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Abstract: Unsupervised Named Entity Recognition (NER) approaches do not depend on 

labelled data to function properly but rather on a source of knowledge, in which 

promising candidates can be looked up to find the corresponding concept. In the 

biomedical domain knowledge source like this already exists; namely the Unified 

Medical Language System (UMLS). In this paper, three different unsupervised NER 

models using UMLS, namely MetaMap, cTakes and MetaMapLite are evaluated and 

compared from the results published by Demner-Fushman, Rogers and Aronson (2017) 

and Reategui and Ratte (2018). The Unsupervised Biomedical Named Entity Recognition 

framework (UB-NER) is developed, with which the results of the experiments of the 

three models, five datasets and two NER tasks are presented. 

Keywords: Named Entity Recognition (NER), Biomedical, supervised and unsupervised 

models, Unified Medical Language System. 

Resumen: Los enfoques para reconocimiento de entidades nombradas no supervisados 

(NER, por sus siglas en inglés) no dependen de corpus con datos etiquetados, sino de una 

fuente de conocimiento donde buscar candidatos prometedores para encontrar el concepto 

correspondiente. En el ámbito biomédico existe la fuente denominada “Sistema Unificado 

de Lenguaje Médico” (UMLS, por sus siglas en inglés). En este artículo, se evalúan y 

comparan tres modelos diferentes de NER no supervisados que utilizan UMLS, a saber, 

MetaMap, cTakes y MetaMapLite, a partir de los resultados publicados por Demner-

Fushman, Rogers y Aronson (2017) y Reategui y Ratte (2018). Para ello se desarrolla el 

entorno Unsupervised Biomedical Named Entity Recognition (UB-NER), con el que se 

presentan resultados de los experimentos en los modelos, cinco datasets y dos tareas 

NER. 

Palabras clave: Reconocimiento de Entidades Nombradas (NER), Modelos biomédicos, 

supervisados y no supervisados, Sistema de Lenguaje Médico Unificado. 

1 Introduction 

The task of automated detection and the correct 

mapping of entities to a concept is called 

Named Entity Recognition (NER). 

Unsupervised approaches do not depend on 

labelled data but rather on a source of 

knowledge in which candidates can be looked 

up to find the corresponding concept. In the 

biomedical domain this knowledge source 

exists, the metathesaurus Unified Medical 

Language System (UMLS)1, a metathesaurus in 

which the concepts have an associated Concept 

Unique Identifier (CUI). Three different 

unsupervised NER models using UMLS, 

namely MetaMap (Aronson, 2001), cTakes 

(Savova, 2010) and MetaMapLite are replicated 

and compared in this paper.  

This research work follows the NISO 

Standard2 recommendations subscribed to by 

1 https://www.nlm.nih.gov/research/umls/index.html 
2https://www.niso.org/standards-

committees/reproducibility-badging 
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the ACM3 to reproduce the three models in the 

developed framework called the Unsupervised 

Biomedical Named Entity Recognition 

framework (UB-NER), whose objective is to 

find the same results as the experiments 

published by Reategui and Ratte (2018) and 

Demner-Fushman, et al. (2017).  

A section is included in the following with 

related work, as well as a section which 

describes the developed framework. Section 

four is devoted to the setting and description of 

the two kinds of experiments.  A comparison of 

the results and some considerations on 

reproducibility are given when some of the 

configuration details are missing, unknown 

software versions, external resources which are 

no longer available or when other difficulties 

arise. 

2 Related work 

For the literature review on NER methods in the 

biomedical domain it can be discriminated 

between supervised, unsupervised and hybrid 

approaches (Table 1). Supervised models rely 

heavily on data as opposed to unsupervised 

models. Hence supervised approaches rely on 

the quality of the data and how well they 

represent the reality. The data needs to be 

labelled so that supervised models can use it for 

training, meaning that the model fits parameters 

to the underlying distribution of the data. 

However, the acquisition of data can usually be 

offset by an increased performance in contrast 

to unsupervised models. 

Properties   Sup.      UnS. 

Need for labeled data yes no 

Domain independent no yes 

Knowledge Source no yes 

Arbitrary filtering of sem. types no yes 

Restricted filtering of sem. types yes yes 

Recognize entities yes yes 

Metaconcept recognition no yes 

Better accord. quality measures yes no 

Explainability some yes 

Table 1: Features of supervised versus 

unsupervised NER approaches in the 

biomedical domain. 

