Procesamiento del Lenguaje Natural, Revista n° 53, septiembre de 2014, pp 181-184

ViZPar: A GUI for ZPar with Manual Feature Selection

ViZPar: una GUI para ZPar con Seleccion Manual de Features

Isabel Ortiz!, Miguel Ballesteros? and Yue Zhang?
"Pompeu Fabra University, Barcelona, Spain
2Natural Language Processing Group, Pompeu Fabra University, Barcelona, Spain
3Singapore University of Technology and Design
'iortiztornay@gmail.com
miguel.ballesteros@upf.edu, >yue_zhang@sutd.edu.sg

Resumen: Los analizadores de dependencias y constituyentes se utilizan masiva-
mente en la comunidad de Procesamiento de Lenguaje Natural. ZPar implementa
versiones precisas y eficientes de algoritmos shift-reduce para parsing. En este articu-
lo se presenta ViZPar, que es una interfaz grafica de usuario para ZPar incluyendo
visualizacion de arboles y selecciéon automatica de features. Durante la sesién de de-
mostracién se ejecutard ViZPar, para dependencias y constituyentes, y explicaremos
las funcionalidades del sistema.

Palabras clave: Analisis de dependencias, Analisis de constituyentes, ZPar

Abstract: Phrase-structure and dependency parsers are used massively in the Nat-
ural Language Processing community. ZPar implements fast and accurate versions
of shift-reduce dependency and phrase-structure parsing algorithms. We present
ViZPar, a tool that enhances the usability of ZPar, including parameter selection
and output visualization. Moreover, ViZPar allows manual feature selection which
makes the tool very useful for people interested in obtaining the best parser through
feature engineering, provided that the feature templates included in ZPar are opti-
mized for English and Chinese. During the demo session, we will run ViZPar for the
dependency and the phrase-structure versions and we will explain the potentialities

recibido 10-04-14 revisado 07-07-14 aceptado 07-07-14

of such a system.

Keywords: Dependency parsing, Phrase-Structure parsing, ZPar

1 Introduction

Natural language researchers and applica-
tion developers apply dependency and con-
stituency parsing frequently, however the
parsers normally require careful tuning, com-
plex optimization and the usage of complex
commands that hinder their use.

ZPar! is a state-of-the-art parser imple-
mented in C+4 focused on efficiency. It
provides a dependency parser (Zhang and
Nivre, 2011; Zhang and Nivre, 2012) and
a phrase-structure parser (Zhang and Clark,
2011a; Zhu et al., 2013), both implemented
by shift-reduce parsing algorithms (Nivre,
2003; Nivre, 2008; Sagae and Lavie, 2005).
ZPar gives competitive accuracies and very
fast parsing speeds on both tasks. However,
ZPar requires deep knowledge in command-
line interfaces and programming skills (espe-
cially if the user is interested in performing

"http://sourceforge.net/projects/zpar/
ISSN 1135-5948

feature engineering), which leaves its use to
researchers that are able to understand the
intricacies of such a system. As a result it
is relatively more difficult to use by corpus
linguists and researchers who need to apply
syntactic analysis, but are not familiar with
parsing research.

The usability limitation applies to other
parsers also, including the Collins parser
(Collins, 1999) or MaltParser? (Nivre et al.,
2007), as it is a common practice for statis-
tical parsers to use command-line interfaces.
On the other hand, there has been a call for
enhanced usability of parsers,® and visual-
ization tools and application wrappers; they
have made a non negligible impact on the
parsing research field.

In order to have a system that tries to en-

2MaltParser has been one of the most widely used
parsers, since there are existing parallel tools, includ-
ing visualization tools.

3See Section 4.

© 2014 Sociedad Espaiiola para el Procesamiento del Lenguaje Natural

Isabel Ortiz, Miguel Ballesteros, Yue Zhang

hance the usability of ZPar, we present ViZ-
Par,* which is a tool implemented in Java
that provides a graphical user interface of
ZPar, in its dependency and phrase-structure
versions. ViZPar also allows manual feature
engineering given the ZPar feature templates
and provides automatic evaluation and com-
parison tools with the gold-standard.

2 ZPar

ZPar is a statistical syntactic analyzer that
performs tokenization/segmentation, POS-
tagging, dependency parsing and constituent
parsing functionalities. ZPar is language-
independent but contains optimized versions
for the Penn Treebank (Marcus, Santorini,
and Marcinkiewicz, 1993) and the Chinese
Treebank (Xue et al., 2004). Currently, in its
out of the box version, it gives highly com-
petitive accuracies on both English (Zhu et
al., 2013) and Chinese (Zhang et al., 2013)
benchmarks.

