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Resumen: El uso universal de síntesis de voz en diferentes aplicaciones requeriría un desarrollo 

sencillo de las nuevas voces con poca intervención manual. Teniendo en cuenta la cantidad de 

datos multimedia disponibles en Internet y los medios de comunicación, un objetivo interesante 

es el desarrollo de herramientas y métodos para construir automáticamente las voces de estilo de 

varios de ellos. En un trabajo anterior se esbozó una metodología para la construcción de este tipo 

de herramientas, y se presentaron experimentos preliminares con una base de datos multiestilo. 

En este artículo investigamos más a fondo esta tarea y proponemos varias mejoras basadas en la 

selección del número apropiado de hablantes iniciales, el uso o no de filtros de reducción de ruido, 

el uso de la F0 y el uso de un algoritmo de detección de música. Hemos demostrado que el mejor 

sistema usando un algoritmo de detección de música disminuye el error de precisión 22,36% 

relativo para el conjunto de desarrollo y 39,64% relativo para el montaje de ensayo en 

comparación con el sistema base, sin degradar el factor de mérito. La precisión media para el 

conjunto de prueba es 90.62% desde 76.18% para los reportajes de 99,93% para los informes 

meteorológicos. 

Palabras clave: síntesis de voz expresiva, diarización de locutores, estilos de habla, síntesis de 

voz 

Abstract: Universal use of speech synthesis in different applications would require an easy 

development of new voices with little manual intervention. Considering the amount of multimedia 

data available on internet and media, one interesting goal is to develop tools and methods to 

automatically build multi-style voices from them. In a previous paper a methodology for 

constructing such tools was sketched, and preliminary experiments with a multi-style database 

were presented. In this paper we further investigate such approach and propose several 

improvements to it based on the selection of the appropriate number of initial speakers, the use or 

not of noise reduction filters, the use of the F0 feature and the use of a music detection algorithm. 

We have demonstrated that the best system using music detection algorithm decreases the 

precision error 22.36% relative for the development set and 39.64% relative for the test set 

compared to the baseline, without degrading the merit factor. The average precision for the test 

set is 90.62% ranging from 76.18% for reportages to 99.93% for meteorology reports. 
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1 Introduction 

Universal use of speech synthesis in different 

applications would require an easy development of 

new voices with little manual intervention. One of 

the goals of the Simple4all Project (Clark and King, 

2012) is to create the most portable speech synthesis 

system possible: one that could be automatically (or 

with limited manual supervision) applied to many 

domains and tasks. In order to use speech collected 

from the media or from media sharing sites, speech 

synthesis systems must be robust to the variation of 
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the acoustic and environmental conditions. The 

system must be able to robustly cope with noisy 

ASR–processed corpora and with challenging data 

such as interviews, debates, home recordings, 

political speeches, etc. The use of diarization 

techniques for speaker–turn segmentation will allow 

the system creating homogeneous voices from 

heterogeneous recordings, because the number of 

speakers would be automatically estimated in a fully 

unsupervised way, and language–independent 

diarization techniques automatically could provide 

the temporal labels of the turns of a certain speaker 

(Anguera et al., 2012; Pardo et al., 2012). In a 

previous paper (Lorenzo-Trueba et al., 2012) a 

methodology for constructing such tools was 

sketched, and preliminary experiments with a multi-

style database were presented. In this paper we 

further investigate such approach and propose 

several improvements to it based on the selection of 

the appropriate number of initial speakers, the use 

or not of noise reduction filters, the use of the F0 

feature and the use of a music detection algorithm. 

A speaker diarization system is used but, in contrast 

to the traditional objective of optimizing speaker 

segmentation and identification, our goal is to create 

pure clusters (speakers) that can be used to 

synthesize style-voices. Expressive speech 

synthesis is a sub-field of speech synthesis that has 

been drawing a lot of attention lately, as until 

recently there was no effort paid to increasing the 

adequacy of the produced voices to the task they 

were intended to be used in. In (Lorenzo-Trueba et 

al., 2013) a work to synthesize expressive voices 

adapting average voices to the desire style is 

presented. They also mention the necessity of 

increase the available training data for each style. In 

this work we aim to develop a system able to extract 

from different style meetings pure clusters 

(speakers) suitable for the voice synthesis. 

