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Abstract: EcoLexicon is a terminological knowledge base on environmental science, whose design 
permits the geographic contextualization of data. For the geographic contextualization of named 

entities such as colponyms (i.e., named bays such as Pensacola Bay) in EcoLexicon, both 

count-based and prediction-based distributional semantic models (DSMs) were applied to a 

small-sized, English specialized corpus to extract terms related to each colponym mentioned in it and 
their semantic relations. Since the evaluation of DSMs in small, specialized corpora has received 

little attention, this study identified both parameter combinations in DSMs and five 

similarity/distance measures suitable for the extraction of terms which related to colponyms through 
the semantic relations takes_place_in, located_at, and attribute_of. The models were thus evaluated 

using three gold standard datasets. The results showed that: count-based models outperformed 

prediction-based ones; the similarity/distance measures performed quite similar except for the 

Euclidean distance; and the detection of a specific relation depended on the context window size. 

Keywords: Colponym, Terminology, Knowledge Representation, Semantic Model. 

Resumen: EcoLexicon es una base de conocimiento terminológica sobre el medioambiente, cuyo 

diseño permite la contextualización geográfica de colpónimos, esto es, bahías con nombre propio 
(BNP) (v.gr., Bahía de Pensacola). Se aplicaron modelos semánticos distribucionales (MSD), 

basados en recuentos y predictivos, a un corpus especializado de pequeño tamaño en inglés para 

extraer términos relacionados con las BNP y sus relaciones semánticas. Puesto que la evaluación de 
MSD en corpus especializados de pequeño tamaño ha sido menos explorada, en este artículo se 

identifican tanto la combinación de parámetros como las cinco medidas de similitud adecuadas para 

extraer términos que mantengan con las BNP las relaciones tiene_lugar_en, localizado_en y 

atributo_de. Los MSD se evalúan con tres conjuntos de datos anotados manualmente. Los resultados 
indican que: los modelos basados en recuentos superan a los modelos predictivos; las medidas de 

similitud brindan resultados semejantes, excepto la distancia euclídea; y la detección de una relación 

específica depende del tamaño de la ventana contextual. 
Palabras clave: Colpónimo, Terminología, Representación del Conocimiento, Modelo Semántico. 

1 Introduction 

Although named landforms, among other named 

entities, are frequently found in specialized texts on 

the environment, their representation and inclusion in 
terminological knowledge bases (TKBs) have 

received little research attention, as evidenced by the 

lack of named landforms in terminological resources 

for the environment such as DiCoEnviro1, GEMET2, 

1 https://cutt.ly/cbATjnQ 
2 https://www.eionet.europa.eu/gemet/en/themes/ 

or the FAO Term Portal3. In contrast, AGROVOC4 
contains a list of named landforms with hyponymic 

information, whereas ENVO5 provides descriptions 

with only geographic details. 

The semantic representation of named landforms, 
such as litonyms (e.g., Sumiyoshi Beach), potamonyms 

(e.g., River Nile), and colponyms (e.g., San Francisco 

Bay), is barely tackled in terminological resources for 
two reasons, in our opinion: (1) They are considered 

3 http://www.fao.org/faoterm/en/ 
4 http://aims.fao.org/en/agrovoc 
5 http://www.environmentontology.org/Browse-EnvO 
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mere instances (i.e., examples) of concepts such as 

BEACH, RIVER, or BAY, and their relational behavior 

with other concepts in a specialized knowledge domain 
is thus neglected and not semantically described; (2) 

their semantic representation depends on knowing 

which terms are related to each named landform, and 
how these terms are related to each other. This is 

evidently a time-consuming task taking into account 

that terminologists do not often resort to natural language 
processing (NLP) systems beyond corpus query tools 

such as Sketch Engine (Kilgarriff A. et al., 2004). 

As a result, knowledge resources have limited 

themselves to representing concepts such as BAY, 
RIVER or BEACH, on the questionable assumption that 

the concepts linked to each of them are also related to 

all named bays, rivers and beaches in the real world. 
Contrary to this assumption, Rojas-Garcia J. and Faber 

P. (2019a and 2019b) have shown that, in specialized 

knowledge domains, each named landform reveals a 
specific conceptual structure. In other words, each 

named landform holds different semantic relations to 

specialized concepts even in the same knowledge 

domain. Therefore, TKBs should include the semantic 
representation of named landforms. 