ZPar is implemented using the shift-
reduce parsing mechanism (Yamada and
Matsumoto, 2003; Nivre, 2008; Sagae and
Lavie, 2005). It leverages a global discrim-
inative training and beam-search framework
(Zhang and Clark, 2011b; Zhang and Nivre,
2012) to improve parsing accuracies while
maintaining linear time search efficiency. As
a result ZPar processes over 50 sentences per
second for both constituent parsing and de-
pendency parsing on standard hardware. It
is implemented in C++, and runs on Linux
and MacOS. It provides command-line inter-
faces only, which makes it relatively less use-
ful for researchers on corpus linguistics than
for statistical parsing researchers.

3 ViZPar: a Vizualization tool
for ZPar

ViZPar is a graphical user interface of ZPar
implemented in Java. In its current ver-
sion it supports a GUI for training and us-
ing ZPar, including the visualization of de-
pendency and constituent outputs, evalua-
tion and comparison with gold-standard tree-
banks, manual configuration and feature se-
lection.

3.1 Java Wrapping of ZPar

The ZPar package includes a bash script that
compiles the C++ code, trains a parsing

4ViZPar stands for graphical visualization tool for
ZPar.

182

model, runs the parser over the development
set and finds the results of the best iteration.
ViZPar provides a graphical-user interface for
running the ZPar process, which wraps the
entire process with a graphical user interface.

A user of ViZPar needs to download ZPar,
which contains the C++4 source code and the
Python and bash scripts needed. On initial-
ization, ViZPar asks for the ZPar directory,
which is needed to train models and run the
parser. After that, the user should proceed
as follows:

= Selection of parsing mode: the user se-
lects whether he/she wants to run a de-
pendency parser or a constituent parser.

= Selection of mode: the user may select
an existing parsing model or train a new
one by also setting the number of itera-
tions.

= Selection of the test set for parsing and
evaluation.

Finally, when the process is finished the
system allows to visualize the output by using
graphical visualization of the syntactic trees.
This feature is explained in the following sec-
tion.

3.2

In order to visualize the output and the gold
standard trees of the dependency and phrase
structure versions we implemented two dif-
ferent solutions. For the dependency parsing
version, we reused the source code of MaltE-
val (Nilsson and Nivre, 2008) for tree visual-
ization, which includes all its functionalities,
such as zooming or digging into node infor-
mation, and for the constituent parsing ver-
sion, we implemented a completely new tree
visualizer.

Figure 1 shows the ViZPar graphical user
interface when it has already parsed some
dependency trees with a model trained over
an English treebank. The dependency tree
shown at the top of the picture is the gold
standard and the one shown below is the
output provided by the ZPar model. In the
same way, Figure 2 shows ViZPar GUI in the
case of the phrase-structure parser, which al-
lows to traverse the tree and check the out-
come quality by comparison with the gold-
standard.

Tree Visualization

ViZPar: A GUI for ZPar with Manual Feature Selection

P

PRD

<ROOT> No , it

=)

Black Monday

UTPUT FILE

Number

o

Add Features.

Compile and Execute

| A

<ROOT> No , it

S

was

—
e
Black Monday " :

[} Sentence

T Corevsem |

LAS: 64.95
UAS: 75.25
LA: 80.22

e e B

Select File

Number of ter...

[dd reatu.

[conpie

Figure 2: ViZPar in ‘constituent’ mode.

3.3 Feature Selection

ZPar provides rich feature templates, de-
picted by Zhang and Nivre (2011; 2012) for
dependency parsing and by Zhu et al. (2013)
for constituent parsing. However the features
are handcrafted in the source code; this fact
means that if the users would like to up-
date the set of features for a new language
or treebank, they would have to change the
source code, compile it and run it again, pro-
vided that the user knows where the fea-
ture templates are and how to encode them.
In ViZPar we provide a framework that al-
lows the selection of the different features,
and changes the source code automatically, it
also makes the compilation and outputs the
parser ready to generate a new model.

Our algorithm is implemented by scan-
ning through the ZPar source code, detect-
ing lines on feature definition, which follow
regular patterns, and listing the features in a

183

dialog box. The algorithm changes the ZPar
source code according to the user selection by
commenting out features that are deselected.

The manual feature selection tool might
also provide the opportunity of running au-
tomatic and manual feature selection exper-
iments as in MaltOptimizer (Ballesteros and
Nivre, 2012).

