

Lexical Normalization of Spanish Tweets

with Rule-Based Components and Language Models

Normalización léxica de tweets en español

con componentes basados en reglas y modelos de lenguaje

Pablo Ruiz, Montse Cuadros and Thierry Etchegoyhen

Vicomtech-IK4

Mikeletegi Pasealekua 57

Parque Tecnológico de Gipuzkoa, 20009 Donostia/San Sebastián

{pruiz,mcuadros,tetchegoyhen}@vicomtech.org

Abstract: This paper presents a system to normalize Spanish tweets, which uses preprocessing

rules, a domain-appropriate edit-distance model, and language models to select correction

candidates based on context. The system is an improvement on the tool we submitted to the

Tweet-Norm 2013 shared task, and results on the task’s test-corpus are above-average.

Additionally, we provide a study of the impact for tweet normalization of the different

components of the system: rule-based, edit-distance based and statistical.

Keywords: Spanish microtext, lexical normalization, Twitter, edit distance, language model

Resumen: Este artículo presenta un sistema para la normalización de tweets en español, que usa

reglas de preproceso, un modelo de distancias de edición adecuado al dominio y modelos de

lenguaje para seleccionar candidatos de corrección según el contexto. Se trata de un sistema

mejorado basado en el que presentamos en la tarea compartida Tweet-Norm 2013. El sistema

obtiene resultados superiores a la media en el corpus de test de la tarea. Presentamos además un

estudio del impacto en la normalización de los diferentes componentes del sistema: basados en

reglas, en distancia de edición, y estadísticos.

Palabras clave: microtexto, español, castellano, normalización léxica, Twitter, distancia de

edición, modelo de lenguaje

1 Introduction

Studies on the lexical normalization of Spanish

microtext are scarce, e.g. Armenta et al. 2003,

which predates Twitter and focuses on SMS.

Newer studies are (Pinto et al., 2012) and

(Oliva et al., 2013), which also focus on SMS.

Other recent studies are (Mosquera et al., 2012),

which discusses the normalization of Spanish

user-generated context in general, and (Gómez

Hidalgo et al., 2013), which presents a detailed

microtext tokenization method that can be

employed for normalization.

A larger body of literature exists for English

microtext normalization (see Eisenstein, 2013

for a review). Some approaches rely on large

amounts of labelled training data, e.g. (Beaufort

et al., 2010) and (Kaufmann and Kalita, 2010),

which examine SMS normalization. However,

such resources are not available for Spanish. An

approach that performs normalization of

English Tweets without the need of annotated

data is Han and Baldwin, 2011.

As an initiative to explore the application of

different microtext normalization approaches,

and to help overcome the lack of resources and

tools for such a task in Spanish, SEPLN 2013

hosted the Tweet-Norm Workshop
1
 (Alegría et

al. 2013a).

The system for Spanish tweet normalization

presented in this study comprises data resources

to model the domain, as well as analysis

modules. It is an improvement on the tool we

submitted (Ruiz et al., 2013) to the Tweet-

Norm 2013 shared task.

The paper is organized as follows: the

system’s architecture and components are

presented in Section 2, resources employed in

Section 3, and settings and results-evaluation in

Section 4. Conclusions and future work are

discussed in Section 5.

1
 http://komunitatea.elhuyar.org/tweet-norm/

Procesamiento del Lenguaje Natural, Revista nº 52 marzo de 2014, pp 45-52 recibido 15-11-13 revisado 06-02-14 aceptado 07-02-14

ISSN 1135-5948 © 2014 Sociedad Española para el Procesamiento del Lenguaje Natural

http://komunitatea.elhuyar.org/tweet-norm/

Figure 1: System Architecture

2 Architecture and components

The system’s architecture and components are

shown in Figure 1 and explained in following.

2.1 Rule-Based preprocessing

The preprocessing module was rule-based,

relying on 110 hand-crafted mappings between

patterns that match out-of-vocabulary (OOV)

items and a correction for the expressions

matched by the patterns. The mappings were

implemented as case-insensitive regular

expressions.

The first set of mappings (46 rules) was used

to identify abbreviations, and expand them if

needed. A second set was used to resegment

tokens commonly written together in microtext

(21 rules).