Recent supervised approaches adapt the 

state-of-the-art approaches of neighbouring 

fields to the biomedical domain, giving rise to 

3 https://www.acm.org/publications/policies/artifact-

review-and-badging-current 

high quality NER models. For example, Lee et 

al. introduced BioBERT (Lee et al., 2020), a 

variation of the standard BERT (Devlin et al., 

2019) model. The default model is additionally 

trained on PubMed abstracts and PubMed 

Central full-text articles, to fit the model to the 

biomedical vocabulary. 

The resulting BioBERT model can solve 

different tasks such as NER, relationship 

extraction and question answering. The authors 

establish a new state-of-the-art performance in 

all three tasks. Furthermore, Cho et al. (2020) 

used an LSTM-CRF (Lample, 2016), to 

generate the embedding that is fed into the 

LSTM-CRF, each token goes through a bi-

directional LSTM character embedding and a 

convolutional neural network character 

embedding. Instead of using the standard 

LSTM-CRF, the authors have inserted an 

attention layer between the LSTM output and 

the CRF, which enables the CRF to attend to 

the relevant parts of a sequence and put less 

weight on the features deemed irrelevant. 

(Yu et al. 2020) published a Generative 

Adversarial Network (GAN) combined with an 

active learning approach, to utilize unlabelled 

data for training. This approach finds the 

different semantic types of mentions in the 

entity. Supervised approaches perform better in 

general by considering measures of quality such 

as precision, recall and the f1-score compared to 

unsupervised approaches. However, the 

supervised approaches rely heavily on the 

dataset for both the coverage of domains and 

the semantic filtering of the mentions. 

An NER tool is considered as hybrid if it is a 

mixture of supervised and unsupervised 

methods. Supervised models may have some 

steps based on unsupervised methods (or 

vice versa), thus the model is considered 

hybrid. Some approximations are provided 

below, and some functionalities are named 

to show their hybrid approach. Gimli 

(Campos, Matos and Oliveira, 2013) is a 

combination of dictionary consultation and pre-

processing steps usually used for unsupervised 

models. They use a linguistic processing tool 

called GDep (Sagae and Tsujii, 2007) to carry 

out tokenization, lemmatization, POS tagging, 

chunking and dependency parsing. The entities 

found in the dictionary consultation process are 

not the final output as in unsupervised settings, 

but rather serve as an additional feature for 

multiple CRF models. Another hybrid approach 

(Bhasuran et al. 2016) extended the CRF model 
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and uses fuzzy matching to find rare concepts in 

a self-made dictionary. Instead of using one 

CRF model in a forward chain, they also 

employ a CRF model in a backward chain which 

reads the input sequence in reverse order. 

Finally in (Lara-Clares and Garcia-Serrano, 

2019) a Few-Shot Learning approach is 

described for NER on a hybrid Bi-LSTM and 

Convolutional Neural Network model with four 

input layers to recognize multi-word entities 

improving precision by nearly 10%, with the 

addition of Wikidata entities in the vocabulary. 

3 Developed Platform 

This section explains the UB-NER4 java-

framework developed (Hennig, 2020). One 

main contribution is to bring together datasets 

and models and comparison functionalities in 

quality measures of NER experiments, to 

simplify its access and processing of further 

researchers. The second main contribution is 

the computational reproducibility of the most 

used unsupervised NER approaches (MetaMap, 

MetaMap Lite and cTAKES) and compare it 

was in (Demner-Fushman, Rogers, and 

Aronson, 2017) and (Reategui and Ratté, 2018), 

so we not include any detailed description of 

these approaches.  

 
Figure 1: UB-NER High Level View. The dotted 

lines display the order of implementation. 

 

All three models provide publicly available 

java APIs, thus facilitating the implementation 

of UB-NER that supports 5 datasets and 2 

different NER tasks. 

UB-NER consists of four components: the 

models, the datasets, the experiments, and the 

internal data structure (see Figure 1). The 

                                                      
4 Implementation technical details and 

reproducibility process are detailed in (Hennig and 

Garcia-Serrano, 2020). 

annotateTextAndPositions method first solves 

the NER task, giving the specific start and end 

position as a character offset throughout the 

information on the entity. The 

annotateTextCompleteCUIs, just gives a set of 

all entities found in the input text without any 

positional information. The output of the 

annotateTextAndPositions produces triplets 

with (start offset, end offset, concept name/ 

CUI). For example’The patient has 

hyperlipidemia and is known to have dementia 

as previously stated.’ is parsed: 
annotateTextAndPositions →  

     {(16, 30, hyperlipidemia), (45, 53, dementia)} 
        or {(16, 30, C0020473), (45, 53, C0497327)} 
annotateTextCompleteCUIs → {C0020473, C0497327} 

in which ’C0020473’ is the CUI for 

’hyperlipidemia’ and ’C0497327’ the CUI of the 

concept ’dementia’ according to the UMLS. 