4 Related Work

There has been recent research on visualiza-
tion in the NLP community. In the parsing
area we can find systems, such as MaltEval
(Nilsson and Nivre, 2008), which allows the
comparison of the output with a gold stan-
dard and also includes statistical significance
tests. The Mate Tools (Bohnet, Langjahr,
and Wanner, 2000) provide a framework for
generating rule-based transduction and visu-
alization of dependency structures. Icarus
(Gartner et al., 2013) is a search tool and
visualizer of dependency treebanks. Finally,

Isabel Ortiz, Miguel Ballesteros, Yue Zhang

MaltDiver (Ballesteros and Carlini, 2013) vi-
sualizes the transitions performed by Malt-
Parser.

5 Conclusions

In this paper we have presented ViZPar
which is a Java graphical user interface of
ZPar. We have shown its main function-
alities, that are: (1) run ZPar in a user
friendly environment, (2) dependency and
constituent tree visualization and (3) manual
feature engineering. ViZPar can be down-
loaded from http://taln.upf.edu/system/
files/resources_files/ViZPar.zip

References

Ballesteros, Miguel and Roberto Carlini.
2013. MaltDiver: A Transition-Based
Parser Visualizer. In Proceedings of the
System Demonstration Session of the 6th
International Joint Conference on Natural
Language Processing (IJCNLP).

Ballesteros, Miguel and Joakim Nivre. 2012.
MaltOptimizer: A System for MaltParser
Optimization. In Proceedings of the
Eighth International Conference on Lan-
guage Resources and Evaluation (LREC).

Bohnet, Bernd, Andreas Langjahr, and Leo
Wanner. 2000. A development environ-
ment for an mtt-based sentence generator.
In Proceedings of the First International
Natural Language Generation Conference.

Collins, Michael. 1999. Head-Driven Statisti-
cal Models for Natural Language Parsing.
Ph.D. thesis, University of Pennsylvania.

Gartner, Markus, Gregor Thiele, Wolfgang
Seeker, Anders Bjorkelund, and Jonas
Kuhn. 2013. Icarus — an extensible graph-
ical search tool for dependency treebanks.
In ACL-Demos, August.

Marcus, Mitchell P., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguis-
tics, 19:313-330.

Nilsson, Jens and Joakim Nivre. 2008. Mal-
teval: an evaluation and visualization
tool for dependency parsing. In Proceed-
ings of the Sixth International Conference
on Language Resources and FEwvaluation

(LREC’08), Marrakech, Morocco, may.

184

Nivre, J. 2003. An Efficient Algorithm for
Projective Dependency Parsing. In Pro-
ceedings of the Sth International Work-
shop on Parsing Technologies (IWPT),
pages 149-160.

Nivre, J., J. Hall, J. Nilsson, A. Chanev,
G. Eryigit, S. Kiibler, S. Marinov, and
E. Marsi. 2007. Maltparser: A Language-
Independent System for Data-Driven De-
pendency Parsing. Natural Language En-
gineering, 13:95-135.

Nivre, Joakim. 2008. Algorithms for deter-
ministic incremental dependency parsing.
Computational Linguistics, 34:513-553.

Sagae, Kenji and Alon Lavie. 2005. A
classifier-based parser with linear run-
time complexity. In Proceedings of the 9th
International Workshop on Parsing Tech-
nologies (IWPT), pages 125-132.

Xue, Naiwen, Fei Xia, Fu-Dong Chiou, and
Martha Palmer. 2004. The Penn Chinese
Treebank: Phase structure annotation of
a large corpus. Journal of Natural Lan-
guage Engineering, 11:207-238.

Yamada, Hiroyasu and Yuji Matsumoto.
2003. Statistical dependency analysis
with support vector machines. In Proceed-
ings of the 8th International Workshop on
Parsing Technologies (IWPT), pages 195—
206.

Zhang, Meishan, Yue Zhang, Wanxiang Che,
and Ting Liu. 2013. Chinese parsing ex-
ploiting characters. In ACL.

Zhang, Yue and Stephen Clark. 2011a. Shift-
reduce ccg parsing. In ACL.

Zhang, Yue and Stephen Clark. 2011b.
Syntactic processing using the generalized
perceptron and beam search. Computa-
tional Linguistics, 37(1):105-151.

Zhang, Yue and Joakim Nivre. 2011.
Transition-based dependency parsing with
rich non-local features. In ACL (Short Pa-
pers), pages 188-193.

Zhang, Yue and Joakim Nivre. 2012. An-
alyzing the effect of global learning and
beam-search on transition-based depen-
dency parsing. In COLING (Posters).

Zhu, Muhua, Yue Zhang, Wenliang Chen,
Min Zhang, and Jingbo Zhu. 2013.

Fast and accurate shift-reduce constituent
parsing. In ACL.

