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Alicia Pérez, Arantza Casillas, Koldo Gojenola, Maite Oronoz,

Nerea Aguirre, Estibaliz Amillano

IXA Taldea, University of the Basque Country (UPV-EHU).

{alicia.perez, arantza.casillas, koldo.gojenola,maite.oronoz}@ehu.es

Resumen: La red de hospitales que configuran el sistema español de sanidad utili-
za la Clasificación Internacional de Enfermedades Modificación Cĺınica (ICD9-CM)
para codificar partes de alta hospitalaria. Hoy en d́ıa, este trabajo lo realizan a
mano los expertos. Este art́ıculo aborda la problemática de clasificar automática-
mente partes reales de alta hospitalaria escritos en español teniendo en cuenta el
estándar ICD9-CM. El desaf́ıo radica en que los partes hospitalarios están escritos
con lenguaje espontáneo. Hemos experimentado con varios sistemas de aprendizaje
automático para solventar este problema de clasificación. El algoritmo Random Fo-
rest es el más competitivo de los probados, obtiene un F-measure de 0.876.
Palabras clave: Procesamiento del Lenguaje Natural, Biomedicina, Aprendizaje
Automático

Abstract: Hospitals attached to the Spanish Ministry of Health are currently using
the International Classification of Diseases 9 Clinical Modification (ICD9-CM) to
classify health discharge records. Nowadays, this work is manually done by experts.
This paper tackles the automatic classification of real Discharge Records in Spanish
following the ICD9-CM standard. The challenge is that the Discharge Records are
written in spontaneous language. We explore several machine learning techniques to
deal with the classification problem. Random Forest resulted in the most competitive
one, achieving an F-measure of 0.876.
Keywords: Natural Language Processing, Biomedicine, Machine Learning

1 Introduction

Thousands of Discharge Records and, in gen-
eral, Electronic Health Records (EHRs) are
produced every year in hospitals. These
records contain valuable knowledge sources
for further diagnoses, association and al-
lergy development reporting in a population.
Apart from the documentation services from
the hospitals there are other interests behind
mining biomedical records, amongst others
from the insurance services. In (Lang, 2007)
it is stated that the cost of assigning ICD-9
codes to clinical free texts is $25 billion per
year in the US. In particular, this work tack-
les EHR classification according to Diagnos-
tic Terms (DT). The task deals with Spanish
DTs written in spontaneous language.

1.1 Bridging the gap between
spontaneous and standard
written language

In this particular task we deal with real files
written by doctors at the consultation time.
The language is not the same as that found in
the biomedical literature (e.g. PubMed), in
the sense that the language in these records
is almost free, including misspells and syn-
tactically incorrect phrases. Being both nat-
ural language, we shall refer to the former as
spontaneous and to the latter as standard jar-
gon. At the consultation-time the doctor is
devoted to the attention and care of the pa-
tient rather than filling the record. As a re-
sult, the spontaneous language used by doc-
tors differs from the standardly accepted jar-
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gon (or the written language they would use
in other more relaxed circumstances).

The language gap between these two
language-varieties is self-evident in many
ways:

Acronyms: the adoption of non standard
contractions for the word-forms.

Abbreviations: the prefix of the words
terminated with a dot.

Omissions: often prepositions and arti-
cles are omitted in an attempt to write
the word-form quickly. The verbs are of-
ten omitted.

Synonyms: some technical words are
typically replaced by others apparently
more frequently used while possibly not
that specific.

Misspells: sometimes words are incor-
rectly written.

Examples of the aforementioned issues are
gathered in Table 1.

1.2 Goals and challenges

In this work we tackle a particular classifica-
tion problem associated with written spon-
taneous language processing. We devote to
the classification of the discharge records.
We are focusing on the records produced at
the Galdakao-Usansolo Hospital (attached to
the Spanish public hospital-system). These
records convey information relative to:

Personal details of the patient, admis-
sion and discharge date, counsellor, etc.
In order to preserve the confidentiality,
we do not count on this part of the
records (it was removed beforehand).

A narrative summary of the admis-
sion details, antecedents, referred main
problems, treatment undergone, find-
ings, recommended care plan, etc. This
body-part is completely unstructured,
since it does not count on sections to ex-
tract particular information from. Be-
sides, not all the aforementioned pieces
of information are necessarily present in
all the records.