The final set of mappings (43 rules) detected

emoticons and delengthened OOV items with

repeated characters, besides mapping OOVs to

DRAE
2
 onomatopoeias. Repeated letters were

reduced to a single letter, unless a word with a

repeated letter was found in Aspell’s Spanish

inflected form dictionary (v1.11.3)
3
. E.g. vinoo

2
 Spanish Academy dictionary, www.rae.es

3
 aspell -l es dump master | aspell -l es expand

was preprocessed to vino, but creeeen was

reduced to creen.

These regex-based mappings were based on

the most common errors in a corpus of

1 million tweets crawled by ourselves and

spellchecked with Hunspell (v1.3.2). Microtext

expressions such as RT (retweet) or HT (hat

tip) were considered in-vocabulary.

2.2 Correction-candidate generation

The correction candidates generated were

validated against a dictionary for in-vocabulary

(IV) items, and against entity lists.

2.2.1 Dictionary candidates

The base-form (BaseED) to generate candidates

from was either the original OOV or the

preprocessed form of the OOV.

Prior to candidate generation, BaseED was

lowercased if all of its characters were in

uppercase and it had a length of more than three

characters.

Candidates were generated for BaseED using

two methods: minimum edit distance and

regular expressions. With both methods, the

candidates that were not found in Aspell’s

dictionary were rejected and did not proceed to

further steps in the normalization workflow.

Pablo Ruiz, Montse Cuadros, Thierry Etchegoyhen

46

http://www.rae.es/

Using minimum-edit distance (Damerau,

1964), up to two case-insensitive character edits

(insertions, deletions or substitutions) were

performed on the edit-base form BaseED. The

cost of each edit operation was not uniform:

edits that result in correcting a common error

were given a lesser cost than edits that correct

uncommon errors. This method is context-

insensitive: the cost of an edit operation did not

take into account the characters adjacent to

those undergoing the edit, or the position in the

word of the characters being edited (word-

initial, word-final, etc.).

However, context sensitivity is useful in

candidate generation and candidate scoring,

since the frequency of certain errors depends on

context; e.g., d-deletion is more frequent in

participle endings -ado, -ido than elsewhere. To

add context-sensitivity at character level to the

model, we generated candidates via regexes that

repair common errors. A custom distance-

scoring scheme was created for these regex-

based candidates.

If both the edit-distance and the regex-based

method returned the same candidate, and

distance scores differed, the score chosen for

the candidate was the smaller one.

2.2.2 Entity Candidates

For each OOV, a caps-initial variant and a

variant with all characters in uppercase were

generated, and looked up in entity lists. The

OOV itself was also looked up. Matches were

stored as entity candidates.

2.3 Candidate selection

The goal of candidate selection is to choose a

single correction for each OOV, among the set

containing the candidates created in the pre-

processing and candidate-generation steps, as

well as the original form of the OOV itself.

The original OOV is one of the forms to

consider: It is part of the normalization

workflow to decide whether to keep the

unmodified OOV as the normalized form, or to

propose an edited variant.

The output of the candidate selection

method is a single candidate, CNopos, which

stands for final candidate pending

postprocessing.

The terminology used in the description of

the algorithm (below) is the following:

 Trusted Candidates: candidates from the

Abbreviations or Resegmentation

mappings in the preprocessing step.

 Untrusted Candidates: candidates obtained

with the methods in a through c below.

a. DelenCand: obtained in preprocessing

with Delengthening rules.

b. DistCands: candidates, along with their

distance to their BaseED form, generated

with either context-sensitive or context-

insensitive character-edits (see section

2.2.1)

c. EntCand: a candidate from entity-

detection heuristics (section 2.2.2).

 LMCands: When more than one untrusted

candidate exists for an OOV, LMCands is

the subset of the OOV’s candidates which

is ultimately assessed against the language

model, in order to choose an optimal

candidate for the OOV.

 Accented Variant: for this algorithm, a

string S1 is an accented variant of a string

S2 if they match in a case-and-accent-

insensitive manner: mía is an accented

variant of Mia, as is mañana of Manana.

In essence, the algorithm first selects a

subset of the correction candidates for each

OOV in the tweet. Then, if more than one

candidate exists for some OOV in the tweet, a

language model (LM) scores candidate

combinations at tweet level, assessing best fit.

