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Abstract: The raw output of an Automatic Speech Recognition system usually con-
sists in a stream of words without any casing nor punctuation. In order to improve
the readability and enable further uses of this output, punctuation and capitalisation
have to be included. In this context, we present AutoPunct, a Transformers-based
automatic punctuation and capitalisation model that combines both acoustic (i.e.
silences duration) and lexical information (the words themselves). We compared
its performance with a system based on Bidirectional Recurrent Neural Networks
(BRNN) on Basque (a low-resource language) and Spanish, both individually and
simultaneously. The result is a system that achieves high accuracy for punctuation
and capitalisation in both languages at the same time, with a throughput of several
thousand words per second using a standard GPU.
Keywords: punctuation, capitalisation, low-resource languages.

Resumen: La salida en bruto de un sistema de Reconocimiento Automático del
Habla generalmente consiste en una secuencia de palabras sin mayúsculas ni si-
gnos de puntuación. Para mejorar la legibilidad y posibilitar posteriores usos de
esta salida es necesario incluir la puntuación y las mayúsculas. En este contexto,
presentamos AutoPunct, un modelo para puntuación y mayusculización basado
en arquitecturas de Transformers que combina tanto información acústica (silencios)
como léxica (palabras). Hemos comparado su desempeño con un sistema basado en
redes neuronales recursivas bidireccionales (BRNN) en euskera (un idioma de po-
cos recursos) y castellano, así como combinando ambos idiomas. El resultado es
un sistema que obtiene buenos resultados aplicando mayusculización y puntuación
de manera simultánea en dos idiomas diferentes, con una velocidad de proceso que
alcanza varios miles de palabras por segundo en una GPU estándar.
Palabras clave: puntuación, mayusculización, lenguas con pocos recursos.

1 Introduction
Automatic Speech Recognition (ASR) sys-
tems are increasingly more integrated in
our daily lives and workflows through differ-
ent solutions such as voice assistants, nat-
ural interfaces, speech-to-text applications or
biometrics, among others. The growth of
this technology has been mainly due to the
evolution of Deep Learning techniques and
their integration to develop neural models
for speech recognition (Nassif et al., 2019),
in addition to the continuous release of more
and more training data and the availability of
powerful hardware devices for high perform-

ance computing.
The aim of an ASR system is to trans-

form an audio input into text that may be
exploited for further Natural Language Pro-
cessing applications. However, the output
string is usually composed by a raw sequence
of words which does not include casing nor
punctuation marks, which noticeably reduces
its readability (Jones et al., 2003) and its pos-
sibility of being employed as input to other
modules that require a well-segmented and
correctly punctuated text (Peitz et al., 2011).
Therefore, the ASR module is usually concat-
enated to other technological modules which
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are in charge of enriching the initial raw tran-
scriptions, as it is described in Figure 1.

Figure 1: Example of Automatic Speech
Recognition output before and after adding
punctuation and capitalisation.

In this work, we compared the perform-
ance of two neural architectures for the task
of automatically recovering the punctuation
marks for Spanish and Basque languages,
both individually and simultaneously. The
first system was considered as a reference
baseline. It is inspired on the architecture
proposed by Tilk and Alumäe (2016), which
includes a bidirectional recurrent neural net-
work (BRNN) model (Schuster and Paliwal,
1997) that takes advantage of Gated Recur-
rent Units (GRU) as recurrent layers and an
attention mechanism to further increase its
capacity of finding relevant parts of the con-
text for punctuation decisions.

As an alternative to this initial system,
we present AutoPunct, which is composed
by an architecture based on Bidirectional
Encoder Representations from Transformers
(BERT) (Devlin et al., 2019), that com-
bines the text representation obtained by a
Transformer model with the acoustic inform-
ation related to the duration of the silences
between words. We tested this second system
using several architectural variations in order
to evaluate different ways of combining and
exploiting the acoustic and lexical informa-
tion. In addition, this model variations were
also evaluated with the integration of an ex-
tra head to predict whether a word should be
capitalised or not.