The diagnostic terms together with their
associated code in the International

Classification of Diseases 9 Clinical Mod-
ification1 (ICD-9-CM). Note that it is
the ICD-9-CM that is being followed so
far in the hospitals attached to the Span-
ish Ministry of Health, Social Services
and Equality. Admittedly, in some coun-
tries the ICD-10 is being used.

453.40 Embolia y trombosis venosa
aguda de vasos profundos no
especificados de extremidad
inferior

TVP MID

TVP POPLITEO FEMORAL MII

600.00 Hipertrofia (benigna) de
próstata sin obstrucción
urinaria ni otros sı́ntomas
del tracto urinario inferior
(STUI)

HBP

Hipertrofia de Prostata

530.81 Reflujo esofágico

E.R.G.E.

332 Enfermedad de Parkinson

Enf de Parkinson

536.8 Dispepsia y otros
trastornos especificados del
funcionamiento del estómago

Dispesia alta

185 Neoplasia maligna de la
próstata

ca prostata

Table 1: Examples revealing the differences
between standard and spontaneous writing.
The ICD-9 code appears next to the standard
DT, and below spontaneous forms that were
assigned the same ICD-9 code are shown.

The aim of the text mining task in which
we are focusing on is to get the discharge re-
ports automatically classified by their diag-
nostic term (DT). That is, the goal is to de-

1The International Classification of Diseases 9
Clinical Modification in Spanish is accessible through
the web in the Spanish Ministry http://eciemaps.
mspsi.es/ecieMaps/browser/index_9_mc.html
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sign a decision support system to assign an
ICD-9-CM code to each DT in the records.
So far, a set of experts are in charge of getting
the records classified. Hence, all the work is
carried out by hand, and our goal is to help
to automatize this process. Our aim is to
develop a computer aided classification sys-
tem with very high precision. Addressing this
process as a classification problem entails a
major challenge: given that the entire ICD-9-
CM is being considered, the problem conveys
a very large-scale classification system (note
that the ICD-9-CM gathers thousands of dif-
ferent classes). Moreover, precision is crucial
in this process, and that is, indeed, why we
do not aspire to get a fully automatic system.

1.3 State of the art and
contributions

Since 1990 the task of extracting ICD-9 codes
from clinical documents has become relevant.
In 2007 the BioNLP workshop a shared task
on multi-label classification of clinical texts
was organised (Pestian et al., 2007). For
this task it was developed the CMC dataset,
consisting of 1954 radiology reports arising
from outpatient chest X-ray and renal proce-
dures, observed to cover a substantial portion
of paediatric radiology activity. It covered a
total of 45 unique codes. The best system
of the competition achieved a micro-average
F-score of 0.89 and 21 of the 44 participating
systems scored between 0.8 and 0.9.

By contrast to the works presented in
BioNLP, our work focuses on automatic gen-
eration of ICD-9 codes from DTs written in
spontaneous Spanish language. We do not
examine the whole document. Another rele-
vant difference is that we deal with a problem
of an order of magnitude bigger (we envis-
age more than 678 classes and achieve simi-
lar performance). We have also tried different
inferred classifiers.

In (Ferrao et al., 2012), they propose a
methodology encompassing EHR data pro-
cessing to define a feature set and a super-
vised learning approach to predict ICD-9-CM
code assignment. Four supervised learning
models decision trees, näıve Bayes, logistic
regression and support vector machines were
tested and compared using fully structured
EHR data. By contarst, our data lacks of
structure.

The contribution of this work is to delve
into real EHR classification on Spanish lan-

guage. First, we collected a set of real EHRs
written in Spanish, and got them fully anoni-
mized. There are works in the literature aim-
ing at overcoming the gap between sponta-
neous and standard language on the biomed-
ical domain, yet, few of them deal with real
EHRs. In this work we explore several ma-
chine learning techniques, train them on real
EHRs, and assess their performance. Some
machine-learning techniques have proven to
be able to deal with this big-scale classifica-
tion problem with quite high precision.

1.4 Arrangement

The rest of the paper is arranged as follows:
Section 2 presents the inferred classifiers used
in this work and also the means of represent-
ing the instances to get them inferred; Sec-
tion 3 is devoted to present the experimental
layout; finally, concluding remarks and some
ideas for future work are given in Section 4.