The algorithm is presented below, and

explanations and examples follow it.

The operations in A through C below take

place for each OOV in the tweet.

A. Initial Filtering

1. Filter the DistCands set in two steps:

1.1. Candidates at a distance higher

than 1.5 (configurable threshold) from

their BaseED are filtered out.

1.2. Among the remaining candidates in

DistCands, all of the candidates at the

smallest distance present in the set are

retained. E.g. if candidates at distance

0.5 and 0.8 exist, candidates at

distance 0.8 are filtered out.

Lexical Normalization of Spanish Tweets with Rule-Based Components and Language Models

47

B. Trusted Candidates

2. If a correction candidate was obtained in

preprocessing, via Abbreviation mappings,

(see Section 2.1), it is selected as CNopos (the

final candidate pending postprocessing).

3. If a correction candidate was obtained in

preprocessing via Resegmentation map-

pings, it is selected as CNopos.

C. Untrusted Candidates

4. If a correction candidate of type EntCand

exists, add it to the LMCands set.

4.1. If among the candidates in DistCands,

accented variants exist for an

EntCand candidate, add them to

LMCands.

5. If a correction candidate was obtained in

preprocessing, via Delengthening regexes,

and the candidate is IV, add it to the

LMCands set.

5.1. If among the candidates in EditCands,

accented variants exist for the

Delenghtening candidate, add them to

the LMCands set.

6. If no candidate has been selected so far (i.e.

no trusted candidates exist, and the

LMCands set is empty), add the content of

the DistCands set (already filtered in step 1)

to LMCands.

7. If LMCands is empty, select the original

OOV form as CNopos.

After steps 1 to 7 have applied for each OOV in

the tweet, candidates are assessed at tweet level.

D. Tweet-Level Scoring

Once each OOV in the tweet has been

resolved into a trusted candidate, an LMCands

set, or the original OOV form as a default, the

following procedure applies, at tweet level.

1. If each OOV in the tweet has one candidate

only, that candidate is chosen and moves to

postprocessing.

2. Otherwise, with each combination of

candidates from the different OOVs’

LMCands sets, tweet alternatives are

created and scored against the language

model. Candidates, the combination of

which maximizes log probability for the

whole tweet-alternative containing them,

are chosen, and move to post-processing.

In the initial filtering stage, step 1.1

eliminates candidates whose edit-distance from

their BaseED is too high for them to be likely

corrections. Step 1.2 is similar in the sense that

it narrows down the candidates to another

k-best subset in terms of distance. Accuracy on

both development and test-sets improved

significantly with both steps included in the

workflow.

Trusted candidates result from matches

against mappings and rules created by a human

domain-expert, for unambiguous cases. They

can thus be reliably promoted to CNopos status.

Unlike the previous case, untrusted

candidates represent ambiguous cases, and

forms that have been generated through

automatic means. Better accuracy is obtained

when statistical methods and string comparison

metrics are employed to assess their validity.

Entity-candidates (EntCand) are added to

the LMCands set when available. Additionally,

since accent omission is a very frequent error,

we also consider accented variants of EntCand.

E.g. for EntCand Rio, accented variant río is

considered.

IV candidates output by Delengthening

regexes may also require disambiguation. For

instance, the correct variant of the form si,

obtained from delengthening OOV siii, could

be si, or sí, depending on context. Thus,

accented variants for such IV items are added to

LMCands.

For EntCand and Delenghtening candidates,

it is the language model’s task to decide

between accented or unaccented variants.

For DistCand candidates, the language

model disambiguates among the k-best

candidates in terms of distance score.

2.4 Postprocessing (Recasing)

Once the above processes have applied, the case

of the candidate selected may still be incorrect;

this can happen when the case of the original

OOV was incorrect, and was not corrected

earlier in the workflow (e.g. a tweet-initial

OOV starting with lowercase). A candidate may

have also undergone decasing via regex

application or candidate-set generation, which

were deployed in a case-insensitive manner.

For these reasons, a postprocessing was

performed, whereby the selected candidate was

uppercased if one of the following four

conditions applied.

Pablo Ruiz, Montse Cuadros, Thierry Etchegoyhen

48

1. If it was in tweet-initial position.

2. If it was the second token in the tweet, and

the first token was a mention (@user) or

hashtag (#topic).