Therefore, we accept losing some speech segments 

as long as the clusters generated are purer (speech 

from only one speaker). 

2 Database 

The evaluation presented in this paper is carried out 

using the C–ORAL–ROM (Moreno-Sandoval et al., 

2005) database. This corpus is a multi–language and 

multi–style database covering a wide spectrum of 

formal and informal speaking styles, in public and 

private situations. 

All the languages included are Romance 

(French, Italian, Portuguese and Spanish), with 

styles ranging from formal to informal, extracted 

either from the media or from private spontaneous 

natural speaking. 

In this paper, the Spanish formal media styles 

have been analysed: news broadcasts, sports, 

meteorological reports, reportages, talk–shows, 

scientific press and interviews. These data have 

been extracted from media broadcasts of different 

stations, and they present a great deal of variability 

in the recording environments and a high number of 

speakers (more than 200). This results in some 

speakers uttering only a few short sentences, making 

them almost irrelevant from a statistical 

parametrical point of view. 

The number of speakers per session is variable 

(between 1 and 28 speakers). Table 1 summarizes 

average characteristics of the considered sessions 

for each speaking style. 

The manual transcriptions of these sessions are 

speaker turns where we can find the speaker 

specified, but the segment includes also noises, 

silences or music (everything from the end of the 

previous speaker to the beginning of the next). To 

refine these references to include speech only 

segments we have force aligned the speech with the 

text provided also in the transcriptions using 

acoustic models trained from the spanish partition 

of TC-STAR – EPPS (European Parliament Plenary 

Sessions) and PARL (Spanish Parliament Plenary 

Sessions). Although the forced alignment helped 

highly to this task, it was not free from errors, and 

we had to correct manually some labels. 

 

Style # sessions #spk/session Time/session 

Interviews 5 2-4 7-9 min 

Meteorology 3 1 2-3 min 

News 6 5-10 7-9 min 

Reportage 6 7-28 9-12 min 

Scientific press 4 3-6 8-10 min 

Sports 6 1-7 7-14 min 

Talk shows 11 2-8 6-11 min 

Table 1: Features of the speaking style sessions in 

the C–ORAL–ROM database. 

To evaluate the implemented methods this 

database has been splitted into two, the development 

set and the test set. Both sets are composed of 

sessions from all the styles evaluated. Around of a 

third part of the database has been reserved to test 
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experiments. The development set is composed of 

27 sessions that sum up 234.26 minutes, and the test 

set is composed of 14 sessions that sum up 115.17 

minutes. 

3 Diarization system 

In previous work (Lorenzo-Trueba et al., 2012) we 

used a simplified version of the speaker diarization 

system described in Pardo et al. (2012). Instead of 

using three input features (MFCC, Time delay of 

arrival –TDOA- and F0) we only used MFCCs and 

we did not apply any noise filtering to the 

recordings. Although our usual diarization system 

relies also on TDOAs (Martínez-González et al., 

2012), in this case, we cannot use the delay features 

as there is only one channel from each session.  

In Figure 1 we show the modules of the system. 

Except the Music detection module, all of them 

were included in the UPM diarization system of 

Pardo et al. (2012). 

In dotted lines, a music detection module is 

represented whose influence in the diarization 

system will be evaluated in this paper. The segments 

detected as music by this module are discarded from 

the speech segments detected by the VAD module, 

and, therefore, will not be assigned to any speaker. 

The Wiener filter intends to reduce the 

background noise in the recording. Although for the 

Multiple Distant Microphone (MDM) task the 

application of this filter has proved to be positive 

(Wooters and Huijbregts, 2007), experiments with 

our database render different results which will be 

presented in the following sections. 

