  

However, context sensitivity is useful in 

candidate generation and candidate scoring, 

since the frequency of certain errors depends on 

context; e.g., d-deletion is more frequent in 

participle endings -ado, -ido than elsewhere. To 

add context-sensitivity at character level to the 

model, we generated candidates via regexes that 

repair common errors. A custom distance-

scoring scheme was created for these regex-

based candidates.  

If both the edit-distance and the regex-based 

method returned the same candidate, and 

distance scores differed, the score chosen for 

the candidate was the smaller one.  

 

2.2.2 Entity Candidates 

For each OOV, a caps-initial variant and a 

variant with all characters in uppercase were 

generated, and looked up in entity lists. The 

OOV itself was also looked up. Matches were 

stored as entity candidates.  

 

2.3 Candidate selection 

The goal of candidate selection is to choose a 

single correction for each OOV, among the set 

containing the candidates created in the pre-

processing and candidate-generation steps, as 

well as the original form of the OOV itself.  

The original OOV is one of the forms to 

consider: It is part of the normalization 

workflow to decide whether to keep the 

unmodified OOV as the normalized form, or to 

propose an edited variant.  

The output of the candidate selection 

method is a single candidate, CNopos, which 

stands for final candidate pending 

postprocessing.  

The terminology used in the description of 

the algorithm (below) is the following:  

 

 Trusted Candidates: candidates from the 

Abbreviations or Resegmentation 

mappings in the preprocessing step.  

 Untrusted Candidates: candidates obtained 

with the methods in a through c below. 

a. DelenCand: obtained in preprocessing 

with Delengthening rules.  

b. DistCands: candidates, along with their 

distance to their BaseED form, generated 

with either context-sensitive or context-

insensitive character-edits (see section 

2.2.1) 

c. EntCand: a candidate from entity-

detection heuristics (section 2.2.2).   

 LMCands: When more than one untrusted 

candidate exists for an OOV, LMCands is 

the subset of the OOV’s candidates which 

is ultimately assessed against the language 

model, in order to choose an optimal 

candidate for the OOV.  

 Accented Variant: for this algorithm, a 

string S1 is an accented variant of a string 

S2 if they match in a case-and-accent-

insensitive manner: mía is an accented 

variant of Mia, as is mañana of Manana.  

 

In essence, the algorithm first selects a 

subset of the correction candidates for each 

OOV in the tweet. Then, if more than one 

candidate exists for some OOV in the tweet, a 

language model (LM) scores candidate 

combinations at tweet level, assessing best fit. 

The algorithm is presented below, and 

explanations and examples follow it.  

 

The operations in A through C below take 

place for each OOV in the tweet. 

 

A. Initial Filtering 
 

1. Filter the DistCands set in two steps: 
 

1.1. Candidates at a distance higher  

than 1.5 (configurable threshold) from 

their BaseED are filtered out. 
 

1.2. Among the remaining candidates in 

DistCands, all of the candidates at the 

smallest distance present in the set are 

retained. E.g. if candidates at distance 

0.5 and 0.8 exist, candidates at 

distance 0.8 are filtered out. 
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B. Trusted Candidates 
 

2. If a correction candidate was obtained in 

preprocessing, via Abbreviation mappings, 

(see Section 2.1), it is selected as CNopos (the 

final candidate pending postprocessing). 

3. If a correction candidate was obtained in 

preprocessing via Resegmentation map- 

pings, it is selected as CNopos.  
 

C. Untrusted Candidates 
 

4. If a correction candidate of type EntCand 

exists, add it to the LMCands set.  
 

4.1. If among the candidates in DistCands, 

accented variants exist for an 

EntCand candidate, add them to 

LMCands. 
 

5. If a correction candidate was obtained in 

preprocessing, via Delengthening regexes, 

and the candidate is IV, add it to the 

LMCands set.  
 

5.1. If among the candidates in EditCands, 

accented variants exist for the 

Delenghtening candidate, add them to 

the LMCands set.  
 