3. If the previous token was a sentence

delimiter
4
.

4. In all other positions, the first character of

the selected candidate was uppercased if the

original OOV’s first character was in

uppercase.

3 Resources

In-vocabulary (IV) items were determined

using the Aspell dictionary (v1.11.3).

Entity lists were obtained from the JRC

Names
5
 database. A list of named entities

manually annotated in the Spanish subset of the

SAVAS
6
 corpus (Del Pozo et al., to appear) was

also used. The Spanish subset of SAVAS

consists of 200 hours of Spanish news

broadcasts from 2012. It contains entities from

current events, often discussed on Twitter.

Normalization does not require entity

classification or linking, but merely identifying

whether a token belongs to an entity or not.

Accordingly, in our entity lists multiword

entities were split into their tokens. Tokens for

which a lowercase variant exists in Aspell’s

dictionary were filtered out.

For measuring candidate distance, a cost

matrix for character edits was created.

Additionally, a custom distance-scoring scheme

was devised for candidates obtained with

regular expressions at the candidate-generation

stage (see Section 2.2.1).

For the edit-cost matrix, costs were domain-

specific, estimated by surveying the frequency

of character substitutions in Spanish tweets. For

instance, editing k as q (as in one of the editing

steps needed to correct frequent error kiero as

quiero) was assigned a lesser cost than

uncommon edits. Costs were also inspired by

(Ramírez and López, 2006), who found that

51.5% of spelling errors in Spanish were accent

omissions. Accordingly, a cost model was

created where replacing a non-accented

character with its accented variant cost less than

other substitutions. Table 1 provides example

costs. Using the table, editing alli to allí costs

0.5; kiero to quiero costs 1.5.

4
 The delimiters considered were . ! ? " …

5
 optima.jrc.it/data/entities.gzip

6
 www.fp7-savas.eu/savas_project

Error Correction Cost (each)

a, e, i, o, u, n á, é, í, ó, ú, ñ 0.5

k, null q, u 0.75

p, a, z m, u, k 1

Table 1: Edit Costs

Besides the edit-cost matrix, a set of regular

expressions was created, to model context-

sensitive corrections (for errors that are very

frequent in specific contexts only, like

d-dropping in participles), and for corrections

involving one-to-many character edits. A

custom scoring scheme was created to assess

distance for these corrections.

The goal of the custom scoring was for

regex-based corrections to receive smaller costs

than edit-distance would assign to them. For

instance, consider correcting parxe as parche.

Using regexes, this was modeled as a single

x→ch one-to-many character edit, with a cost of

0.5, rather than two one-to-one character edits

x→c and ø→h, which would lead to a higher

correction cost.

Thus, editing parxe into parche (which

repairs a very common error in the domain),

costs 0.5, less than editing parxe into a less

likely correction like parte, with a cost of 1. In

the way just described, the custom scoring

scheme was designed to favour corrections that

are likely in the domain.

Table 2 shows some of the corrections

modeled via regexes, and their costs. Note that

corrections for some spelling-pronunciations

(i.e. correcting p as pe, or k as ca) were also

modeled with regexes.

Error Correction Cost (each)

ki, x, wa, ni qui, ch, gua, ñ 0.5

ao$ ado 0.5

p, t, k pe, te, ca 0.5

Table 2: Context-Sensitive

and One-to-Many character Edit Costs

In terms of language models, we created a

5-gram case-sensitive language model with

Kenlm
7
 (Heafield, 2011), using an unk token.

The model was based on the OpenSubs Spanish

corpus, available at the Opus repository

(Tiedmann, 2009), pruned to 31 million

subtitles, merged with 1 million tweets

containing IV tokens only, collected by

7
 kheafield.com/code/kenlm/

Lexical Normalization of Spanish Tweets with Rule-Based Components and Language Models

49

http://optima.jrc.it/data/entities.gzip
http://www.fp7-savas.eu/savas_project
http://kheafield.com/code/kenlm/

ourselves according to the procedure described

below.

The tweets in the corpus were prepared as

follows: tweets with language value es and

European time zones were collected in the

spring of 2013. Only tweets for which Hunspell

(v1.3.2) detected no errors were accepted. In

order to decrease false positives, Hunspell

dictionaries were enriched with entity lists.