The audio signal is then processed by the MFCC 

estimation module, where MFCC vectors of 19 

components [mfcc] are calculated every 10 ms with 

a window of 30ms. The audio signal is also 

processed by the Voice Activity Detector (VAD) 

module which is a hybrid energy-based detector and 

model-based decoder. The F0 module extracts the 

F0 feature and adds it to the clustering module as a 

new stream (Pardo et al., 2012). 

The following module is the segmentation and 

agglomerative clustering process which consists of 

an initialization part and an iterative segmentation 

and merging process. The initialization process 

segments the speech into K blocks (equivalent to an 

initial hypothesis of K speakers or clusters) 

uniformly distributed. Every cluster is modelled 

using a gaussian mixture model (GMM) initially 

containing a number of components that has to be 

specified (we use 5 for [mfcc] and 1 for [F0] 

streams). After the initial segmentation a set of 

training and re-segmenting steps is carried out using 

EM training and Viterbi decoding. Then the 

merging step takes place. 

When a merging takes place the segmentation 

and clustering steps are repeated until a stopping 

criterion is reached. More information about the 

baseline system can be consulted in Pardo, Anguera 

and Wooters, (2007). 

 

 
 

4 Experiments 

In this section we present new developments to the 

system presented in Lorenzo-Trueba et al. (2012). 

Different from what was presented previously is the 

fact that the speech/non speech transcriptions have 

been corrected by hand and that the database has 

been divided into development and test sets. The 

diarization score for the baseline system for the 

development set is included in the first row in Table 

2. However, since our goal is to increase the 

precision of the clusters, we have calculated also the 

precision and recall and we have included in the last 

column a merit factor which weights the precision 

by two thirds and the recall by one third. All those 

values are presented in Table 2. 

 

4.1 Initial number of speakers 

The original UPM diarization system begins 

segmenting the recording in 16 clusters, and 

merging them reducing in each iteration its number. 

As each cluster corresponds to a hypothetical 

speaker, the system will never recognize more than 

these 16 initial speakers. 

Music 

detection 

Wiener 

filter 

MFCC 

estimation 

F0 

estimation 

VAD 

 
Segmentation 

and 

agglomerative 
clustering of 

speech 

regions 

Input 

Figure 1: Block diagram of the system 
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Figure 2: DER with and without applying the noise 

filter, using MFCC and F0 features. 

MFCC_weight=1-F0_weight. 

 

Figure 3: Precision with and without noise 

reduction, using MFCC and F0 features. 

MFCC_weight=1-F0_weight. 

Some sessions have more than these 16 speakers, 

and thus, the system will never find all of them. In 

our previous experiments long sessions were 

splitted so no more than 9 speakers were present in 

a recording. In this work no sessions have been 

splitted so we decided to carry out some 

experiments beginning with 32 clusters. The best 

result (in precision) across different F0 weights 

using noise reduction (see next section) and 

beginning with 32 participants is shown in Table 2, 

second row. We noticed that even for some of the 

sessions with higher number of participants the 

results are worse than using 16 clusters (third row of 

Table 2). It occurs that most of the participants in 

the recording talked for few seconds, and these 

participants are hardly recognized by the system. 

4.2 Noise reduction and F0 

In our previous paper, we used only MFCC features 

to perform the diarization without noise reduction. 

In this work we wanted to explore the effects of 

applying also noise filtering and the F0 features 

included in Pardo et al. (2012). To combine the 

MFCCs with the F0 features the system needs a 

weight to be applied to each of these vectors. These 

weights are complementary, summing up 1. In 

Figure 2, the DER obtained for the development set 

when initially applying or not a noise filter (Wiener) 

is presented across the weight factor used for the F0 

stream. The diarization error is lowest when the 

noise filter is not used and the weight of the F0 

vector is 0.15 keeping nearly the same merit factor 

(see Table 2, row fourth). 

Although this would be the working point in 

terms of DER, we had mentioned previously that 

our target in this diarization task is not to minimize 

the diarization error rate (DER) but maximize the 

purity of the clusters created, i.e. the precision.  