The rest of the paper is structured as it fol-
lows. Section 2 introduces related work in the
field. Section 3 presents AutoPunct along
with its main architecture. Section 4 illus-
trates the initial experimental set-up, whilst
the datasets used to train both neural ap-

proaches are described in Section 5. Section 6
displays the experiments and the obtained
results. Finally, Section 7 concludes the pa-
per and presents future work.

2 Related work
The challenge of automatically recovering
capitalisation and punctuation marks has
been extensively studied through many sys-
tems presented in the literature. These sys-
tems can be divided into three main cat-
egories (Yi et al., 2020a): those using lex-
ical features, derived from the text; those us-
ing prosodic features, derived from acoustic
information; and those using a combination
of both. These prosodic feature-based archi-
tectures show that this type of information
is indeed useful for the task, although they
tend to fail in places where the speaker does
unnatural pauses (Christensen, Gotoh, and
Renals, 2001; Kim and Woodland, 2003).

In the last years, the problem of recov-
ering punctuation marks have been faced by
the use of Deep Learning algorithms, such as
Convolutional Networks (Che et al., 2016),
Bidirectional RNN with attention (Tilk and
Alumäe, 2016), the use of word- and speech-
embeddings (Yi and Tao, 2019), and more
recently, Transformers based on BERT-like
architectures (Devlin et al., 2019), which
have been shown to obtain values as high as
83.9% (Courtland, Faulkner, and McElvain,
2020) on F1 score in the well-known and
reference IWSLT 2012 data set (Federico et
al., 2012). Different architectures show the
use of a pre-trained BERT model such as
RoBERTa (Liu et al., 2019) in order to ob-
tain the word-embeddings, which are fed to
various networks based on BiLSTM (Alam,
Khan, and Alam, 2020) or focal loss (Yi
et al., 2020b), or aggregated across over-
lapping context windows for each individual
token (Courtland, Faulkner, and McElvain,
2020). Another BERT-based architecture
that performs both punctuation and capital-
isation simultaneously can be found in (Sunk-
ara et al., 2020), where the word- or subword-
embeddings obtained from a pre-trained or a
custom BERT are fed to two Softmax layers
for punctuation and capitalisation respect-
ively. These experiments, however, are fo-
cused on the specific domain of medical texts.

Nevertheless, the variety of literature ded-
icated to solve the problem of punctuation
focuses only on the following three marks:
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period (.), comma (,) and question (?).
In addition, these results have been mostly
evaluated over a single language: English.

The system presented in this paper
addresses 13 different punctuation marks,
which are described in the section 5.
Moreover, the architecture of the proposed
model features a multi-label output, which
means that it can predict more than a single
punctuation mark per word.

3 Description of the systems
As it was initially introduced, this work
presents a comparison between two neural
architectures for capitalisation and punctu-
ation restoration for Spanish and Basque,
both individually and simultaneously. These
systems are described in more detail in the
following subsections.

3.1 BRNN-based system
The architecture proposed for the first system
is based on Punctuator (Tilk and Alumäe,
2016). It integrates a Bidirectional Recurrent
Neural Network (BRNN) with an attention
mechanism for restoring punctuation marks
in unsegmented transcribed speech. This ar-
chitecture allows the use of both GRU or
LSTM layers as recurrent layers, whilst the
attention mechanism increases the capacity
of the model of detecting relevant context
segments to improve punctuation decisions.
Finally, the recurrent layers and the atten-
tion mechanism are coupled by a late fusion
approach, which allows the output of the at-
tention model to directly interact with the
state of the recurrent layer while not interfer-
ing with its memory. A simplified diagram of
this architecture is shown in Figure 2.

For this work, we trained the model in
two different stages. In the first stage, only
annotated text is used to train an initial
model, so it learns to restore punctuation
marks based on textual features only. In
the optional second stage, a new model is
estimated adding acoustic information as in-
put, therefore learning to combine pause dur-
ations between words with textual features.
The pause durations are obtained by using
the start and end time-codes given by the
speech recognition system at word level.