In this respect, EcoLexicon6 is a multilingual TKB 

on environmental science that is the practical 
application of Frame-based Terminology (Faber P., 

2012). The flexible design of EcoLexicon permits the 

representation and contextualization of data so that 

they are more relevant to specific subdomains, 
communicative situations, and geographic areas. With 

the ultimate goal of representing in EcoLexicon the 

conceptual structures underlying the usage of named 
landforms mentioned in a small-sized, English 

specialized corpus on Costal Engineering (7 million 

tokens), the terms related to each named landform 
and their semantic relations have to be manually 

extracted from the corpus by querying it in Sketch 

Engine. In this work, we focused on colponyms 

(Room A., 1996: 23), namely, named bays. 
As such, terminologists require to extract terms 

which relate to each colponym, at least, by the semantic 

relations takes_place_in, located_at, and attribute_of, 
the most frequent relations held by named bays in the 

corpus. Since this is a time-consuming task, the overall 

aim of this study was to provide terminologists with 
three lists of term candidates for a colponym, one list 

per semantic relation, by applying distributional 

semantic models (DSMs). 

Accordingly, this study identified both parameter 
combinations in DSMs and similarity/distance 

measures suitable for the extraction of those terms 

from the small specialized corpus mentioned above. 

 
6 http://ecolexicon.ugr.es 

Hence, the models were evaluated using gold 

standard evaluation data, which contained pairs of 

semantically related terms, manually extracted from 
the same corpus. One of the terms was always a 

colponym, and the other one was either a process 

(e.g., storm surge), an entity (e.g., benthic geologic 
habitat), or a property (e.g., water quality). The 

semantic relations that linked the terms were: (a) 

takes_place_in (e.g., STORM SURGE takes_place_in 
ESCAMBIA BAY); (b) located_at (e.g., BENTHIC 

GEOLOGIC HABITAT located_at GREENWICH BAY); 

and (c) attribute_of (e.g., WATER QUALITY 

attribute_of NARRAGANSETT BAY). Three gold 
standard datasets were thus built, one for each of the 

semantic relations. 

As shall be seen, the extraction of terms that hold 
these specific semantic relations to named bays 

largely depends on the context window size 

parameter of the DSMs, namely, 4 words for 
takes_place_in, 3 words for attribute_of, and 2 words 

for located_at. A similar study was also conducted for 

named rivers by Rojas-Garcia J. and Faber P. 

(2019c), but the relations frequently activated were 
takes_place_in, located_at, and affects (not 

attribute_of). Interestingly enough, for named rivers, 

the window size had to be 3 words to extract terms 
linked to rivers with the affect relation, whereas in the 

case of named bays, the same window size of 3 words 

was required to obtain terms that held the attribute_of 
relation. These findings led to the conclusion that it is 

not possible to generalize the results from named 

rivers to either bays or other named entities such as 
beaches and mountains. Hence, since each named 

landform is characterized by its own conceptual 

structure, as previously stated, this study on 
colponyms cannot be considered either as a "case of 

use" or as a "toy problem", but rather as a research 
objective itself. 

Besides the analysis of different DSMs and 

similarity measures for a small-sized, specialized 
corpus, an important contribution of this work is the 

creation of both the corpus on named landforms in the 

Coastal Engineering domain, and the three gold 
standard datasets for information retrieval system 

evaluation. 

The rest of this paper is organized as follows. 

Section 2 provides background on DSMs, as well as a 
literature review on their application and evaluation. 

Sections 3 and 4 explain the materials, methods, and 

DSMs evaluation applied in this study, and the 
construction of the gold standard datasets. Section 5 

shows the results obtained. Finally, Section 6 

discusses the results, and presents the conclusions 
derived from this work along with plans for future 

research. 
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2 Background and Literature Review 

Distributional semantic models (DSMs) represent the 
meaning of a term as a vector, based on its statistical 

co-occurrence with other terms in the corpus. 