Each dataset needs to implement the data set 

reader interface. After reading and parsing the 

data files, both the input and the labels can be 

accessed from a uniform structure. There is no 

pre-processing included in UB-NER because all 

the models implemented so far carry out the pre-

processing as part of their process. 

 
 UMLS cTakes Meta 

Map 

M. M. 

Lite 

First Experi- 

ment 
2016AA 3.2.2 2016 

Release 

3.0 

Second 

Experiment 
2018AA5 3.2.0 2015 

Release 

- 

UB-NER 2020AA 4.0.0 2020 R. 3.6.2rc5 

Table 2: Versions of the UMLS and the models 

used in UB-NER.  

 

A UB-NER Experiment is an instance of one 

model and one dataset, built with the 

Experiment Factory. The latest UMLS and 

model versions were chosen (table 2) because 

the two different experiments presented used 

different versions. Implementing a reproducible 

framework that automatically switches between 

versions would be unsuitable for the scope of 

this work (deviations induced by the different 

versions are covered in the following sections). 

Apart from the semantic groups which are 

defined for each experiment in the 

configuration subsection, there are no additional 

configurations for MetaMap. The only 

                                                      
5 The UMLS version used in the original 

experiment is not mentioned. 
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additional configuration for MetaMap Lite is 

the segmentation method, which is set to 

LINES (reading each line separately instead of 

the complete text) for the i2b2 2010, ShARe 

and i2b2 2008 datasets. For the other datasets 

the segmentation method is not set and hence 

the default is used. 

The TokenProcessingPipeline and the 

FastDictionaryLookup is used for cTAKES. 

Furthermore, the outputs of cTAKES are 

filtered to only return matches that are part of 

the semantic class DiseaseDisorderMention, 

since both experiments and all five datasets 

only contain disease and disorder references. 

Although all three models contain a 

functionality that supports negation detection, it 

is not used in UB-NER, since our main goal is 

to reproduce the results published previously 

and neither of them used negation detections. 

However, negation can be activated by 

configuring the models accordingly.  

The reproducible protocol is published at 

(Hennig, Garcia-Serrano, 2020). The 

framework developed is as light-weight as 

possible and extensible with new datasets and 

models following the experimental line of 

research established in works (Lastra and 

Garcia-Serrano, 2015a and b) or (Benavent et 

al., 2010). 

4 Experiments and Evaluation 

This paper’s one main goal is to reproduce the 

two sets of NER experiments, the published by 

Demner-Fushman, Rogers and Aronson (2017) 

and the reported by Reategui and Ratte (2018). 

In the former, the outputs contain the name and 

the start and end position of each entity found. 

They are then compared to the gold standard 

and the precision, recall and f1-score are 

computed. 

The latter experiments collate all of the 

entities found in a document. The entity list 

returned as a result is compared to a set of 

reference labels to locate all relevant matches. 

If a match is found, the candidate is added to a 

final output set, which is compared to the 

annotated gold-standard label set (subset of the 

reference label) and then the precision, recall 

and f1-score are computed. 

In UB-NER each annotated concept is stored 

with its positional information as 

AtomStringLabel. A text usually contains more 

than one medical concept; hence we need a data 

structure to save all annotations that appear. So, 

each ground truth and each output consists of a 

set of AtomStringLabels and these can be 

compared to each other.  Let L be the ground 

truth labels and M the labels suggested by the 

NER model, then 

• I = L ∩ M 

• OL = L \ M 

• OM = M \ L 

where I is the intersection, OL are the concepts 

that only appear in ground truth labels and OM 

are the concepts that only appear in the output.  

These three sets can now be used to compute 

the set of retrieved documents (as I  OM = M) 

and the set of relevant documents (as I  OL = 

L) which are needed to calculate the precision 

and recall as can be seen in the following 

formulas. So, the calculation of OM and OL 
could be omitted and M and L could be used to 

get the retrieved and relevant document sets. In 

MetaMap Lite implementation OL and OM are 

employed for the evaluation, subsequently the 

precision and recall are calculated using the 

following formulas. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
∑ |𝐼|𝑑∈𝐷

∑ |{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|𝑑∈𝐷
 (1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
∑ |𝐼|𝑑∈𝐷

∑ |{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|𝑑∈𝐷
 (2) 

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (3) 

 

To obtain the overall performance on a 

document’s dataset D we do not compute the 

precision and recall of each document d  D 

and take the average, but rather accumulate all 

intersection set sizes and all retrieved and 

relevant set sizes. 