3.2 BERT-based system
Our BERT-based system, called Auto-
Punct, combines the lexical information ob-

ASR output

GRUGRUGRU

Attention

GRUGRU

Late fusion

Punctuation labels

Figure 2: Simplified architecture of BRNN-
based Punctuator system.

tained from a pre-trained BERT model with
the acoustic information coming from silence
duration between words. These two sources
of information are further combined using
an additional Transformer model (a custom
BERT trained from scratch). This system is
trained to predict both punctuation and cap-
italisation at the same time. A high-level dia-
gram of the architecture of AutoPunct is
shown in Figure 3.

This particular architecture was care-
fully constructed considering the following
guidelines:

1. Speed and efficiency should be priorit-
ised so the system can work in real-time
if needed.

2. Capitalisation should be performed
alongside punctuation to avoid adding a
standalone module just for casing.

3. The system should be able to exploit si-
lence duration between words as an ad-
ditional source of prosodic information.

4. The architecture should be language-
independent. It should serve as a basis
to train models for different languages
by changing the training data and the
pre-trained Transformer model.

In the following subsections, the main
components of the AutoPunct architecture
are explained in more detail.
3.2.1 Input embeddings
The input to the AutoPunct system cor-
responds to the output of a given ASR sys-
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Figure 3: Main architecture of the BERT-
based AutoPunct system.

tem; this is, a sequence of lowercase words
paired with their silence duration value. A
pre-trained BERT (Devlin et al., 2019) model
is used to encode words as they are out-
put by the speech recognition system into
the so-called contextual embeddings. These
embeddings are vectors of continuous values
that encode relevant linguistic information
about the words, according to the language
model represented by BERT. More informa-
tion about the pre-trained models used in the
experiments can be found in Section 6.

This lexical and semantic information ob-
tained by the pre-trained BERT is then com-
bined with the silence duration for each in-
dividual word. Given that the silence val-
ues between word are scalars, they cannot
be combined with the word-embeddings in
this state. In order to solve this problem,
we evaluated two different approaches of in-
jecting the silences information to the sys-
tem: as continuous values and as discrete
values. The former involves repeating the
silence value as many times as the size of
each word embedding (768 for the BERT-
base models). The latter consists of parti-
tioning a ten-seconds-time range into buck-
ets of 10 milliseconds, leading to 1000 dis-

crete silence values. These discrete values
are used as indexes over a silence-embedding
layer that provides, for each silence value, a
trainable vector of the same size as the word-
embeddings.

Nevertheless, using discrete silence val-
ues with such a fine granularity has a major
drawback: most of the discrete values will
probably never appear in the training data;
therefore their embeddings will not be used
and they will not capture any valuable in-
formation. To prevent this, all the embed-
dings from a window of 1 second centred on
the original value are averaged into a single
embedding. We evaluated the system with
two types of averaging: uniform averaging, in
which each embedding weights the same, and
Gaussian averaging, in which a Gaussian dis-
tribution centred on the original embedding
was used to compute a weighted average of
the embeddings. This final silence embed-
ding is added to the word-embedding com-
puted by the pre-trained BERT in order to
obtain a combined representation.
3.2.2 Custom BERT
As an additional step, we evaluated the sys-
tem adding an extra Transformer module
layer after the word and silence combin-
ation. This custom Transformer, (hence-
forth Custom BERT) is much smaller than
a base BERT (4 hidden layers with 4 atten-
tion heads each), and it is initialised from
scratch. The rationale for adding this inter-
mediate Transformer is to endow the model
with the ability to attend to the whole se-
quence, instead of focusing on isolated com-
binations of word and silence pairs, through
the self-attention among inputs to the Trans-
former.

The impact of this layer is also evaluated
in Section 6.
3.2.3 Punctuation and Capitalisation

layers
Finally, the representation of each word is fed
into two classification heads. These heads
are composed of a dense layer, followed by
a non-linearity, a dropout layer and a final
linear layer that maps the input into the cor-
responding label space, namely, the different
punctuation marks for the punctuation head
and the capitalisation labels for the capital-
isation head.