6. If no candidate has been selected so far (i.e. 

no trusted candidates exist, and the 

LMCands set is empty), add the content of 

the DistCands set (already filtered in step 1) 

to LMCands. 
 

7. If LMCands is empty, select the original 

OOV form as CNopos.  
 

After steps 1 to 7 have applied for each OOV in 

the tweet, candidates are assessed at tweet level.  
 

D. Tweet-Level Scoring 
 

Once each OOV in the tweet has been 

resolved into a trusted candidate, an LMCands 

set, or the original OOV form as a default, the 

following procedure applies, at tweet level. 

 

1. If each OOV in the tweet has one candidate 

only, that candidate is chosen and moves to 

postprocessing.  

2. Otherwise, with each combination of 

candidates from the different OOVs’ 

LMCands sets, tweet alternatives are 

created and scored against the language 

model. Candidates, the combination of 

which maximizes log probability for the 

whole tweet-alternative containing them, 

are chosen, and move to post-processing.  

In the initial filtering stage, step 1.1 

eliminates candidates whose edit-distance from 

their BaseED is too high for them to be likely 

corrections. Step 1.2 is similar in the sense that 

it narrows down the candidates to another  

k-best subset in terms of distance. Accuracy on 

both development and test-sets improved 

significantly with both steps included in the 

workflow.  

Trusted candidates result from matches 

against mappings and rules created by a human 

domain-expert, for unambiguous cases. They 

can thus be reliably promoted to CNopos status.  

Unlike the previous case, untrusted 

candidates represent ambiguous cases, and 

forms that have been generated through 

automatic means. Better accuracy is obtained 

when statistical methods and string comparison 

metrics are employed to assess their validity.  

Entity-candidates (EntCand) are added to 

the LMCands set when available. Additionally, 

since accent omission is a very frequent error, 

we also consider accented variants of EntCand. 

E.g. for EntCand Rio, accented variant río is 

considered.  

IV candidates output by Delengthening 

regexes may also require disambiguation. For 

instance, the correct variant of the form si, 

obtained from delengthening OOV siii, could 

be si, or sí, depending on context. Thus, 

accented variants for such IV items are added to 

LMCands.  

For EntCand and Delenghtening candidates, 

it is the language model’s task to decide 

between accented or unaccented variants.  

For DistCand candidates, the language 

model disambiguates among the k-best 

candidates in terms of distance score.  

 

2.4 Postprocessing (Recasing) 

Once the above processes have applied, the case 

of the candidate selected may still be incorrect; 

this can happen when the case of the original 

OOV was incorrect, and was not corrected 

earlier in the workflow (e.g. a tweet-initial 

OOV starting with lowercase). A candidate may 

have also undergone decasing via regex 

application or candidate-set generation, which 

were deployed in a case-insensitive manner.  

For these reasons, a postprocessing was 

performed, whereby the selected candidate was 

uppercased if one of the following four 

conditions applied. 

 

Pablo Ruiz, Montse Cuadros, Thierry Etchegoyhen

48



 

 

1. If it was in tweet-initial position. 

2. If it was the second token in the tweet, and 

the first token was a mention (@user) or 

hashtag (#topic). 

3. If the previous token was a sentence 

delimiter
4
. 

4. In all other positions, the first character of 

the selected candidate was uppercased if the 

original OOV’s first character was in 

uppercase. 
 

3 Resources 

In-vocabulary (IV) items were determined 

using the Aspell dictionary (v1.11.3).  

Entity lists were obtained from the JRC 

Names
5
 database. A list of named entities 

manually annotated in the Spanish subset of the 

SAVAS
6
 corpus (Del Pozo et al., to appear) was 

also used. The Spanish subset of SAVAS 

consists of 200 hours of Spanish news 

broadcasts from 2012. It contains entities from 

current events, often discussed on Twitter.  

Normalization does not require entity 

classification or linking, but merely identifying 

whether a token belongs to an entity or not. 