The results in precision across F0 weights are 

shown in Figure 3. In this case the best working 

point is not so clear. Numerically the best precision 

value is obtained when the system applies noise 

reduction and an F0_weight of 0.05. However, this 

value is not so far from the best working point in the 

case of not applying noise reduction. In Table 2 we 

can see the results for both working points (rows 3rd 

and 4th). If we analyse the merit factor, it is very 

similar for both systems, so we will consider both 

systems in the next experiments. 

4.3 Music Detection 

Many of the recordings from the media have music 

as well as speech. The VAD module usually labels 

these segments as speech, and then the diarization 

system assigns them to one speaker, corrupting it. 

If we want to use the generated clusters to 

synthesize voices, we want to delete any segment 

that would corrupt our voices. Music and noises are 

among the events to avoid, as well as speech 

overlapped with either music or noises. 

0 0,05 0,1 0,15 0,2 0,25 0,3

18

18,5

19

19,5

20

20,5

F0_weight

D
ER

withNoiseReduction

withoutNoiseReduction

83

83,5

84

84,5

85

85,5

86

0 0,05 0,1 0,15 0,2 0,25 0,3

P
re

ci
si

o
n

(%
)

F0_weight

withNoiseReduction

withoutNoiseReduction

Beatriz Martínez-González, José Manuel Pardo, J.D. Echeverry-Correa, J. M. Montero

80



  

System 

Insertion 

penalty of 

MR module 

F0 

weight 
DER Precision Recall 

Merit 

factor 

Precision error 

improvement 

(%) 

Baseline  0.0 19.34 84.66 83.28 84.2  

Baseline+NR+F0+K32  0.05 20.33 84.14 82.41 83.56 -3.39 

Baseline+NR+F0  0.05 18.87 85.64 83.87 85.05 6.39 

Baseline+F0  0.15 18.58 85.43 84.04 84.97 5.02 

Baseline+MR 5 0.0 21.96 88.09 78.86 85.01 22.36 

Baseline+NR+F0+MR 15 0.05 23.52 88.42 77.04 84.63 24.51 

Baseline+F0+MR 5 0.15 21.88 88.17 78.94 85.09 22.88 

Baseline+NR+F0+MR 5 0.05 22.49 88.09 78.24 84.80 22.35 
 

Table 2: Results for the development set. Relative precision error improvement is calculated over the 

baseline. K stands for the initial number of hypothetical speakers, K=16 if nothing indicated. NR stands for 

noise reduction algorithm and MR stands for music recognition algorithm. 

System 

Insertion 

penalty of 

MR module 

F0 

weight 
DER Precision Recall 

Merit 

factor 

Precision error 

improvement 

(%) 

Baseline  0.0 18.68 84.46 87.33 85.42  

Baseline+NR+F0  0.05 19.36 87.12 84.18 86.14 17.12 

Baseline+F0  0.15 18.04 85.08 87.97 86.04 3.99 

Baseline+MR 5 0.0 17.28 90.62 84.38 88.54 39.64 

Baseline+NR+F0+MR 15 0.05 20.92 87.76 80.81 85.44 21.23 

Baseline+F0+MR 5 0.15 17.66 90.22 84.01 88.15 37.06 

Baseline+NR+F0+MR 5 0.05 22.57 88.95 78.92 85.60 28.89 
  

Table 3: Results for the test set. Relative precision error improvement is calculated over the baseline. NR 

stands for noise reduction algorithm and MR stands for music recognition algorithm. 

There are several previous works on speech 

and music segmentation. Many of them focus on 

the use of different features that would help in 

the discrimination between music and speech. 

This is the case of Izumitani, Mukai and 

Kashino, (2008), Gallardo-Antolin and Montero, 

(2010) or Panagiotakis and Tziritas, (2005). 

Other works like Lavner and Ruinskiy, (2009) 

focused in system architecture to segment 

speech and music. 

In Gallardo and San-Segundo, (2010) the 

UPM-UC3M system for the Albayzin evaluation 

2010 on audio segmentation is presented. The 

best combination of features for the 

segmentation of music are MFCC, CHROMA 

coefficients (see Bartsch and Wakefield, 

(2001)), and Entropy features (Misra et al., 

2004). In this work we have applied this 

algorithm for the music segmentation.  