2 Machine Learning

In brief, given a set of discharge records, we
focus on the DTs and try to automatically as-
sign the associated ICD-9 code. At first, we
thought (and possibly the reader might do
now) that this task could be neatly tackled
by means of quite a naive system that would
simply look up the given DT in the ICD-
9-CM catalogue. Nevertheless, we were not
aware yet of the aforementioned gap between
spontaneous and standard jargon. Indeed,
we proceed with this approach and extremely
poor results were achieved: only 0.96% of the
DTs within the evaluation set were found in
the ICD-9-CM catalogue even after applying
little modifications such as re-casing, accept-
ing omission of write-accents, getting rid of
multiple spaces and allowing to delete the
punctuation marks (amongst others). As an
alternative, we applied several machine learn-
ing techniques in this task.

Bearing in mind the language gap, we
tried to approach this task by matching
the spontaneous DTs not against the stan-
dard DTs from the ICD-9-CM catalogue, but
against other sets of data in spontaneous lan-
guage. That is, the system would learn from
previously classified records. All together,
this problem can be seen as a supervised clas-
sification process, and to that end, we count,
in fact, on a set of previously classified set of
data.

In this work, we explore four inferred clas-
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sifiers that have proven successful in text
mining problems. All of them were imple-
mented using the libraries available in Weka-
6.9 (Hall et al., 2009). Weka is an open-
source software that implements a number of
machine-learning algorithms, evaluation met-
rics and other helpful methods.

The machine learning approaches consid-
ered in this work are the following ones:

NB Naive Bayes

DT Decision Tree

RF Random Forest

SVM Support Vector Machines

Next, a full description of the machine learn-
ing schemes explored, as well as the moti-
vation to do so are presented. The learn-
ing scheme and a few important details on
the parameters selected for each of them are
given. Also in this section, the operational
description of the instances used to train the
models are given.

2.1 Näıve Bayes

Within a general-framework on a probabilis-
tic approach, the classification problem could
be tackled as a maximum likelihood estima-
tion problem:

Ĉ = arg max
Ck∈C

p(Ck|x) = (1)

= arg max
Ck∈C

p(x|Ck)p(Ck)∑
Cj∈C

p(x|Cj)
(2)

Where the C is the set of possible classes (in
our problem, the set of all the ICD-9 codes
that can be given as output), and x repre-
sents the observations (in our problem, the
operational representation of the input DT).
In our context, each instance x ∈ ΣN being
Σ the input vocabulary. Besides, C comprises
all the ICD-9 codes (since we are not restrict-
ing ourselves to any particular subset such as
paediatrics as other works in the literature
did).

Admittedly, we are dealing with a large-
scale classification problem. In fact, if there
are D = |x| inputs and each of them might
take |Σ| values, a general distribution would
correspond to an application of ΣD possi-
ble values for each class (with a constraint
imposed by the total probability theorem).
In an attempt to make this problem afford-
able, the naive-Bayes assumption is made:

the features in x are conditionally indepen-
dent given the class Ck ∈ C.

These models were explored as a baseline,
since they are efficient and besides they were
successful in a number of text mining prob-
lems such as spam classifiers in short mes-
sages (Sriram et al., 2010; Peng et al., 2012)
and also in biomedical classification (Soni et
al., 2011; Rodŕıguez et al., 2012). Neverthe-
less, for our task it did not result to be com-
petitive enough.

These models were implemented by means
of the the classifiers.bayes.NaiveBayes
library included in Weka (Hall et al., 2009).

2.2 Decision Tree

Decision Tree inference is based on the C4.5
algorithm (Quinlan, 1993). This technique
follows a divide and conquer strategy recur-
sively. At each node of the tree, C4.5 chooses
the attribute of the data that most effectively
splits its set of samples into subsets enriched
in one class or the other. The splitting cri-
terion is the Information Gain (IG), as de-
scribed in eq. (3).

IG(X , A) = H(X )−H(X|A) = (3)

= H(X )−
∑

v∈V al(A)

|Xv|
|X |

H(Xv)

where:

H(X ) represents the entropy of the set
of instances X with respect to the class.
Likewise, H(X|A) represents the en-
tropy of the set given the attribute A.

V al(A) is the set of all the possible val-
ues for attribute A.