In the second experiment, the multi-label 

classification problem, let Y be the set of all 

classes. Usually for a multi-label classification 

problem, a binary vector of size |Y| for each 

document of D is defined, which indicates its 

classes. However due to the modality of the 

experiments, an alternate representation is used 

instead. For each class y  Y there is a set Ly  

D, so that every d  Ly is an instance of class y. 

The set of leftover documents which are not an 

instance of y will be referred to as Ay. So, for 

each class y  Y there exists L and A, so that L 

 D, A  D and L  A = D. We use L and A for 

the sets that represent the ground truth labels. 

Similarly, there is a set LMy, containing all of 

the documents that the model predicts to be an 

instance of y. In the case of NER, a model 
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predicts a class y for a document d when an 

entity that is associated with y appears in d. 
Let’s assume MetaMap Lite is the model 

and we currently want to find LM for the class 

Asthma. Then we process each document d  D 
with MetaMap Lite. If MetaMap Lite 

recognizes a concept in d and assigns the CUI 

C0004096 for Asthma to it, then d will be added 

to LMAsthma. Thus, AMAsthma is the set 

containing all documents in which Asthma is 

not part of the concepts detected by MetaMap 

Lite. At the same time, there is an LM and AM 

for each class y  Y where LM  D, AM  D and 

LM  AM = D. Using these sets we can define 

the true positives (TP, entities recognized by 

the system that are also present in the ground 

truth), false negatives (FN, entities recognized 

that are not present in the ground truth) and 

false positives (FP, entities not recognized but 

present in the ground truth) for each class: TP = 

L ∩  LM; FN = L \ LM and FP = LM \ L. This 

leads to the calculation of the final score: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑃|
 (4) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
 (5) 

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (6) 

 

4.1 First experiments: Exact position 

The four corpuses used in the exact position 

experiments are: 

The NCBI Disease Corpus (Dogan, 

Leaman and Lu, 2014) consists of annotated 

titles and abstracts from 793 PubMed articles, 

annotated with MeSH and OMIM concept 

identifiers. As these identifiers are part of the 

UMLS, they can be mapped to CUIs. 

Lister Hill Center (LHC) test collection is 

a mixture of annotated PubMed abstracts in 

which 150 are clinically oriented and another 

150 are biology oriented. A total of 2,242 

disorders are annotated and normalized to their 

UMLS CUIs. There exists a version of NCBI, 

which is also belongs to the LHC collection, 

that contains additional manual annotations.  

The i2b2 2010 is a collection of 871 clinical 

notes, which provides various annotations. In 

this work we ignore the treatment and test 

annotations, following the MetaMap Lite 

author’s evaluation strategy. 

ShARe corpus contains 300 clinical notes, 

annotated with disorder references and 

normalized to a CUI if possible. 

All datasets are in text-form and for each 

document there is a file with the text and a file 

with the corresponding annotated entities. The 

authors of the original experiments parsed the 

labels to brat standoff format6 and the CUIs are 

omitted as the preferred concept names, the 

human readable identifier in UMLS, are used 

for comparison as they can be interchanged. 

They compare the concept name as well as the 

start and the end positions in the text. In this 

work the labels are not parsed to the brat 

standoff format, but the concept name and 

offsets are equally compared using the 

AtomStringLabel format.  

A typical label could look like "lung cancer | 14 

| 25”, in which lung cancer is the preferred 

name, 14 is the number of the starting character 

and 25 the ending one. The character offsets are 

all relative to the first character of the document. 

Each label has a semantic type assigned to it 

and, following the work to be reproduced, we 

only consider labels that fall under one of the 

semantic types Disorder or GeneralDisorder. 

The main reasons for this choice are that the 

datasets and tools are heavily skewed toward 

these semantic types and also because of their 

importance in clinical text processing and 

downstream applications, such as the  extraction 

of phenotypes or adverse reactions to drugs 

(Segura-Bedmar and Martínez, 2017). 