According to the distributional hypothesis, 
semantically similar terms tend to have similar 

contextual distributions (Miller G.A. and Charles 

W.G., 1991). The semantic relatedness of two terms 

is estimated by calculating a similarity/distance 
measure of their vectors, such as Euclidean distance, 

cosine similarity, Jaccard coefficient, Pearson 

correlation coefficient, or averaged Kullback-Leibler 
divergence, inter alia (see Huang A. (2008) for a 

detailed description of these five measures). 

Depending on the language model (Baroni M. et 
al., 2014), DSMs are either count-based or 

prediction-based. Count-based DSMs calculate the 

frequency of terms within a term’s context (i.e., a 

sentence, paragraph, document, or a sliding context 
window spanning a given number of terms on either 

side of the target term). Correlated Occurrence 

Analogue to Lexical Semantic (COALS) (Rohde D. 
et al., 2006) is an example of this type of model. 

Prediction-based models exploit probabilistic 

language models, which represent terms by predicting 

the next term on the basis of previous terms. 
Examples of predictive models based on neural 

networks include, among others, word2vec (Mikolov 

T. et al., 2013), fastText (Bojanowski P. et al., 2017), 
and state-of-the-art transfer learning models such as 

BERT (Devlin J. et al., 2019). Instead, GloVe model 

(Pennington J. et al., 2014) makes predictions drawn 
on a regression technique. 

Count-based DSMs have been amply studied 

(Kiela D. and Clark S., 2014; Lapesa G. et al., 2014; 

Sahlgren M. and Lenci A., 2016). Research shows 
that parameters, such as the context window size, 

influence the semantic relations that are captured, 

either syntagmatic relations or paradigmatic relations 
(i.e., synonymy, antonymy, hyponymy, and 

meronymy). The syntagmatic relations examined in 

much research are either phrasal associates (e.g., help 
- wanted) (Lapesa G. et al., 2014) or syntagmatic 

predicate preferences (Erk K. et al., 2010) in general 

language. The present study focused on the specific 

syntagmatic relations takes_place_in, located_at, and 
attribute_of, which were the most frequent relations 

activated by colponyms in the specialized language of 

Coastal Engineering in our corpus. 
Count-based models and word2vec have also 

been recently compared. Baroni M. et al. (2014) 

contrasted them on several datasets and found that the 

prediction-based models provided better results. In 
contrast, Ferret O. (2015) found that count-based 

models performed better. In another study that 

compared the ability of both DSMs to capture 

paradigmatic relations (synonymy, antonymy, and 
hyponymy) and syntactic derivatives, Bernier-

Colborne G. and Drouin P. (2016) not only observed 

that the semantic relations detected by the DSMs 
depended on the window size, but also that the values 

of this parameter mostly coincided in both DSMs. 

Levy O. et al. (2015) yielded valuable insights, 
showing the following: (1) When the parameters of 

the models were correctly tuned, count-based and 

prediction-based models obtained similar accuracy; 

and (2) the best model depended on the task to be 
carried out. Nevertheless, Asr F. et al. (2016), 

Sahlgren M. and Lenci A. (2016), and Nematzadeh 

A. et al. (2017) reported that count-based models 
outperformed prediction-based ones on small-sized 

corpora of under 10 million tokens. 

Work in lexical semantics and DSMs includes, 
inter alia, the identification of semantic relations 

(Bertels A. and Speelman D., 2014), classification of 

verbs into semantic groups (Gries S. and 

Stefanowitsch A., 2010), and the use of word vectors 
as features for automatic recognition of named entities 

in text corpora (El Bazi I. and Laachfoubi N., 2016). 

3 Materials 

3.1 Corpus Data 

The colponyms and related terms were extracted from 
a subcorpus of English texts on Coastal Engineering, 

on which the DSMs were also built. This subcorpus, 

comprising roughly 7 million tokens, is composed of 

specialized texts (scientific articles, technical reports, 
and PhD dissertations), and semi-specialized texts 

(textbooks and encyclopedias on Coastal Engineering). 

It is an integral part of the EcoLexicon English Corpus 
(23.1 million tokens) (León-Araúz P. et al., 2018). 