Accordingly, in our entity lists multiword 

entities were split into their tokens. Tokens for 

which a lowercase variant exists in Aspell’s 

dictionary were filtered out.  

For measuring candidate distance, a cost 

matrix for character edits was created. 

Additionally, a custom distance-scoring scheme 

was devised for candidates obtained with 

regular expressions at the candidate-generation 

stage (see Section 2.2.1).  

For the edit-cost matrix, costs were domain-

specific, estimated by surveying the frequency 

of character substitutions in Spanish tweets. For 

instance, editing k as q (as in one of the editing 

steps needed to correct frequent error kiero as 

quiero) was assigned a lesser cost than 

uncommon edits. Costs were also inspired by 

(Ramírez and López, 2006), who found that 

51.5% of spelling errors in Spanish were accent 

omissions. Accordingly, a cost model was 

created where replacing a non-accented 

character with its accented variant cost less than 

other substitutions. Table 1 provides example 

costs. Using the table, editing alli to allí costs 

0.5; kiero to quiero costs 1.5. 

                                                      
4
 The delimiters considered were . ! ? " … 

5
 optima.jrc.it/data/entities.gzip 

6
 www.fp7-savas.eu/savas_project 

Error Correction Cost (each) 

a, e, i, o, u, n á, é, í, ó, ú, ñ 0.5 

k, null q, u 0.75 

p, a, z m, u, k 1 

Table 1: Edit Costs 

Besides the edit-cost matrix, a set of regular 

expressions was created, to model context-

sensitive corrections (for errors that are very 

frequent in specific contexts only, like  

d-dropping in participles), and for corrections 

involving one-to-many character edits. A 

custom scoring scheme was created to assess 

distance for these corrections.  

The goal of the custom scoring was for 

regex-based corrections to receive smaller costs 

than edit-distance would assign to them. For 

instance, consider correcting parxe as parche. 

Using regexes, this was modeled as a single  

x→ch one-to-many character edit, with a cost of 

0.5, rather than two one-to-one character edits 

x→c and ø→h, which would lead to a higher 

correction cost.  

Thus, editing parxe into parche (which 

repairs a very common error in the domain), 

costs 0.5, less than editing parxe into a less 

likely correction like parte, with a cost of 1. In 

the way just described, the custom scoring 

scheme was designed to favour corrections that 

are likely in the domain.  

Table 2 shows some of the corrections 

modeled via regexes, and their costs. Note that 

corrections for some spelling-pronunciations 

(i.e. correcting p as pe, or k as ca) were also 

modeled with regexes. 
 

Error Correction Cost (each) 

ki, x, wa, ni qui, ch, gua, ñ 0.5 

ao$ ado 0.5 

p, t, k pe, te, ca 0.5 

Table 2: Context-Sensitive  

and One-to-Many character Edit Costs 

In terms of language models, we created a  

5-gram case-sensitive language model with 

Kenlm
7
 (Heafield, 2011), using an unk token. 

The model was based on the OpenSubs Spanish 

corpus, available at the Opus repository 

(Tiedmann, 2009), pruned to 31 million 

subtitles, merged with 1 million tweets 

containing IV tokens only, collected by 

                                                      
7
 kheafield.com/code/kenlm/ 

Lexical Normalization of Spanish Tweets with Rule-Based Components and Language Models

49

http://optima.jrc.it/data/entities.gzip
http://www.fp7-savas.eu/savas_project
http://kheafield.com/code/kenlm/


 

 

ourselves according to the procedure described 

below.  

The tweets in the corpus were prepared as 

follows: tweets with language value es and 

European time zones were collected in the 

spring of 2013. Only tweets for which Hunspell 

(v1.3.2) detected no errors were accepted. In 

order to decrease false positives, Hunspell 

dictionaries were enriched with entity lists. 

Tweet tokenization largely treated emoticons, 

URLs and repeated punctuation as single 

tokens. For tweets where there was at least 70% 

of token-overlap with other tweets, only one 

exemplar was accepted. 