Since the punctuation marks in a sentence
may influence the capitalisation of the fol-
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lowing words, the output of the punctuation
head is fed into the capitalisation head along
with the word embedding generated by the
pre-trained BERT at the beginning of the
network.

The punctuation head is treated as a
multi-label classification head to cope with
the fact that some words may bear more than
one punctuation mark attached, e.g. closing
quotation mark and period at the end of a
sentence.

4 Training setup
Each neural architecture was initialised using
specific components and resources, while the
final models were constructed over the same
main dataset employed in this work.

With regard to the BRNN-based system,
we followed the training stages described in
subsection 3.1. At a first stage, an initial
model was estimated using text features only.
These features were obtained from a text cor-
pus of generic domain consisting of web news
crawled from digital newspapers in Basque
and Spanish. This generic text corpus is
described in more detail in subsection 5.1.
Then, the initial model was fine-tuned in
a second stage of training with acoustic in-
formation, exploiting the principal dataset
employed in this work, known as mintzai-
ST (Etchegoyhen et al., 2021). This corpus
is also described in more detail in subsection
5.2.

The models for all the languages were es-
timated using the same training configura-
tion. During the first stage, the training fin-
ished when the validation perplexity was not
improved at the first time, with a maximum
epochs of 50 and a minibatch size of 128. The
hidden layers consist of 256 units and we em-
ployed a learning rate of 0.02. Regarding the
second stage where the acoustic information
was integrated, the training process was set
to be finished when the validation perplexity
was not improved in the last 3 epochs with
a maximum epochs of 50 and a minibatch
size of 128. The hidden layers consist of 256
units and the learning rate was fixed to 0.02.
The input vocabularies had a maximum size
of 100,000 words, composed by the most fre-
quent words that occur at least two times in
the training corpus. The output vocabulary
was composed by the predicted punctuation
marks in addition to a non-punctuation sym-
bol defined as O. The trainings were perfomed

on a 12 GB Nvidia Titan X GPU card.
Regarding the BERT-based system

AutoPunct, we employed a specific pre-
trained BERT model for each language:
BETO for Spanish (Cañete et al., 2020),
BERTeus for Basque (Agerri et al., 2020),
and IXAmBERT for Spanish+Basque (Otegi
et al., 2020). As in the previous architecture,
the final models of the BERT-based systems
were estimated on the mintzai-ST dataset
and using the same hyper-parameters to
make them comparable. The learning-rate
was set to 2 · 10−5 with a warm-up period of
5 epochs and using AdamW (Loshchilov and
Hutter, 2019) as the optimizer. The training
mini-batches were of size 8. The training of
each model was performed using an Nvidia
GeForce RTX 2080ti GPU with ∼11GB of
memory for a maximum of 50 epochs with
an early-stopping patience of 20 epochs,
monitoring the punctuation F1 metric on the
corresponding development set.

5 Main datasets
In this section, we first describe the text cor-
pus used to estimate the initial models of the
BRNN-based models, and then we present
the main dataset employed to generate the
final models of both neural architectures. Fi-
nally, we detail the punctuation and capital-
isation labels as well.

5.1 Generic text corpus
This corpus is composed by news of generic
domain crawled from digital newspapers from
2012 to 2019. The number of words for each
partition is shown in Table 1.

EU ES ES+EU
train 14,010,067 11,609,170 25,619,237
dev 683,230 1,323,545 2,006,775

Table 1: Number of words in each partition
of the generic text corpus per language. The
ES+EU corpus is a concatenation of the data
from EU and ES.

5.2 Mintzai-ST corpus
As it was previously mentioned, the final
models of both BRNN-based and BERT-
based systems were trained and evaluated
with the mintzai-ST corpus, which incorpor-
ates both textual and acoustic features. This
corpus is composed by a collection of manual
transcriptions of proceedings of the Basque
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Parliament from 2011 to 2018, which com-
prises content in Basque and Spanish. The
original train, development and test parti-
tions of the corpus were maintained in both
languages as they are described in its related
paper. Table 2 presents the amount of words
in each partition.