Tweet tokenization largely treated emoticons,

URLs and repeated punctuation as single

tokens. For tweets where there was at least 70%

of token-overlap with other tweets, only one

exemplar was accepted.

The choice to use subtitles was motivated by

our experiments for the Tweet-Norm workshop,

which showed that results for language models

trained on subtitles showed similar accuracy to

the results for language models trained with

tweets containing IV-only items.

4 Results and evaluation

Accuracy was 71.15% on the Tweet-Norm

shared-task test-corpus (564 tweets and 662

annotated OOVs)
8
. For reference, average

accuracy on the task, based on the scores

obtained by the 13 participating systems, was

56.16%, the range being 33.5% to 78.1%.

The improvement that each module achieves

over the baseline is provided in Table 3, in

terms of accuracy and increase in percentage

points (ptp). The baseline (19.78%) is the score

attained when accepting all OOV forms as

correct.

The results on Table 3 support the

conclusion that both the rule-based

preprocessing and the edit-distance based

candidate generation were useful. Applied in

isolation, rule-based preprocessing achieved

gains of 17.8 ptp over the baseline, and edit-

distance in isolation obtained an improvement

of 14.81 ptp.

The results also support the conclusion that

the candidate filtering procedure and the

language model managed to disambiguate

among candidates successfully, achieving gains

of 44.11 ptp over the baseline (without post-

processing; gains after post-processing are

51.37 ptp).

As regards the edit-distance component, a

relevant result is that, using a cost-model that

reflects common errors in the domain and

8
 http://komunitatea.elhuyar.org/tweet-

norm/files/2013/11/tweet-norm_es.zip

integrates context-sensitive edits obtains better

results than using a cost model where all edit

costs are uniform. For instance, as Table 3

shows, the edit-distance module alone
9
, with

costs adapted to the domain, achieves an

improvement of 13.6 ptp over the baseline. The

gain increases to 14.81 ptp over the baseline if

context-sensitive corrections are added.

Modules
ACCU

(%)

GAINS

 (ptp)

Baseline 19.78

Rule-Based Preprocessing Only 37.61 +17.83

Abbreviations + Resegmentations 26.28

Abbreviations + Resegmentations

+ Delenghtening
37.61

Edit Distance Only 34.59 +14.81

Generic Levenshtein 29.45 +9.67

Domain-Adapted Levenshtein

(Context Insensitive)
33.38 +13.6

Domain-Adapted Levenshtein

 + Context-Sensitive Distance
34.59 +14.81

Entities Only 21.45 +1.67

All + Language Model

No Postprocessing (recasing) 63.89 +44.11

With Postprocessing (recasing) 71.15 +51.37

Table 3: Normalization accuracy for each

module in isolation and after LM application

However, if we use a generic distance model

where all edits have a cost of 1, improvement

over the baseline is 9.67 ptp only: 5.14 ptp

below the cost-model adapted to the domain.

The finding that context-sensitive corrections

improve accuracy agrees with results by

(Hulden and Francom, 2013).

Regarding candidate selection, one of the

difficulties in applying language models in

order to correct microtext is the abundance of

other OOVs in the context of the OOV

undergoing normalization in each case. Our

previous normalization system compared each

OOV’s local context with the language model.

In cases where other OOVs were part of a given

9
 Regarding the “edit-distance only” results in

Table 3, several candidates may exist at the same

distance. Distance being the only factor in these

results, a random choice between candidates at the

same distance was avoided by ranking candidates

with their distance score weighted at 90% and their

language-model unigram logprob weighted at 10%,

for all distance models.

Pablo Ruiz, Montse Cuadros, Thierry Etchegoyhen

50

http://komunitatea.elhuyar.org/tweet-norm/files/2013/11/tweet-norm_es.zip
http://komunitatea.elhuyar.org/tweet-norm/files/2013/11/tweet-norm_es.zip

OOV’s local context, the candidates’ scores

were limited to unigram probabilities and

backoff, which could decrease accuracy.

The current language model implementation,

which considers all possible candidate

combinations in order to compute the best fit

against the LM of the tweet’s entire word

sequence, is more successful at normalizing

cases of adjacent OOVs than an LM workflow

based on local context, as the following

example illustrates.