The choice to use subtitles was motivated by 

our experiments for the Tweet-Norm workshop, 

which showed that results for language models 

trained on subtitles showed similar accuracy to 

the results for language models trained with 

tweets containing IV-only items. 

4 Results and evaluation 

Accuracy was 71.15% on the Tweet-Norm 

shared-task test-corpus (564 tweets and 662 

annotated OOVs)
8
. For reference, average 

accuracy on the task, based on the scores 

obtained by the 13 participating systems, was 

56.16%, the range being 33.5% to 78.1%.  

The improvement that each module achieves 

over the baseline is provided in Table 3, in 

terms of accuracy and increase in percentage 

points (ptp). The baseline (19.78%) is the score 

attained when accepting all OOV forms as 

correct.  

The results on Table 3 support the 

conclusion that both the rule-based 

preprocessing and the edit-distance based 

candidate generation were useful. Applied in 

isolation, rule-based preprocessing achieved 

gains of 17.8 ptp over the baseline, and edit-

distance in isolation obtained an improvement 

of 14.81 ptp.  

The results also support the conclusion that 

the candidate filtering procedure and the 

language model managed to disambiguate 

among candidates successfully, achieving gains 

of 44.11 ptp over the baseline (without post-

processing; gains after post-processing are 

51.37 ptp). 

As regards the edit-distance component, a 

relevant result is that, using a cost-model that 

reflects common errors in the domain and 

                                                      
8
 http://komunitatea.elhuyar.org/tweet-

norm/files/2013/11/tweet-norm_es.zip 

integrates context-sensitive edits obtains better 

results than using a cost model where all edit 

costs are uniform. For instance, as Table 3 

shows, the edit-distance module alone
9
, with 

costs adapted to the domain, achieves an 

improvement of 13.6 ptp over the baseline. The 

gain increases to 14.81 ptp over the baseline if 

context-sensitive corrections are added. 

 

Modules 
ACCU 

(%) 

GAINS 

 (ptp) 

Baseline 19.78  

Rule-Based Preprocessing Only 37.61 +17.83 

Abbreviations + Resegmentations  26.28 

 
Abbreviations + Resegmentations 

+ Delenghtening 
37.61 

Edit Distance Only 34.59 +14.81 

Generic Levenshtein 29.45 +9.67 

Domain-Adapted Levenshtein 

(Context Insensitive) 
33.38 +13.6 

Domain-Adapted Levenshtein  

  + Context-Sensitive Distance 
34.59 +14.81 

Entities Only 21.45 +1.67 

All + Language Model   

No Postprocessing (recasing) 63.89 +44.11 

With Postprocessing (recasing) 71.15 +51.37 

Table 3: Normalization accuracy for each 

module in isolation and after LM application 

However, if we use a generic distance model 

where all edits have a cost of 1, improvement 

over the baseline is 9.67 ptp only: 5.14 ptp 

below the cost-model adapted to the domain. 

The finding that context-sensitive corrections 

improve accuracy agrees with results by 

(Hulden and Francom, 2013).  

Regarding candidate selection, one of the 

difficulties in applying language models in 

order to correct microtext is the abundance of 

other OOVs in the context of the OOV 

undergoing normalization in each case. Our 

previous normalization system compared each 

OOV’s local context with the language model. 

In cases where other OOVs were part of a given 

                                                      
9
 Regarding the “edit-distance only” results in 

Table 3, several candidates may exist at the same 

distance. Distance being the only factor in these 

results, a random choice between candidates at the 

same distance was avoided by ranking candidates 

with their distance score weighted at 90% and their 

language-model unigram logprob weighted at 10%, 

for all distance models.  
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OOV’s local context, the candidates’ scores 

were limited to unigram probabilities and 

backoff, which could decrease accuracy.  

The current language model implementation, 

which considers all possible candidate 

combinations in order to compute the best fit 

against the LM of the tweet’s entire word 

sequence, is more successful at normalizing 

cases of adjacent OOVs than an LM workflow 

based on local context, as the following 

example illustrates.  