It is worth clarifying that we were interested in the 

semantic behavior of colponyms in the specialized 
language of Coastal Engineering. Since this behavior of 

colponyms, like that of all specialized terms, is different 

in the specialized language than it is in the general 

language (Pearson J., 1998; Sager J.C. et al., 1980), 
from an epistemological and methodological point of 

view, it makes no sense to expand our corpus neither 

with a general language corpus such as Wikipedia, nor 
with other specialized corpora dealing with topics other 

than Coastal Engineering. 

Furthermore, the domain of the training corpus 
has an impact on the semantic relations represented 

by word embeddings. Hence, it is recommended 

using a domain-specific corpus to train word 

embeddings for domain-specific text mining tasks 

Extraction of Terms Semantically Related to Colponyms: Evaluationin a Small Specialized Corpus

141



 

 

(Chen Z. et al., 2018). Consequently, it also makes no 

sense to create meta-embeddings joining specialized 

and general pre-trained embeddings. 

3.2 GeoNames Geographic Database 

The automatic detection of the colponyms in the 
corpus was performed with a GeoNames database 

dump. GeoNames7 has over 10 million proper names 

for 645 different geographic entities, such as bays, 

beaches, and rivers. For each entity, information about 
their normalized designations, alternate designations, 

latitude, longitude, and location name is stored. 

3.3 Gold Standard Datasets 

The DSMs, built on our domain-specific corpus, were 

evaluated on gold standard data. We were unable to 

find gold standard resources suitable for evaluating 
systems that link semantically related terms to a given 

colponym in the domain of Coastal Engineering. 

Consequently, the gold standard data were manually 
extracted from the same corpus and assessed by 

Terminology experts on Coastal Engineering, a 

common evaluation practice both in Information 
Retrieval (Manning C.D. et al., 2009: 164-166) and 

linguistic annotation in corpora (Ide N. and 

Pustejovsky J., 2017: 297-313). In doing so, the 

research community could also employ our corpus 
and the gold standard data as test collection for the 

evaluation of systems dealing with semantic relation 

extraction from specialized corpora. 8 
The gold standard datasets contained pairs of 

semantically related terms, in which the semantic 

relations were takes_place_in, located_at, and 

attribute_of. Three gold standard datasets were thus 
built, one for each of the semantic relations. The 

designations and meaning of these relations are those 

used in EcoLexicon (Faber P. et al., 2009). 
The three semantic relations always linked the 

normalized designation of a colponym (e.g., Josiah’s 

Bay and Josiah Bay were normalized to Josias Bay) to 
either a process, an entity, or a property expressed by a 

noun or noun phrase, whether monolexical (e.g., 

flooding) or multiword (e.g., high water mark). More 

specifically, the takes_place_in relation holds between 
a process (e.g., storm surge) and the bay where the 

process occurs (see Table 1). The located_at relation 

indicates the location of an entity (e.g., inundation 
area) in a bay (see Table 2). Finally, the attribute_of is 

used for terms that designate properties (e.g., wind 

speed) of a bay (see Table 3). 

 
7 http://www.geonames.org 
8 The datasets and the corpus will be available on the 

website of the LexiCon research group of the University of 

Granada (Granada, Spain) (http://lexicon.ugr.es/). 

process takes_place_in named bay 

storm surge takes_place_in Escambia Bay 

flooding takes_place_in Pensacola Bay 

geological process takes_place_in Narragansett Bay 

Example from the corpus: 
(1) Within the Pensacola Bay and Escambia Bay, the shallow 
estuarine water induces significant storm surge... 

Table 1: Extract from the first gold standard dataset 
for the takes_place_in relation. 

 
entity located_at named bay 

inundation area located_at Pensacola Bay 

Port Geelong located_at Port Phillip Bay 

benthic geologic habitat located_at Greenwich Bay 

Example from the corpus: 
(1) The Port Geelong located on Port Phillip Bay has a 
significant role in coastal governance arrangements. 

Table 2: Extract from the second gold standard 

dataset for the located_at relation. 

 
property attribute_of named bay 

water quality attribute_of Narragansett Bay 

wind speed attribute_of Mobile Bay 

high water mark attribute_of Pensacola Bay 

Example from the corpus: 
(1) ... the simulated and observed high water marks at six 
stations around Pensacola Bay and Escambia Bay agree... 