EU ES ES+EU
train 1,137,727 4,468,041 5,605,768
dev 13,672 25,139 38,811
test 40,644 75,470 116,114

Table 2: Number of words in each partition
of the corpus mintzai-ST per language. The
ES+EU corpus is a concatenation of the data
from EU and ES.

The original mintzai-ST corpus was pro-
cessed in order to represent the information
needed to train models. This information is
related to each word and consists of four ele-
ments: the lowercase word itself, the punc-
tuation label, a float value representing the
silence duration, and the capitalisation label.
The word and the silence value act as inputs,
while the other two are the outcomes the sys-
tem should learn to predict. An example of a
completely annotated sentence from the cor-
pus mintzai-ST can be found in Figure 4.

primer O 0.00 FIRST_CAP
punto O 0.00 O
del O 0.00 O
orden O 0.00 O
del O 0.00 O
día COLON 0.00 O
pregunta OPEN_QUOTE 0.00 FIRST_CAP
formulada O 0.00 O
por O 0.00 O
don O 0.00 O
andoni O 0.00 FIRST_CAP
ortuzar O 0.00 FIRST_CAP
arruabarrena COMMA 0.36 FIRST_CAP

Figure 4: An example of the training cor-
pus. Each word has its corresponding punc-
tuation, acoustic and capitalisation labels re-
spectively.

5.3 Punctuation labels
The punctuation labels represent the punctu-
ation marks that should go attached to each
word. The current punctuation labels invent-
ory is the following: COLON (:), COMMA (,),
DASH (W–), ELLIPSIS (…), EXCLAMATION (!),
OPEN_DASH (–W), OPEN_EXCL (¡),
OPEN_QUES (¿), OPEN_QUOTE (“), PERIOD (.),
QUESTION (?), QUOTE (”) and SEMICOLON (;).

There is also an O label to indicate words
that bear no punctuation. A single word
can have more than one punctuation label
attached to it.

The punctuation labels were derived from
the different Unicode code-points present in
the original transcriptions of the dataset, e.g.
the code-points U+00BB (») and U+201D (”)
are both labelled as QUOTE.

Table 3 shows the distribution in percent-
ages of the punctuation labels for Basque
(EU), Spanish (ES) and Spanish+Basque
(ES+EU). The distributions shows a label
unbalance. This is to be expected since some
punctuation marks, such as periods or com-
mas, are much more frequent than the others.

label EU ES ES+EU
COMMA 54.62% 59.89% 58.35%
PERIOD 36.25% 28.02% 30.41%
QUESTION 1.87% 1.72% 1.76%
COLON 1.88% 1.49% 1.61%
DASH 1.21% 1.54% 1.44%
OPEN_QUES 0.02% 1.68% 1.20%
SEMICOLON 1.08% 1.20% 1.16%
OPEN_QUOTE 1.15% 1.09% 1.11%
QUOTE 1.02% 1.05% 1.04%
ELLIPSIS 0.69% 1.08% 0.97%
EXCLAMATION 0.17% 0.62% 0.49%
OPEN_EXCL 0.01% 0.61% 0.43%
OPEN_DASH 0.03% 0.00% 0.01%

Table 3: Percentage of appearance of each
punctuation label in each language in the cor-
pus mintzai-ST.

5.4 Capitalisation labels
The capitalisation labels consist in two dif-
ferent options: FIRST_CAP if the first letter
of the word is a capital letter, and ALL_CAPS
if the whole word is written in capital letters.
Similarly to the punctuation, the label O in-
dicates that the word is not capitalised. For
words that do not fall into any of these cat-
egories (e.g. EiTB), these same criteria are
similarly applied: if the first letter is cased
it would carry the label FIRST_CAP, and O
otherwise.