Xv = {x ∈ X : x · A = v} represents the
set of instances that take the value v on
the attribute A.

In plain words, IG measures the expected re-
duction in the entropy of the set X given an
attribute A (Mitchell, 1997), and hence, it
quantitatively measures the worth of keeping
that attribute.

Once an attribute is selected, the set of
training samples is divided into sub-sets (ac-
cording to the value that the samples take
for that attribute). The same criterion is re-
cursively applied to each sub-set until con-
vergence according to a an impurity measure
(a threshold on the IG). As a result, a tree
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structure is generated, where the attribute
with the highest IG is chosen to make the
decision at each stage.

These models were implemented by means
of the the classifiers.trees.J48 library
included in Weka (Hall et al., 2009). Be-
sides, a parameter dealing with the impurity,
the minimum number of instances in the leaf
nodes, was fine-tuned so as to optimize the f-
measure on the training set. As a result this
parameter was set to 2.

2.3 Random Forest

Random Forest (RF) consists of a variety of
ensemble models. RF combines a number
of decision trees. The trees involved were
close to the optimum tree, yet some random-
ness was introduced in the order in which
the nodes are generated. Particularly, each
time a node is generated in the tree, instead
of choosing the attribute that minimized the
error (instead of Information Gain), the at-
tribute is randomly selected amongst the k
best attributes. This randomness enhances
the generalization ability of the trees, while
the overfitting is avoided. Next, consensus is
achieved to decide which class to vote.

These models were implemented by
means of the the classifiers . trees
. RandomForests library included in
Weka (Hall et al., 2009). Besides, a parame-
ter relative to the number of trees comprised
in the forest was fine tuned so as to optimize
the f-measure on the training set. As a result,
9 trees were selected.

2.4 Support Vector Machines

Support Vector Machines (SVMs) are kernel-
based models that lay on sparse solutions.
The predictions for new inputs rely upon
the kernel function evaluated at a subset
of the training data points. The parame-
ters defining the model are chosen in a con-
vex optimization problem (local solution is
also a global optimum). In SVMs the de-
cision boundary is chosen in such a way
that the margin is maximized. That is, if
there are multiple solutions that cope with
the training data set without errors, the one
with the smallest generalization error is cho-
sen (Bishop, 2006).

These models were implemented by means
of the the classifiers.functions.SMO li-
brary included in Weka (Hall et al., 2009). It
implements John Platt’s sequential minimal

optimization algorithm for training a support
vector classifier (Platt, 1999). Nevertheless,
there exist other more powerful approaches
such as LibSVM (Chang and Lin., 2001).

2.5 Operational description of the
instances

As it is well-known, the success of the tech-
niques based on Machine Learning relies,
amongst others, upon the features used to de-
scribe the instances. In this work the opera-
tional description of the DTs was done in the
same way for all the techniques explored. Ad-
mittedly, each technique would be favored by
one or another sort of features. Thus, in or-
der to make the most of each learning scheme,
appropriate features should be adopted for
each of them.

Originally, in the training set the sam-
ples are described using a string of variable
length to define the DT and a nominal class.
That is, while the set of DTs might be infi-
nite, the classes belong to a finite-set of val-
ues (all of the ICD-codes admitted within the
ICD-9-CM catalogue). In brief, each instance
from the supervised set consists of a tuple
(s, C) ∈ Σ∗×C being Σ the input vocabulary
or a finite-set of words in the input language
(hence, Σ∗ represents its free monoid) and C
a finite-set of classes.

First of all, a pre-processing was defined
to deal with simple string formatting opera-
tions. This pre-processing is denoted as h in
eq. (4). The application h defines an equiva-
lence class between: lower/upper-case words;
strings with and without written accents;. . .

h : Σ∗ × C −→ Σ∗ × C (4)

(s, C) −→ (s’, C)

The pre-processing defined by h enables
the mapping of equivalent strings written in
slightly different ways (as it is frequent in
spontaneous writing).

Due to the fact that many methods are
not able to deal with string-type of features,
the transformation f , defined in eq. (5) was
applied next.

f : Σ∗ × C −→ X × C (5)

(s, C) −→ (x, C)

Where X = 2|Σ|.
The application f acts as a filter. It trans-

forms each string s (a sequence of words with
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precedence constraint) into a binary vector
referred to the terms of the vocabulary Σ.
That is, the element xi is a binary feature
that expresses whether the term ti ∈ Σ is
present in the string s or not.