Table 3: Extract from the third gold standard dataset 

for the attribute_of relation. 
 

In addition to what has been described, each of the 

three datasets included: (1) 100 triplets for the 
corresponding semantic relation, which were all used 

for the evaluation, therefore, the three datasets added 

up to 300 triplets; (2) the 50 most frequently 
mentioned bays in the corpus, the same 50 bays in the 

three datasets, since 50 information needs have 

usually been found to be a sufficient minimum for 

information retrieval system evaluation (Manning 
C.D. et al., 2009: 152); and (3) the two most frequent 

terms related to the same bay, which amounted to 100 

triplets, therefore, the same bay was related to a total 
of six terms, two terms in each dataset.  

The semantic relation annotation of the pair of 

terms extracted from the corpus was carried out by 
three terminologists from the LexiCon research group 

of the University of Granada (Granada, Spain), with 

wide experience in environmental knowledge 

representation. Cohen’s kappa coefficient was used as 
the statistical measure of inter-annotation agreement, 

and the scores for all the annotator pairs stood over 

90% (p-value<0.05 for all the annotator pairs). 
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4 Methodology 

4.1 Pre-processing 

The corpus texts were tokenized, tagged with parts of 

speech, lemmatized, and lowercased with the Stanford 

CoreNLP package (Manning C.D. et al., 2014) for R 
programming language. The multi-word terms stored 

in EcoLexicon were then automatically matched in the 

lemmatized corpus and joined with underscores. 
In the DSMs, only terms larger than two 

characters were considered. Numbers, symbols, and 

punctuation marks were removed. Since closed-class 
words are often considered too uninformative to be 

suitable context words, stopwords were not used (i.e., 

determiners, conjunctions, relative adverbs, and 

prepositions). Additionally, the minimal occurrence 
frequency was set to 5 so that the co-occurrences 

were statistically reliable (Evert S., 2008). 

4.2 Named Bay Recognition 

Both normalized and alternate names of the bays in 

GeoNames were searched in the lemmatized corpus. 

The recognized designations were normalized and 
automatically joined with underscores. Most bays of 

the corpus were in GeoNames (90%), while others 

were identified by manual inspection (10%). 
Anaphoric elements referring to a bay were replaced 

by the corresponding colponym in the lemmatized 

corpus. For this task, the anaphora resolution function 
from CoreNLP package was used, and other cases 

were manually replaced. The 294 bays mentioned in 

the corpus are shown on the map in Figure 1. 

 

 
Figure 1: Heatmap with the location and color-coded 
frequency of the 294 named bays. 

4.3 Construction of the DSMs 

Our experiment involved a comparative evaluation of 

three types of DSM for a small-sized, specialized 

corpus, namely, count-based, prediction-based, and 

pre-trained models. The model types produced the 
vector representation of a term based on the contexts 

in which it appeared in our corpus. For this study, the 

contexts of a target term (i.e., a colponym) were the 

terms that co-occurred with it inside a sliding context 

window, which spanned a certain number of terms on 
either side of the target term. 

The count-based and prediction-based DSMs 

have various parameters that must be set to build the 
models. The parameters impinge on both the term 

representations and the accuracy of the similarity 

scores between term vectors when the models are 
compared (Baroni M. et al., 2014). Therefore, to 

assess the influence of the parameters of both DSMs 

on their ability to capture the three semantic relations 

targeted in this study, various settings for each 
parameter were tried, and the combinations of these 

parameter settings were evaluated. 

4.3.1 Parameter Setting of the Count-based 

Models 

The first model type evaluated was a count-based 

model, also called bag-of-words (BOW) model. The 
BOW model was built with the R package quanteda 

(Benoit K. et al., 2018) for text mining. 

To build a BOW model, a term-term matrix of 

co-occurrence frequencies was first computed, 
according to a specific size for the sliding context 

window. Then, the matrix was subjected to a specific 

weighting scheme, namely, an association measure 
that increases the importance of the context terms that 

are more indicative of the meaning of the target term. 

The 1,000 most frequent terms were used, which 

included all the colponyms and terms stored in the 
three evaluation datasets. 