As mentioned before, the concept names are 

used for the gold-standard labels instead of the 

CUIs. Therefore, in this work we need the 

output of the models to be a concept name, too 

(to make then iniformal). Each of the three 

models MetaMap, MetaMap Lite and cTakes, 

can output the multiple formats of a found 

concept. Namely the CUI, the preferred concept 

name as saved in the dictionary (UMLS) and 

the concept name found in the text. We decided 

to use the concept name found in the text, 

which is also used in the ground-truth labels. 

Using the preferred concept names as defined in 

a dictionary, would lead to problems in 

assigning correct offsets in the model outputs as 

well as in the labels, since the length of the 

dictionary entry can vary from the length of the 

corresponding phrase found in the text. 

Although it is not mentioned in the original 

paper, but directly influences the results, the 

                                                      
6 http://brat.nlplab.org/standoff.html 
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MetaMap and MetaMap Lite output is restricted 

to a list of semantic types. The nine semantic 

types mentioned in the code kindly provided by 

the authors of MetaMap Lite are: Acquired 

Abnormality (acab), Congenital Abnormality 

(cgab), Injury or Poisoning (inpo), Pathologic 

Function (patf), Disease or Syndrome (dsyn), 

Anatomical Abnormality (anab), Neoplastic 

Process (neop), Mental or Behavioral 

Dysfunction (mobd), Sign or Symptom (sosy). 

Restricting the output to these semantic types 

increases the precision of MetaMap and 

MetaMap Lite, since any entities found that are 

not annotated in the gold standard as disease, 

e.g. entities of the semantic type plant, are 

discarded. 

 

4.2 Second experiments: Classification 

The authors (Reategui and Ratte, 2018) ran two 

experiments identifying whether a comorbidity7 

is present or not in a discharge summary. They 

differ in the labels used. In the first experiment 

(Single CUI experiment), single UMLS 

concepts are assigned to each comorbidity 

which should be predicted by the models. For 

the Multiple CUIs experiment, additional 

UMLS concepts are added to some of the 

comorbidities thus forming an aggregation of 

CUIs. This task is easier since the models only 

need to find one of the CUIs mentioned in a 

concept aggregate of a comorbidity to get a 

successful match.  

The i2b2 2008 obesity challenge dataset 

used in this experiment (Uzuner, 2009) contains 

1,237 medical discharge summaries of obese 

and diabetic people. It is annotated with 15 

possible comorbidities of obesity. The labels 

indicated for each comorbidity in the 

underlying medical record are: present (the 

patient has/had the disease); absent (the patient 

does/did not have the disease); questionable 

(the patient may have the disease) and 

unmentioned (the disease is not mentioned in 

the discharge summary). 

Aiming exactly at reproducing the results of 

the authors, we selected the subset of 412 

summaries which had obesity as a comorbidity 

and the annotated gold standard was taken and 

changed into a binary classification task. We 

discriminate between present and absent, where 

a comorbidity is present if and only if it is 

                                                      
7 Comorbidity refers to the presence of more than 

one disorder (co-existing) in the same person. 

tagged as present in the gold standard. If it is 

tagged as either absent, questionable, or 

unmentioned we consider it as absent. With this 

new binary presentation two sets of documents 

can be created for each comorbidity, namely L 

and A, as mentioned in section 4. In the original 

experiments of Reategui and Ratte (2018), D 

corresponds to the set of all 412 obesity 

discharge summaries, and the set of classes of 

comorbidities (Y) considered are: Pathologic 

Function (patf); Disease or Syndrome (dsyn); 

Therapeutic or Preventive Procedure (topp); 

Mental or Behavioral Dysfunction (mobd). We 

refer to the original publication for explanations 

on the aggregation process and the reasoning 

behind the choices for the aggregations used in 

the second experiment. 

The two experiments are carried out using 

the precision and recall calculations stated in 

section 4. The only difference is the creation of 

the LM sets for the Multiple CUIs experiment. 

In the Single CUI experiment, a summary is only 

part of LMDepression, if the model detects an entity 

with CUI C0011570 in it. For the Multiple CUI 

experiment it is enough for a summary to be 

included in LMDepression, if the model manages to 

detect either the concept C0011570 or C0011581. 

Since the two classification experiments 

described are different from the first one based 

on the work of the MetaMap Lite, we have 

created an additional ExperimentCompleteDoc 

class in UB-NER, where instead of looking at 

each concept found separately, we create a list 

of all concepts found. The resulting list is 

checked against the 14 available comorbidities 

considered (Hypertriglyceridemia was excluded 

due to a lack of sufficient examples). If a 

comorbidity is found in the document, it is 

added to the LM set. 