The application f is capable of describ-
ing each instance by their words as elements.
This approach is also referred to as Bag of
Words (BOW) in the sense that the string is
mapped as a set of words without preserving
the order, and thus, loosing the involved n-
grams. While the precedence of the words is
lost, the application allows a simple though
effective representation for the instances. Be-
sides, this approach enables a computation-
ally efficient data structure representing the
instances as sparse vectors. Hence, the di-
mensionality of Σ does not convey any com-
putational course.

Note that the DTs consist of short strings
with a high semantic component in each word
and simple syntax. Intuitively, it is the key-
words that matters above the syntax, this is
the motivation behind using the BOW as op-
erational description for the instances. More-
over, applying the filter f to the set of in-
stances the dimension of the problem is made
affordable since the free monoid comprises all

the string whatever their length: Σ∗ =
∞⋃
i=0

Σi

3 Experimental framework

3.1 Task and corpus

We count on a set of DTs written in sponta-
neous language extracted from real discharge
records that were manually coded. The entire
set of instances was randomly divided into
two disjoint sets for training and evaluation
purposes, referred to as Train and Eval re-
spectively.

Table 2 provides a quantitative descrip-
tion of the Train and Eval sets. Each (DT,
ICD-9) pair belongs to the pre-processed set
of instances, formally denoted as X ×C (with
the preprocess described in Section 2.5). The
first row shows the number of different in-
stances, formally denote as |X × C|; the sec-
ond row, shows the number of different DTs,
formally denoted as |X |; the third row, shows
the number of different ICD-9 codes, denoted
as |C|; the fourth row shows the number of
features or relevant words in the vocabulary
of the application, formally denoted as |Σ|.

Note that the number of instances is
higher than the number of different ICD-

Train Eval
Different instances 6,302 1,588
Different DTs 6,085 1,554
Different ICD-9 codes 1,579 678
|Σ| 4,539

Table 2: Quantitative description of the
training and evaluation sets.

9 codes. This means that some DTs are
taken as equivalent, in the sense that different
strings were assigned the same ICD-9 code.

On the other hand, since we are working
with real data some diseases are more fre-
quent than the others, this makes that some
pairs appear more frequently. For example,
there are around 3,500 pairs occurring only
once, 500 occurring 3 times, and the ratio de-
creases exponentially, that is, there are very
few pairs with high frequency. The distribu-
tion is not exactly the same for the DTs or
for the ICD-codes, hence, the corpus shows
some ambiguities. For example, the code 185
mentioned in Table 1, appears 22 times in the
corpus, 17 DTs are different, amongst them,
we can see:

Adenocarcinoma de próstata con
bloqueo hormonal

Ca. próstata metastásico

3.2 Evaluation metrics

On what the evaluation metrics regards, the
following evaluation metrics were considered:

Pr: precision

Re: recall

F1-m: f1-measure

It must be clarified that, given the large
amount of classes, the results associated to
each class are not provided, instead, a per-
class average (weighted by the number of
instances from each class) is given (as it
is implemented in Weka libraries denoted
as weighted average for each metric). Per-
class averaging means that the number of in-
stances in each class contributes as a weight-
ing factor on the number of true-positives and
negatives for that class.

3.3 Results

A twofold evaluation was carried out:

1. Hold-out evaluation: the model was
trained on the Train set and the predic-
tive power assessed on the Eval set.
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2. Re-substitution error: the model was
trained on the Train set and the pre-
dictive power assessed on the Train set.
The quality of the training data, the dif-
ficulty and the ability of the learning
techniques are limited and rarely provide
an accuracy of 100%. We could not ex-
pect to overcome this threshold on an
unseen evaluation set. Hence, in an at-
tempt to get to know the maximum per-
formance achievable on this task, we as-
sessed the performance of the models on
the Train set. That is, we explored the
predictions exactly on the same set used
to train the models. The error derived
from this method are the so-called re-
substitution error.

On account of this, Table 3 shows the per-
formance of each model (the nomenclature
for each model was given in Section 2) on ei-
ther the Eval or the Train set.