Regarding the context window, we tested size 

values ranging from 1 to 10 words on either side of 
the target term, and the context window was allowed 

to span sentence boundaries. The context window 

shape was always rectangular (i.e., the increment 
added to the co-occurrence frequency of a pair of 

terms was always 1, regardless of the distance 

between the two terms inside the context window). 

The frequencies observed on the left and right of a 
target term were added. 

With respect to the weighting schemes, three 

association measures, defined in Evert S.’s (2008) 
work on collocation, were tested: (1) statistical 

log-likelihood; (2) positive pointwise mutual 

information (PPMI); and (3) t-score. Log-likelihood 
and PPMI are widely used in computational 

linguistics, whereas t-score is popular in 

computational lexicography (Evert S. et al., 2017). 

Research in computational linguistics reveals that 
log-likelihood is able to capture syntagmatic and 

paradigmatic relations (Lapesa G. et al., 2014), and 

perform better for medium- to low-frequency data 
than other association measures (Alrabia M. et al., 
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2014). PPMI and t-score, on the other hand, have 

been found to work adequately for different 

applications in previous research when compared to 
other association measures (Baroni M. et al. 2014; 

Kiela D. and Clark S., 2014). 

Finally, following Lapesa G. et al. (2014), the 
association scores were transformed to reduce 

skewness in this way: log-likelihood and PPMI scores 

were both transformed by adding 1 and calculating 
then the natural logarithm (ln), whereas t-scores were 

transformed by calculating the square root (sqrt). 

The settings tested for each of the two parameters 

were: 
1. Size of the context window: 1-10 words. 

2. Weighting scheme: ln(log-likelihood + 1), 

ln(PPMI + 1), sqrt(t-score). 

4.3.2 Parameter Setting of the Prediction-based 

Models 

Three prediction-based models were evaluated, 
namely, the word2vec (Mikolov T. et al., 2013), the 

fastText (Bojanowski P. et al., 2017), and the GloVe 

(Pennington J. et al., 2014) models. In word2vec 

(W2V), the term vectors are learned by training a 
neural network on a corpus according to two different 

architectures. The continuous bag-of-words (CBOW) 

architecture predicts the target term based on its 
context terms, while the skip-gram architecture 

predicts the context terms of a target term. The W2V 

model was built with the original word2vec package. 9 

For W2V, five hyperparameters were examined, 
the same as those tested by Bernier-Colborne G. and 

Drouin P. (2016) for paradigmatic relations and 

syntactic derivatives. The first one was the 
architecture used to learn the term vectors. The 

second one was the training algorithm, either using a 

hierarchical softmax function, or by sampling 
negative examples, in which case the number of 

negative samples must be selected. The third 

hyperparameter was the subsampling threshold for 

frequent terms, namely, some occurrences of those 
terms whose relative frequency in the corpus is 

greater than a threshold, are randomly deleted before 

the model is trained. Finally, the dimensionality of the 
term vectors, and the size of the context window were 

the other hyperparameters. 

The settings tested for each of the five 
hyperparameters were: 

1. Architecture: CBOW or skip-gram. 

2. Negative samples: 5, 10 or none (in this case, 

hierarchical softmax is used). 
3. Subsampling threshold: low (10—5), high (10—3) 

or none. 

 
9 https://code.google.com/archive/p/word2vec/ 

4. Dimensionality of term embeddings: 100 or 300. 

5. Size of context window: 1-10 words. 

In the fastText model (FTX), which is essentially 
an extension of the W2V model, each word is treated 

as composed of subwords, namely, all the substrings 

contained in a word between a minimum and a 
maximum size. Hence, the vector for a word is made 

of the sum of these subword vectors. The FTX model 

was built with the original fastText package.10 For 
FTX, the same five hyperparameters as those for 

W2V were probed. All the subwords between 3 and 6 

characters were taken (default values for the model).  

The GloVe model optimizes the likelihood of term 
probabilities, based on context, to learn term 

representation as in CBOW, but uses ratios of 

co-occurrence probabilities as the basis for learning. 
The model was built with the original GloVe 

package,11 and two hyperparameters were explored: 

1. Dimensionality of term embeddings: 100 or 300. 
2. Size of context window: 1-10 words. 

In addition, for both GloVe, W2V, and FTX, the 

number of epochs was fixed to 10, and the learning 

rate to 0.05. 