There are five classes recognized: speech, 

speech+noise, speech+music, music and others. 

As our database is not labeled with these classes, 

we cannot train our own models for each of 

them, so, for the recognition, we used the same 

models that were trained in Gallardo and San-

Segundo, (2010). 

Once the segmentation is carried out, we only 

remove “music” and “others” segments from the 

speech segments detected by the VAD module 

(see diagram in Figure 1). 

We carried out some experiments varying the 

insertion penalty in the music recognition 

system. The higher the term the higher the 

number of segments labeled as “music” or 

“others”. 

Three kind of experiments have been carried 

out applying the music detection module: apply 

only the music detection to the baseline system, 

apply it in combination with F0 and in 

combination with F0 and the noise reduction 

module. For these experiments the F0 weight has 

been set to 0.05 when we apply noise reduction 

New experiments on speaker diarization for unsupervised speaking style voice building for speech synthesis

81



 

 

and 0.15 when we do not (these were the two 

best systems in previous section, respectively 

rows third and fourth in Table 2). 

In Figure 4, the precision and recall for the 

three studied systems across different insertion 

penalty values is presented. These three systems 

reach the best precision values with insertion 

penalty of 15 (using F0 and applying noise 

reduction and music detection) and 5 (for the two 

systems that do not use noise reduction). Higher 

values of this term allow more changes between 

classes, which means, at the end, more segments 

categorized as music. In fact, even if we lose 

more speech segments wrongly labelled as 

music, as long as we discard enough real music 

segments, the clusters generated with the 

remaining segments will be purer. Removing 

more segments, especially if they are likely to be 

music, could reduce the amount of speech 

recovered but, as long as the precision of the 

clusters increase and we still have enough data, 

the voices generated with these clusters should 

be more accurate. In fact, if we remove too much 

speech we are not only reducing the data 

available for voice bulding, but the models 

trained by the diarization system will be less 

accurate and, therefore, the final segmentation 

will have more errors. 

The best numerical result (in precision) for 

this method is included in Table 2, sixth row 

(with noise reduction and insertion penalty of 

15). However, in the fifth and seventh row, the 

best result for the two other systems with music 

detection are presented (no noise reduction, 

insertion penalty term of 5 and use or not of F0 

features). We can see that even though the 

precision values are a bit lower, the merit factor 

of these two systems surpass that of the system 

with the best precision value (in which we 

applied noise reduction). The noise reduction 

module apparently affects highly to the recall of 

the system. This can be due to the high insertion 

penalty defined for the music detection module 

when using also noise reduction. For comparison 

purposes we have included results with the 

baseline, noise reduction, F0 and Music 

detection module when the insertion penalty is 5 

(the same of the two systems without noise 

reduction). Precision result decreases while 

recall increases, but not enough to reach the 

performance in merit factor of any of the other 

two systems where no noise reduction is applied. 

Our task implies maximizing precision but 

we want to maintain a certain level of recall and 

considering the variation in the merit factor we 

cannot yet decide between these options. 

Experiments with the test set will show if one of 

them turns clearly better. 

 

Figure 4: Precision and recall versus insertion 

penalty of the music recognizer for the 

development database. F0_weight=0.05 for 

system with noise reduction and 0.15 for system 

without it. 

5 Results with the test set and discussion 

In this section we will contrast the results of the 

development set with a new set, not used until 

now, the test set.  

The first modification tried over the 

development set was to increase the initial 

number of hypothetical speakers. This 

modification did not improve diarization just for 

the development set, thus, it is not necessary a 

test evaluation with a different set of sessions. 

The second group of experiments was 

focused on optimizing the systems using or not 

F0 and a noise reduction Wiener filter. At this 

point it was not clear if we should use or not the 

noise filtering. Both systems delivered similar 

performance in precision and merit factor. Thus 

we decide to keep both systems in future 

experiments.  