Set Model Pr Re F1-m

Eval

NB 0.163 0.181 0.131
DT 0.854 0.851 0.843
RF 0.883 0.881 0.876

SVM 0.880 0.889 0.878

Train

NB 0.328 0.394 0.312
DT 0.905 0.909 0.902
RF 0.969 0.970 0.967

SVM 0.959 0.964 0.959

Table 3: Performance of different inferred
classifiers on both the evaluation set and also
on the training set itself as an upper thresh-
old of the performance.

3.4 Discussion

We proposed the use of Naive Bayes as a
baseline system (since it has proven use-
ful in other text mining tasks such as in
spam detection), yet, for this task with so
many classes has resulted in very poor re-
sults. Amongst the explored ML techniques
Random Forest presents the highest quality,
yet with no significant difference with respect
to Support Vector Machines. It is well worth
mentioning that the highest f1-measure re-
sulted in 0.876, satisfactorily enough, the up-
per threshold is not far from that (to be
precise, the highest achievable f1-measure is
0.967).

Random Forest comprises 9 Decision
Trees, and can be seen as an ensemble model

made up of homogeneous classifiers (that is,
Decision Trees). Note that the quality pro-
vided by a single Decision Tree is nearly
the precision achieved by the Random For-
est with substantially lower cost.

For this task it is crucial to achieve very
high precision, and the Random Forest offers
very high precision. Still, on a decision sup-
port system we would strive towards 100%
precision. Hence, the presented system seems
to be much benefitial as a computer aided
decision support system, but not yet as an
automatic classification system.

It is well-worth endeavoring towards an
automatic classification system. Neverthe-
less, there are evident shortcomings, there are
pragmatic limits on this task as it can be de-
rived from the upper performance achievable
(see Table 3). Admittedly, it is disappoint-
ing not to get an almost-null re-substitution
error. A manual inspection of the Train set
revealed that the corpus itself had several er-
rors, in the sense that we observed that al-
most identical DTs had associated different
ICD-9 codes. It is quite common not to get
flawless datasets, and above all, when they
are spontaneous. Moreover, we presented a
source of ambiguity in Section 3.1. Possibly,
the cause behind these errors might have to
do with the conversion from electronic health
records to the set of instances. Hence, for fu-
ture work we will delve into the outlier de-
tection in our training set.

4 Concluding remarks

4.1 Conclussions

This work tackles the classification of dis-
charge records for their DT following the
ICD-9-CM standard. The classification prob-
lem is quite tough for several reasons: 1) the
gap between spontaneous written language
and standard jargon; and 2) it is a large-
scale classification system (being the num-
ber of possible classes the number of differ-
ent diseases within the ICD-9-CM catalogue).
There are few works facing this problem, and
the authors are not aware of any in Spanish.

While a look-up in the standard ICD-
9-CM provided very poor results, machine
learning techniques, trained on spontaneous
data resulted very competitive. Due to pa-
tient privacy it is difficult to find datasets of
clinical documents for free use, this is most
evident in the case of clinical text written in
Spanish. We would like to remark the impor-
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tance of harvesting this sort of corpus on the
quality of the developed systems.

Amongst the techniques explored, Ran-
dom Forest resulted the most competitive
one (slightly over Support Vector Machines).
The best system showed high-quality, an
f1-measure of 0.876, being 0.967 the up-
per threshold for the expected achievable f-1
measure. It would be a great deal to strive
towards improving both the hold-out evalua-
tion and its upper boundary.

4.2 Future work

Currently we are working on enhancing the
set of features by defining an equivalence
class between synonyms derived from the
SNOMED-CT (SNOMED-CT, 2012).

In the near future we will delve into the
outlier detection in our training set so as to
strive into 100% precision on the Train set.
The aim will be to filter the outliers so that
they do not do harm the inference process.

In this work we explored several ML
schemes working alone. Nevertheless, ensem-
ble learning has proven successful in recent
research-challenges or competitions. For fu-
ture work, we mean to double-check if the
aforementioned classifiers complement each
other and jointly get to improve the perfor-
mance. Together with this, it could be useful
to adapt the features to describe the DTs to
each particular learning scheme and also to
apply feature subset selection techniques.

As it is the case for speech recognition,
we might try to overcome the spontaneous
language gap by means of a language model
trained on spontaneous data.
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