Changes were also needed in the dataset 

loading. Instead of creating AtomStringLabels 

for each document, we assigned a document to 

the L set if a comorbidity was annotated as 

present in the gold standard. The scores are then 

computed after all L and LM sets are calculated. 

5 Results Comparison 

In this section the results obtained by UB-NER 

reproducing the two original experiments are 

compared with the results published. 

Furthermore, the delta between the two 

evaluations is calculated by subtracting the 

original from UB-NER score. Hence a positive 
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entry means that our model is better than the 

original and a negative means that is not.  

5.1 Exact Position Experiments Results 

We found similar results (table 3) as published 

in the original article as set out in table 4. 

MetaMap Lite outperforms the others in terms 

of precision, recall and f1 and only on the 

ShARe dataset, MetaMap marginally beat 

MetaMap Lite.  

In the original experiment the 

AggregatePlaintextUMLSProcessor were used 

in the cTAKES pipeline. Unfortunately, we 

could not run it since it took more time to 

process one datapoint, than it took MetaMap 

Lite to process the complete dataset. Hence, we 

used the fast pipeline provided by cTAKES. 

 

 
 

 
 

 

Table 3 (a), (b), (c) UB-NER results on the 

exact position experiments. 

 

Most of the deviations detailed in table 4 (on 

average our scores are 0.035 worse than 

originals) can be explained by the differences in 

comparing the model output to the label set. We 

parsed the labels and the model output to 

AtomStringLabel, whereas in the original 

experiments the brat standoff format was used.  

There are some cases in which the output of 

UB-NER identifies the positions correctly, but 

the entity name does not exactly match the label 

name. For example, “524 555 glucose/galactose 

malabsorption” is the output and “524 555 

glucose malabsorption” is the gold standard. 

Parsing the model output to the brat standoff, 

changes those cases to be mapped correctly. 

However, only 0.34% of all labels are affected.  
 

DATASETS 

METAMAP 

    P              R             F1 

LHC NCBI -0.057 -0.1 -0.077 

LHC-BIO CITS -0.072 -0.148 -0.099 

SHARE -0.151 0.181 0 

LHC-CLIN CITS -0.027 -0.137 -0.072 

I2B2 2010 -0.017 -0.01 -0.013 
 

 

DATASETS 

            METAMAP LITE 

   P R F1 

LHC NCBI -0.067 -0.005 -0.037 

LHC-BIO CITS -0.207 -0.068 -0.16 

SHARE -0.259 0.164 -0.009 

LHC-CLIN CITS -0.059 -0.038 -0.029 

I2B2 2010 -0.075 0.03 -0.009 

 
 

DATASETS 
            CTAKES 

 P              R             F1 

LHC NCBI 0.013 0.069 0 

LHC-BIO CITS -0.028 -0.057 -0.04 

SHARE 0.001 -0.045 -0.022 

LHC-CLIN CITS 0.091 -0.05 0.035 

I2B2 2010 -0.004 -0.139 -0.083 

 

Table 4 (a), (b), (c): Delta to Original Results. 

 

MetaMap and MetaMap Lite differ in 

precision and recall on the ShARe dataset, but 

in such proportions that they offset each other 

and the f1 score stays the same. The ShARe 

dataset does not have the name of the entity as a 

label, but instead each entity is tagged with its 

CUI. MetaMap Lite converted those CUI labels 

to the brat standoff format. In UB-NER the 

outputs of the models were adapted, mapping 

the entity to the corresponding CUI, allowing 

the output to be matched against the gold labels 

given by the ShARe dataset, containing 

positional information and the CUI. 

The differences of MetaMap for the LHC-

Bio Cits and LHC-Clin Cits are induced by the 

aggregation of variations from the original 

experiment. In addition to the differences 

between the brat standoff and the 

AtomStringLabel, the output of MetaMap is 

also different. The original experiment uses the 

fielded MetaMap (MMI) output. Unfortunately, 

the MetaMap API does not support this output 

format. We approximate the MMI output as 

closely as possible with the API available tools.  

However, there are limits which cannot be 

easily overcome. For example, the phrase 

“transposition of the great vessels” is recognized 
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as Transposition of Great Vessels and CUI 

C0040761 when the fielded MMI output is 

used. When the API is used, two independent 

concepts, namely Transposition with CUI 

C0040759 and Great vessels with CUI 

C0225991 are returned by MetaMap from 

which the latter is removed from the output 

since the semantic type of Great vessels is not 

part of the list used for the experiment.  