Finally, in the last experiments with the 

development set, we tried to take advantage of a 

music detection module. This module is applied 

alone and in combination with the two previous 

ones, adjusting for each one the insertion penalty 

term. The three of them achieved high relative 

precision error improvement (24.51%, 22.88% 
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and 22.36%). For comparison purposes, we 

included also the performance of the system with 

the best precision result but with insertion 

penalty of 5 (eighth row of Table 2, 22.35% of 

precision error improvement). 

However, these systems still had very similar 

precision and the best one degrades heavily its 

recall, and, consequently, its merit factor, so we 

decided to check all of them with the test set.  

The experiments we have carried out with the 

test set to check our findings are included in 

Table 3. 

When there is no music reduction, the use of 

F0 decreases the precision error in 17.12% for 

the system with noise reduction, which is much 

more than the 3.99% achieved when no noise 

reduction is applied (second and third row in 

Table 3). However, the use of noise reduction, as 

we have seen before, reduces heavily the recall 

of the system, and the merit factor of these two 

systems turns very similar (86.14 vs 86.04). 

When we include the music detection 

module, the system with noise reduction (fifth 

and seventh row in Table 3) has the same 

problem we have been noticing. The recall is 

heavily reduced by the combination of noise 

reduction and music reduction, this time 

affecting the precision as well, which is 

increased much less than the two other systems 

with music reduction. 

The two systems without noise reduction 

outperform clearly the rest because not only 

precision increases, but also the merit factor. In 

this case, the use of music reduction alone is 

slightly better than its combination with the F0 

features. The precision, in this case, turns 

90.62%, and recall decreases to 84.38% (vs 

precision 90.22% and recall of 84.01% for the 

system without noise reduction and F0; and 

precision of 87.76% and 88.95% and recall of 

80.81% and 78.92% for the system with noise 

reduction, F0 and insertion penalty of 15 and 5 

respectively), and therefore, the merit factor 

increases significantly. 

We obtain with this system a relative 

decrease of the precision error of 39.64% over 

the test set. 

We can see also, that for the test set, the use 

of the music reduction system decreases the 

DER value of the baseline in more than one 

point, which means that we are not discarding 

much clear speech, and the diarization system 

can model better the speakers. 

Finally, in Table 4, the results obtained with 

different styles of the test set are presented. The 

precision in speaker diarization ranges from 

76.18 % for reportages to 99.93% for 

meteorology recordings. The set of reportages is 

more difficult (it is the only one with precision 

below 90%) due to noise and the high number of 

different speakers that can participate (see Table 

1). In future work new strategies should be 

drawn in order to tackle this problem. 

 

Style Precision Recall Merit factor 

Interviews 92.48 91.38 92.11 

Meteorology 99.93 79.18 93.01 

News 96.83 93.12 95.59 

Reportages 76.18 72.94 75.10 

Scientific press 94.01 79.60 89.21 

Sports 91.08 90.07 90.74 

Talk shows 92.67 81.59 88.98 

ALL 90.62 84.38 88.54 

Table 4: Precision, recall and merit factor for 

the different styles in the test set. 

6 Conclusions 

In this paper we have analysed the task of 

unsupervised diarization focused on obtaining 

pure speaker recordings in order to synthesize 

voices. With this purpose we have modified 

slightly the traditional task of diarization. Now 

we have focused on recovering pure speaker 

clusters, even if we have to discard many 

segments, or speakers, overlapped with other 

speakers or noises. For such objective we have 

defined a merit factor that weights the precision 

and the recall. We have studied the application 

of some modules from the UPM diarization 

system and the UPM music detection module. 

We have proved that by using the music 

recognition module we can decrease the 

precision error 22.36% for the development set 

and 39.64 % for the test set, improving also the 

merit factor. 

The noise reduction module in combination 

with the music reduction module makes the 

system to lose too many segments of speech, 

reducing the recall, and thus the merit factor, and 

making this combination undesirable. 

Results using F0 in combination with music 

detection were slightly better for the 

development set and slightly worse for the test 

set, therefore, we cannot prove its usefulness for 

this task. 
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