Consider a tweet (from the test-set) 

containing the sequence nainonainonahh me 

atozigah con tuh comentarioh los besoohh 

virtualeh. Local-context lookup in the LM 

corrects the bolded phrase as tu comentarios 

(withouth number agreement). This is 

expectable, since p(tu) > p(tus) in the model 

(−2.66 vs. −3.45), and p(comentarios) > 

p(comentario), (−5.77 vs. −6.02). Since OOVs 

tuh and comentarioh are surrounded by other 

OOVs, a local-context lookup will not benefit 

from contextual information, and will be 

restricted to a unigram probability.  

By contrast, the current LM workflow, 

which considers all possible candidate-

combinations and assesses the complete tweet 

against the LM, successfully normalizes the 

sequence as tus comentarios, since it is able to 

find the higher probability for the sequence 

respecting agreement: −6.47, vs. −9.19 for the 

sequence with broken agreement. The LM also 

disambiguated successfully accented variants, 

such as si vs. sí. 

Another salient result is that, the simple 

postprocessing module, which deploys four 

recasing rules to capitalize the final candidate 

depending on sentence position and on the 

original OOV’s case, yields an improvement of 

7.26 ptp compared to results without 

postprocessing. This agrees with findings by 

(Alegría et al., 2013b), whose recasing rules are 

a subset of ours, and who report notable gains 

from applying recasing rules.  

Regarding the small gain that occurs when 

activating the entity heuristics, note that about 

half the entity-OOVs in the corpus are already 

correct in the baseline. For the remaining 

entities, precision was acceptable: 75% in both 

sets. However, recall was weak: 41% in the 

development set and 52% in the test-set. For 

these reasons, entity detection yielded a smaller 

gain over the baseline than other modules.  

Finally, the system’s upper bound 

(proportion of correct candidates generated, 

even if they were not selected as final) was 

84.54%, similar to the upper bound of 85.47% 

reported by (Ageno et al. 2013) for the same 

corpus. Some of the OOVs for which no correct 

proposal was generated were entities. In some 

other cases, preprocessing rules that would map 

the original OOV to a viable candidate were 

missing.  

5 Conclusions and future work 

We presented a system for the normalization of 

Spanish tweets. The system uses rules to 

expand abbreviations, resegment tokens and 

delengthen OOVs into forms closer to IV 

tokens. Candidates are generated based on 

weighted edit-distance. The edit-cost model was 

adapted to the domain: costs were estimated 

taking into account common errors in tweets. 

Besides context-insensitive edits, distance-

scoring had some context-sensitive rules, 

reflecting the likelihood that an edit would lead 

to a correction in a given context. The domain-

adapted cost-model was shown to be more 

accurate than a generic-domain unweighted 

edit-distance model. Candidates were also 

proposed based on entity lists.  

To disambiguate between candidates, the 

entire word sequence of tweet-alternatives 

containing all possible correction-candidate 

combinations (among k-best candidates) was 

checked for best fit against a language model. 

This global, tweet-level LM lookup method was 

more successful at normalizing sequences of 

adjacent OOVs than a lookup method that 

exploits an OOV’s local context only. 

Regarding future work, the current 

resegmentation rules were hand-crafted and a 

statistical workflow (e.g. Alegría et al., 2013b) 

would be an improvement. Also, our entity-

detection heuristics should be improved for 

recall. In terms of candidate selection, we used 

the language model to disambiguate candidates 

at the smallest distance available in the 

candidate set, as better accuracy was obtained 

that way. Extending the scope of LM 

disambiguation beyond k-best candidates, while 

also improving accuracy, is a topic for future 

research. Finally, only a small proportion of the 

current LM training corpus consisted of tweets. 

It would be relevant to verify if results improve 

with an LM trained on a large in-vocabulary 

corpus of tweets, with the language model 

reflecting domain-specific textual 

characteristics more closely. 
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