6 Evaluation and discussion
In this section, we present the results ob-
tained by each neural architecture proposed
in this work on the test partition of the
mintzai-ST corpus. In the case of our BERT-
based system, it is composed of several ele-
ments and parameters that can be enabled
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or disabled to build the models. During our
experiments, we constructed several models
with different combinations in order to eval-
uate the impact of these elements:

• Using or ignoring silences duration.
• Modelling silences as continuous or dis-

crete values.
• Weighting silence embeddings uniformly

or using a Gaussian distribution (only
applies to experiments with discrete si-
lences).

• Using or skipping the additional Trans-
former layer (Custom BERT).

6.1 Punctuation results
Table 4 shows the micro-averaged F1 score
for each experiment with AutoPunct, and
the comparison with Punctuator.

S D f B EU ES ES+EU
× – – × 76.2 78.2 75.4
× – – ✓ 76.9 78.5 75.6
✓ × – × 76.8 78.4 75.9
✓ × – ✓ 76.6 77.7 75.2
✓ ✓ G × 76.8 78.4 76.0
✓ ✓ G ✓ 76.7 78.9 76.4
✓ ✓ U × 76.8 78.5 76.3
✓ ✓ U ✓ 76.9 78.9 76.3

BRNN 74.6 68.7 72.9

Table 4: Micro-averaged F1 scores for Auto-
Punct and Punctuator in each language.
S: Using information of silences. D: Using
discrete silences. f : Gaussian (G) or uni-
form (U) distribution for contiguous buck-
ets. B: Adding a custom BERT. The results
achieved by the BRNN-based system are also
displayed.

As it can be observed in Table 4, Auto-
Punct obtains better aggregated scores for
the three language scenarios. The scores
show a moderate improvement towards the
lower part of the table, where discrete silences
are used in combination with the intermedi-
ate custom BERT.

In Table 5, the evaluation results for each
individual punctuation label are displayed.
As it can observed, the BRNN-based sys-
tem obtains a higher F1 score than Auto-
Punct in the label PERIOD for both Basque
and Spanish+Basque. Nevertheless, the rest
of punctuation marks are better modelled
by the BERT-based architectures. Moreover,

the score for some of these labels using the
BRNN-based system is 0.00%, such as in
QUOTE or OPEN_QUOTE in Basque, in contrast
with AutoPunct reaching F1 scores higher
than 50%. This can be due to the fact that
in the first corpus used to train the BRNN-
based system (Section 5.1) does not contain
these labels, as well as to their low appear-
ance rate in the corpus of mintzai-ST.

As it can be appreciated, for the
Basque language, the absence of predicted
OPEN_QUES and OPEN_EXCL indicates a cor-
rect behaviour, since such punctuation marks
are not used in this language. For Spanish,
in contrast, OPEN_QUES reaches a 64.8%. In
the case of the labels with lower F1 scores, it
seems that the number of occurrences in this
dataset are not enough for a proper training
and evaluation.

Finally, in the case of the Spanish+Basque
model there is a small performance loss, but
it can be considered a reasonable trade-off for
performing punctuation and capitalisation in
two languages simultaneously using a single
module. Furthermore, it is not uncommon in
Basque to interleave Spanish words or sen-
tences spontaneously in casual conversations,
so using a model that deals with both lan-
guages at the same time can be advantageous
on these scenarios.

6.2 Capitalisation results
The capitalisation results are presented just
for AutoPunct, since the BRNN-based
model does not perform this task. The micro-
averaged F1 scores for automatic capitalisa-
tion evaluation are shown in Table 6, follow-
ing the same experiment breakdown.

As it can be seen in Table 6, the obtained
micro-averaged F1 values are very high in
all the cases and for every language scen-
ario. The variations in the architecture do
not show a high impact in the final scores.