Consider a tweet (from the test-set)

containing the sequence nainonainonahh me

atozigah con tuh comentarioh los besoohh

virtualeh. Local-context lookup in the LM

corrects the bolded phrase as tu comentarios

(withouth number agreement). This is

expectable, since p(tu) > p(tus) in the model

(−2.66 vs. −3.45), and p(comentarios) >

p(comentario), (−5.77 vs. −6.02). Since OOVs

tuh and comentarioh are surrounded by other

OOVs, a local-context lookup will not benefit

from contextual information, and will be

restricted to a unigram probability.

By contrast, the current LM workflow,

which considers all possible candidate-

combinations and assesses the complete tweet

against the LM, successfully normalizes the

sequence as tus comentarios, since it is able to

find the higher probability for the sequence

respecting agreement: −6.47, vs. −9.19 for the

sequence with broken agreement. The LM also

disambiguated successfully accented variants,

such as si vs. sí.

Another salient result is that, the simple

postprocessing module, which deploys four

recasing rules to capitalize the final candidate

depending on sentence position and on the

original OOV’s case, yields an improvement of

7.26 ptp compared to results without

postprocessing. This agrees with findings by

(Alegría et al., 2013b), whose recasing rules are

a subset of ours, and who report notable gains

from applying recasing rules.

Regarding the small gain that occurs when

activating the entity heuristics, note that about

half the entity-OOVs in the corpus are already

correct in the baseline. For the remaining

entities, precision was acceptable: 75% in both

sets. However, recall was weak: 41% in the

development set and 52% in the test-set. For

these reasons, entity detection yielded a smaller

gain over the baseline than other modules.

Finally, the system’s upper bound

(proportion of correct candidates generated,

even if they were not selected as final) was

84.54%, similar to the upper bound of 85.47%

reported by (Ageno et al. 2013) for the same

corpus. Some of the OOVs for which no correct

proposal was generated were entities. In some

other cases, preprocessing rules that would map

the original OOV to a viable candidate were

missing.

5 Conclusions and future work

We presented a system for the normalization of

Spanish tweets. The system uses rules to

expand abbreviations, resegment tokens and

delengthen OOVs into forms closer to IV

tokens. Candidates are generated based on

weighted edit-distance. The edit-cost model was

adapted to the domain: costs were estimated

taking into account common errors in tweets.

Besides context-insensitive edits, distance-

scoring had some context-sensitive rules,

reflecting the likelihood that an edit would lead

to a correction in a given context. The domain-

adapted cost-model was shown to be more

accurate than a generic-domain unweighted

edit-distance model. Candidates were also

proposed based on entity lists.

To disambiguate between candidates, the

entire word sequence of tweet-alternatives

containing all possible correction-candidate

combinations (among k-best candidates) was

checked for best fit against a language model.

This global, tweet-level LM lookup method was

more successful at normalizing sequences of

adjacent OOVs than a lookup method that

exploits an OOV’s local context only.

Regarding future work, the current

resegmentation rules were hand-crafted and a

statistical workflow (e.g. Alegría et al., 2013b)

would be an improvement. Also, our entity-

detection heuristics should be improved for

recall. In terms of candidate selection, we used

the language model to disambiguate candidates

at the smallest distance available in the

candidate set, as better accuracy was obtained

that way. Extending the scope of LM

disambiguation beyond k-best candidates, while

also improving accuracy, is a topic for future

research. Finally, only a small proportion of the

current LM training corpus consisted of tweets.

It would be relevant to verify if results improve

with an LM trained on a large in-vocabulary

corpus of tweets, with the language model

reflecting domain-specific textual

characteristics more closely.

Lexical Normalization of Spanish Tweets with Rule-Based Components and Language Models

51

6 References

Ageno, A., P. R. Comas, L. Padró, J. Turmo.

2013. The TALP-UPC approach to Tweet-

Norm 2013. Proceedings of the Tweet

Normalization Workshop at SEPLN 2013.

Alegría, I., N. Aranberri, V. Fresno,

P. Gamallo, L. Padró, I. San Vicente, J.

Turmo, and A. Zubiaga. 2013a. Introducción

a la tarea compartida Tweet-Norm 2013:

Normalización léxica de tuits en español.