Therefore, without adapting the semantic 

types, it is not possible to get the same output 

with the API as the console version with a 

fielded MMI output. Both output forms identify 

abbreviations but only the fielded MMI output 

returns the short form mentioned in the text, 

which is also the one used in the labels most of 

the time. The API on the other hand, only 

returns the full name of the corresponding 

concept instead of the abbreviation. A heuristic 

is implemented in UB-NER to map those 

complete matches back to the abbreviations 

found but is unable to produce the same output 

as the fielded MMI.  

Changes in the UMLS versions also causes 

some entities, that were previously found, to no 

longer be recognized. For example the concept 

HIV is part of the semantic group Disease or 

Syndrome (dysn) in former UMLS versions, 

while the current version of the UMLS used in 

UB-NER maps HIV to the semantic group 

Virus (virs) which is not part of that list. 

Theoretically these problems are present in 

all datasets processed by our implementation of 

MetaMap. The greater influence of these factors 

on the LHC-Bio Cits and LHC-Clin Cits among 

others stems from the fact that these datasets are 

relatively small compared to the other, and 

hence single errors have a greater impact on the 

overall score. The deviation of the precision of 

MetaMap Lite on the LHC-Bio Cits is because 

MetaMap Lite was able to recognize many 

more abbreviations with the UMLS 2020AA 

than with older versions.  

Unfortunately, the texts in the LHC-Bio Cits 

dataset contain a lot of abbreviations for phrases 

that are not diseases. For example, the phrase 

“Corticotropin-releasing factor (CRF)”, where 

the abbreviation CRF is used for all other 

occurrences in the text, is identified by 

MetaMap Lite with the UMLS 2020AA. Even 

though the correct concept C0772289 belonging 

to this phrase, can be found by MetaMap Lite, 

the resulting semantic type for this match is not 

contained in the list of accepted semantic types. 

This would result in the CRF not being 

matched. Unfortunately, the abbreviation CRF 

is also used for the concept Cancer-related 

fatigue with CUI C4274302. Hence MetaMap 

Lite outputs a wrong interpretation of CRF. 

Naturally biological abstracts contained in 

the LHC-Bio Cits dataset, also contain 

abbreviations for biological phrases, and some 

concepts are mapped to the same abbreviation, 

even though they are completely uncorrelated. 

These false positives, who’s weighting to the 

total score is enhanced by the fact that an 

abbreviation is frequently used, results in a lower 

precision. So, while it is a good idea to include 

abbreviations to increase recall, it can decrease 

the precision disproportionately. 

 

5.2 Classification Experiments Results 

The best model for each comorbidity shows that 

MetaMap Lite cannot outperform MetaMap and 

cTakes, in contrast to results in previous section, 

but it can match their performance.  

Precision and recall of this task are higher 

than in the exact position because: (1) No 

position tagging is required; (2) The task is 

aligned with the dataset: nearly all biomedical 

entity mentions belong to one of the 14 target 

concepts; and (3) The entities are not verified 

one by one but count as a match if the entity 

appears at least once in the document.  

In general, our UB-NER results (tables 5, 6 

and 7) match closely with the results of the 

original work and differences can be attributed 

to the use of different versions of UMLS and 

that: (1) no configuration details of MetaMap 

are given, (2) neither are cTAKES and (3) 

neither was the UMLS version mentioned for 

MetaMap nor cTAKES. 

 

 
Table 5: Results for MetaMap Experiments. 
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Table 6: MetaMap Lite Experiments Results. 

 

 
Table 7: UB-NER results for cTAKES 

experiments. 

 

 The greatest discrepancy in table 8 is the 

single CUI Depression which is mapped to the 

CUI C0011570. cTAKES maps all occurrences 

of C0011581. In the multiple CUIs experiment 

in which the CUI C0011581 is added, the results 

match up again for cTAKES and a marginal 

improvement in precision is achieved. 

The MetaMap implementation used in UB-

NER also gave rise to better precision results in 

the single CUI and multiple CUIs experiment. 

In the literature, Depression is hard to recognize 

correctly, because usually refers to a mental 

disorder, but in the biomedical domain it can 

also refer to a “reduction”.  