6.3 Inference speed
In addition to evaluating the quality of the
systems in the automatic punctuation and
capitalisation tasks, parameters like speed
and efficiency are also desirable properties.
To assess if the proposed system would be
suitable for a scenario requiring real-time pre-
dictions, we measured the rate of words per
second at inference time. This measure has
been carried on during the evaluation, using
the test set for each language. The eval-
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Basque (EU)
S D f B COM PER QUES COL DASH O_QS SCOL O_QUO QUO ELL EXC O_EX
× – – × 74.6 84.8 58.8 53.8 13.6 0.0 17.9 59.3 47.6 0.0 0.0 0.0
× – – ✓ 75.7 85.5 60.4 50.9 20.3 0.0 15.7 55.3 54.5 8.3 0.0 0.0
✓ × – × 75.3 85.8 61.0 51.2 0.0 0.0 0.0 54.4 40.0 0.0 0.0 0.0
✓ × – ✓ 75.5 85.0 63.5 47.1 3.6 0.0 0.0 50.7 43.9 0.0 0.0 0.0
✓ ✓ G × 75.4 85.6 65.5 49.8 14.5 0.0 10.9 58.1 51.2 0.0 0.0 0.0
✓ ✓ G ✓ 75.2 85.9 60.8 48.5 14.5 0.0 12.9 55.1 51.5 11.6 0.0 0.0
✓ ✓ U × 75.2 85.5 64.5 50.6 5.4 0.0 6.0 56.4 46.7 0.0 0.0 0.0
✓ ✓ U ✓ 75.5 86.1 62.0 50.0 13.6 0.0 10.3 59.9 47.3 0.0 0.0 0.0

BRNN 70.1 87.2 52.2 23.4 0.0 0.0 12.4 0.0 0.0 0.0 0.0 0.0
Spanish (ES)

S D f B COM PER QUES COL DASH O_QS SCOL O_QUO QUO ELL EXC O_EX
× – – × 79.8 85.7 58.5 49.8 17.6 64.2 30.6 48.9 26.9 5.4 5.6 10.7
× – – ✓ 80.1 86.1 56.5 48.1 21.7 63.8 33.3 50.4 32.7 16.3 13.3 24.1
✓ × – × 79.8 86.8 56.3 51.6 11.9 61.3 23.8 48.4 25.3 0.0 2.9 0.0
✓ × – ✓ 79.7 85.1 56.6 46.1 12.3 63.3 25.5 50.0 20.2 0.0 0.0 5.9
✓ ✓ G × 80.1 86.5 54.1 45.0 17.9 62.0 27.1 47.7 31.1 0.0 2.9 5.7
✓ ✓ G ✓ 80.2 87.0 59.7 46.8 20.4 64.8 31.3 51.9 33.0 0.0 2.9 16.0
✓ ✓ U × 80.2 86.3 57.0 48.4 16.9 63.4 30.5 48.2 29.4 1.8 2.9 5.7
✓ ✓ U ✓ 80.0 87.3 59.0 48.2 21.4 64.0 33.9 52.2 34.2 0.0 5.7 16.2

BRNN 65.4 85.6 46.0 11.9 1.8 23.0 1.7 13.0 0.0 5.2 11.9 0.0
Spanish+Basque (ES+EU)

S D f B COM PER QUES COL DASH O_QS SCOL O_QUO QUO ELL EXC O_EX
× – – × 75.6 83.7 56.9 48.6 14.7 57.5 19.3 53.6 41.7 13.2 14.9 16.7
× – – ✓ 75.9 83.7 55.7 48.6 21.1 59.9 20.8 55.2 44.8 23.1 24.6 33.0
✓ × – × 75.9 84.6 54.1 51.7 10.9 57.0 18.3 54.7 37.7 12.7 11.4 10.8
✓ × – ✓ 75.3 83.7 56.9 50.2 21.6 60.3 20.3 54.1 43.8 20.1 15.7 21.3
✓ ✓ G × 76.1 84.5 55.4 48.6 7.6 57.1 19.8 52.4 36.4 10.4 9.3 13.9
✓ ✓ G ✓ 76.5 85.4 56.2 51.5 18.1 58.3 21.3 55.3 40.8 18.5 19.0 24.0
✓ ✓ U × 76.3 85.0 55.8 51.3 16.4 57.9 22.1 54.4 40.7 17.4 13.3 24.1
✓ ✓ U ✓ 76.2 85.6 56.2 50.2 23.7 58.8 24.8 55.5 41.7 19.0 21.4 32.7