Proceedings of the Tweet Normalization

Workshop at SEPLN 2013.

Alegría, I., I. Etxeberria, and G. Labaka. 2013b.

Una cascada de transductores simples para

normalizar tweets. Proceedings of the Tweet

Normalization Workshop at SEPLN 2013.

Armenta, A., G. Escalada, J.M. Garrido, and M.

A. Rodríguez. 2003. Desarrollo de un

corrector ortográfico para aplicaciones de

conversión texto-voz. Procesamiento del

Lenguaje Natural, 31:65-72.

Beaufort, R., S. Roekhaut, L. A. Cougnon, and

C. Fairon. 2010. A hybrid rule/model-based

finite-state framework for normalizing SMS

messages. 48th Annual Meeting of the

Association for Computational Linguistics,

770-779, Uppsala, Sweden

Damerau, F. 1964. A technique for

computer correction of spelling errors.

Communications of the ACM, 7(3): 171-176.

Del Pozo, A, C. Aliprandi, A. Álvarez, C.

Mendes, J. P. Neto, S. Paulo, N. Piccinini,

M. Rafaelli. To appear. SAVAS: Collecting,

Annotating and Sharing Audiovisual

Language Resources for Automatic

Subtitling. To appear in Proceedings of

LREC 2014.

Eisenstein, Jacob. 2013. What to do about bad

language on the internet. Proceedings of

NAACL-HLT, pp. 359-369.

Han, B. and T. Baldwin. 2011. Lexical

normalisation of short text messages: makn

sens a #twitter. Proceedings of the 49th

Annual Meeting of the Association for

Computational Linguistics: Human

Language Technologies, Vol. 1: 368-378,

Association for Computational Linguistics,

Stroudsburg, PA, USA.

Heafield, K. 2011. KenLM: Faster and Smaller

Language Model Queries. Proceedings of

the Sixth Workshop on Statistical Machine

Translation, 187-197. Edinburgh, Scotland,

UK.

Hulden, M. and J. Francom. 2013. Weighted

and unweighted transducers for tweet

normalization. Proceedings of the Tweet

Normalization Workshop at SEPLN 2013.

Kaufmann, J. and J. Kalita. 2010. Syntactic

normalization of twitter messages. In

International Conference on Natural

Language Processing, Kharagpur, India.

Gomez Hidalgo, J. M., A. A. Caurcel Díaz, and

Y. Iñiguez del Rio. 2013. Un método de

análisis de lenguaje tipo SMS para el

castellano. Linguamática, 5(1):31-39

Mosquera, A., E. Lloret and and P. Moreda.

2012. Towards facilitating the accessibility

of web 2.0 texts through text normalization.

In Proceedings of the LREC Workshop:

Natural Language Processing for Improvign

Textual Accessibility (NLP4ITA), pp 9-14,

Istanbul, Turkey.

Oliva, J., J. I. Serrano, M. D. Del Castillo,

and A. Iglesias. 2013. A SMS normalization

system integrating multiple grammatical
resources. Natural Language Engineering,

19:121-141, 1.

Pinto, D., D. Vilariño Ayala, Y. Alemán,

Helena, N Loya, and H Jiménez-Salazar.

2012. The Soundex phonetic algorithm

revisited for SMS text representation. In P.

Sojka, A. Horak, I. Kopecek, and Karel Pala

(eds.). Text, Speech and Dialogue, LNCS

Vol. 7499:47-55. Springer.

Ramírez, F. and E. López. 2006. Spelling Error

Patterns in Spanish for Word Processing

Applications. Proceedings of LREC 2006,

93-98.

Ruiz, P., M. Cuadros and T. Etchegoyhen. 2013

Lexical Normalization of Spanish Tweets

with Preprocessing Rules, Domain-Specific

Edit Distances, and Language Models.

Proceedings of the Tweet Normalization

Workshop at SEPLN 2013.

Tiedmann, J. 2009. News from OPUS. A

Collection of Multilingual Parallel Corpora

with Tools and Interfaces. In N. Nicolov and

K. Bontcheva (eds.) Recent Advances in

Natural Language Processing, Vol. V:237-

248. John Benjamins, Amsterdam.

Pablo Ruiz, Montse Cuadros, Thierry Etchegoyhen

52