There is also a significant difference for 

Atherosclerotic Cardiovascular Disease (CAD) 

in the single CUI experiment, whereas the 

difference in the multiple CUIs experiment is 

negligible. In former UMLS versions, instances 

of CAD were solely mapped to the concept 

Coronary arteriosclerosis, CUI C0010054, 

however in the current version it has a new one, 

the Coronary artery disease with CUI 

C1956346. The CUI mapping table shows that 

C1956346 was used in the Single and C0010054 

was added for the Multiple experiment. 

 

 
Table 8: Delta Single CUI. 

 

 
Table 9: Delta Multiple CUIs. 

 

Table 9 shows that Venous Insufficiency has 

significant differences for the multiple CUIs 

experiment. This stems from the addition of the 

concept Postthrombotic syndrome with CUI 

C0277919. In the former versions of the 

UMLS, venous stasis is mapped to the CUI 

C0277919, which explains the improved 

performance in the original. In the 2020AA 

version of the UMLS a new concept for venous 

stasis was introduced with CUI C441518. 

Hence all instances that were previously mapped 

to C0277919 are now mapped to C441518. If we 
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substituted the C0277919 with C441518, we 

would likely get the same results. 

The discrepancy in the single CUI and 

multiple CUIs experiment for CHF in cTAKES 

is also brought about by software versions. In 

the current one, like Venous insufficiency, 

instances that can be mapped to more specific 

concepts are no longer mapped to the general 

concept C0018802, resulting in a lower recall. It 

is necessary to have notice that even if the three 

models were processed by the UB-NER for this 

experiment and results explained, MetaMap 

Lite it is not shown in delta tables 7 and 8 

because it was not included in the comparison 

of the original work in (Reategui and Ratté, 

2018, thus it is not possible to calculate any 

delta for MetaMap Lite.  

 

5.3 Computational reproducibility 

UB-NER was able to reproduce the results 

published in (Demner-Fushman, Rogers, and 

Aronson, 2017) and (Reategui and Ratte, 2018) 

with no significant differences according to the 

student’s t-test, proving the published findings 

as reproducible and correct.  

For the student’s t-test, the p-value is 

computed by using a two-sided t-distribution on 

two paired sample sets. Our null hypothesis H0 

states that the average performance of the 

compared implementations is equal, whilst the 

alternative hypothesis states that their average 

performance is different. We choose a 5% 

significance level and say that the performance 

differs significantly if we must reject H0 i.e. the 

p-value is smaller than 0.05. On the other hand, 

if the p-value is larger or equal to 0.05 H0 holds 

and the differences in performance are 

considered insignificant.  

If we take the values from table 3 and the 

original results from in (Demner-Fushman, 

Rogers, and Aronson, 2017) the calculation of 

the p-value yields 0.198 and hence shows that 

our results are not significantly different from 

the original results. Analogous the p-value for 

the Single CUI experiment (table 5) is 0.199 

and 0.373 for the Multiple CUI experiment 

(table 6) respectively, indicating that the 

differences to the results published in (Reategui 

and Ratte, 2018) are also not significant. 

6 Conclusions 

The two NER in the biomedical domain widely 

used are the following unsupervised models: 

MetaMap with just a few supervised parts in its 

pipeline (the POS-tagger) and cTAKES which 

has more pre-trained supervised parts in its 

pipeline. Both use the UMLS to identify and 

extract medical entities from text and were 

compared in (Reategui and Ratté, 2018) 

showing very similar behaviour using the i2b2 

2008 dataset. In (Demner-Fushman, Rogers, 

and Aronson, 2017) MetaMap and cTAKES 

were compared with MetaMap Lite, a Java 

implementation of MetaMap focusing on real-

time processing speed.   

We presented the UB-NER framework to 

validate published results in the original 

comparisons of (Demner-Fushman, Rogers, and 

Aronson, 2017) and (Reategui and Ratté, 2018), 

with a discussion justifying the differences 

found and explaining how the different versions 

of UMLS, the abbreviations considered and 

other related features, impact on the results.  

UB-NER enables the computational 

reproduction of scientific research results, 

bringing together biomedical datasets and 

models for NER models, so removing barriers 

in the dataset access and NER processing to the 

researchers, i.e. all models in the original papers 

have different input/output formats and not in 

UB-NER. To configure an experiment in UB-

NER you only must do some database and 

model selection to obtain results and quality 

measures. 

We plan to extend UB-NER to support more 

datasets, models, and experiments for 

unsupervised as well as supervised approaches. 

Furthermore, we want to create a novel NER 

method that uses a supervised approach, 

exploiting additional information provided by 

UMLS, to enhance the usability of entities 

found for downstream tasks. 
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