BRNN 69.7 87.4 49.9 16.1 2.0 3.3 9.1 6.2 0.0 13.6 5.2 0.0

Table 5: Class-wise F1 scores for AutoPunct and the BRNN-based system in each language.
Labels with a F1 score of 0.0 in the three language scenarios were omitted. S: Using information
of silences. D: Using discrete silences. f : Gaussian (G) or uniform (U) distribution for contiguous
buckets. B: Adding a custom BERT.

S D f B EU ES ES+EU
× – – × 91.7 92.1 90.6
× – – ✓ 91.6 92.1 90.9
✓ × – × 91.9 92.2 91.4
✓ × – ✓ 91.6 91.7 90.7
✓ ✓ G × 91.7 92.1 91.3
✓ ✓ G ✓ 91.9 92.3 91.5
✓ ✓ U × 91.6 92.1 91.4
✓ ✓ U ✓ 92.2 92.4 91.7

Table 6: Capitalisation micro-averaged F1

scores. S: Using information of silences. D:
Using discrete silences. f : Gaussian (G) or
uniform (U) distribution for contiguous buck-
ets. B: Adding a custom BERT.

uations have been run using a Nvidia Ge-

Force RTX 2080ti GPU1. Again, we compare
AutoPunct with the BRNN-based system.
These results are shown in Table 7.

From the results of the table 7, it can be
observed that the computation speed is fast
enough to enable a real-time processing. The
trend in the numbers show that the use of
discrete silences requires more time, but this
is not surprising due to the extra amount of
computation to select and average the silence
embeddings. The same reasoning applies to
the intermediate Custom BERT. Compared
to the Punctuator baseline, all the architec-
tural variations of the proposed system are
faster, in special taking into account that

1These numbers should be taken as approxima-
tions, since different hardware or different workloads
may lead to slightly different results.
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S D f B EU ES ES+EU
× – – × 6221 7379 7572
× – – ✓ 6454 7038 6576
✓ × – × 6802 7112 7537
✓ × – ✓ 5749 7186 6749
✓ ✓ G × 3097 3315 3128
✓ ✓ G ✓ 3071 3322 3068
✓ ✓ U × 2877 3124 3206
✓ ✓ U ✓ 3017 3174 3169

BRNN 1729 2126 2524

Table 7: Processing speed in words per
second. S: Using information of silences. D:
Using discrete silences. f : Gaussian (G) or
uniform (U) distribution for contiguous buck-
ets. B: Adding a custom BERT.

AutoPunct is also adding capitalisation to
the output in the same process.

7 Conclusions
In this work we present AutoPunct, an
automatic punctuation and capitalisation
system based on BERT that also makes use
of the silence duration between words. The
system was trained for 13 different punc-
tuation labels and two types of capitalisa-
tion. It works as a multilabel classifier, so
it can predict several punctuation marks at-
tached to a single word. The model is lan-
guage agnostic and only depends on training
data, it can be even trained on several lan-
guages at the same time. Due to its infer-
ence speed, ranging from 3000 to 7000 words
per second depending on the chosen archi-
tectural variation, it can be used in real-time
scenarios. The system was tested in Span-
ish and Basque, both individually and simul-
taneously, using the mintzai-ST dataset. We
carried on experiments with several architec-
tural variations to assess their impact in the
final result. We also compared the proposed
system with another well known automatic
punctuation system, Punctuator from (Tilk
and Alumäe, 2016), showing not only better
results but also faster inference times. As fu-
ture work, we would like to test additional ar-
chitectural variations and hyper-parameters,
and also train and evaluate on datasets of
more varied styles and application domains.
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