4.3.3 Pre-trained Models 

Pre-trained word vectors, estimated from 

exceptionally large, general corpora, typically 
improve the performance of NLP systems (Baroni, 

M. and Lenci A., 2010). For that reason, we also 

assessed the pre-trained word2vec and fastText 

models (Mikolov T. et al., 2018),12 and the 
pre-trained GloVe model,13 all of them trained on the 

Common Crawl corpus (600-840 billion tokens) with 

300-dimension vectors. The pre-trained BERT deep 
learning model was also considered. 

The parameter values of the pre-trained models 

were already set in the pre-training phase. For 
instance, the context window size of the pre-trained 

word2vec and fastText models was fixed to 15 words, 

and that of the pre-trained GloVe model was fixed to 

10 words. Consequently, the window size of these 
three pre-trained models could not be modified for 

our evaluation. This was deemed to be a drawback 

with respect to the overall goal of this study, since it 
aimed to provide terminologists with three lists of 

term candidates for a colponym, one list per semantic 

relation. Instead, a pre-trained model could only 
extract a single list of term candidates for a colponym. 

Another downside to the pre-trained word2vec, 

fastText, and GloVe models was found. Despite the 

 
10 https://github.com/facebookresearch/fastText 
11 https://nlp.stanford.edu/projects/glove/ 
12 https://fasttext.cc/ 
13 https://nlp.stanford.edu/data/glove.840B.300d.zip 
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considerable size of the training corpus and vocabulary 

in the three pre-trained models, they had less 

terminology coverage than the domain-specific models 
evaluated in this work. This pitfall has been already 

reported by Nooralahzadeh F. et al. (2018), and it is 

hardly surprising given that previous studies have 
observed that multi-word terms account for more than 

90% of the terms of a specialized knowledge domain 

(Krieger MG. and Finatto MJB., 2004; Nakov P., 
2013; Nguyen N.T.H. et al., 2017; Sager J.C. et al., 

1980). As a consequence, since the pre-trained models 

did not contain most of the multi-word terms used in 

our specialized corpus and evaluation data (96% of the 
terms in the gold standard data are multi-word units), 

we calculated the missing multi-word term vectors by 

applying a compositional semantic model called Basic 
Additive Model (BAM) (Mitchell J. and Lapata M., 

2008). BAM computes the vector of a multi-word term 

by adding its component single-word vectors. The 
compositional pre-trained models are henceforth 

referred to as pt-W2V-BAM, pt-FTX-BAM, and 

pt-GloVe-BAM. 

The pre-trained BERT model (Devlin J. et al., 
2019) was also evaluated. Context-free models such 

as W2V, FTX, and GloVe produce a single, fixed 

embedding representation for each word in a corpus. 
Instead, BERT is a contextual deep learning model 

which generates as many representations for a target 

word as the number of times it appears in a corpus, 

since each representation is based on the other words 
that accompany the target word in each sentence. 

We employed the uncased version of the 

BERT-Base model in Python,14 with 768-dimension 
vectors. This model has 12 encoder layers, 768 

hidden units in the feed-forward networks, and 12 

self-attention heads. The terms of our corpus were 
added to the vocabulary file of the model. Each of the 

contextualized embeddings for a term was obtained 

by adding up the vectors from the last four encoder 

layers, a procedure already applied by Devlin J. et al. 
(2019). Nevertheless, for the model evaluation, we 

used a single, averaged embedding for each term, 

which resulted from the average of all the different 
contextualized embeddings for the same term. As in 

the case of GloVe, W2V, and FTX, the number of 

epochs was fixed to 10, and the learning rate to 0.05. In 
addition, the parameter for the maximum sentence 

length was set to 64 because: (1) It is one of the values 

recommended by Devlin J. et al. (2019); and (2) the 

maximum sentence length of our corpus was 57 words. 
Although there exists the pre-trained SciBERT 

model (Beltagy I. et al., 2019), based on BERT but 

trained on a large corpus of scientific texts, SciBERT 

 
14 https://github.com/google-research/bert 

was not used because the training corpus consisted of 

papers from the computer science and biomedicine 

domains, which are far from being related to the 
Coastal Engineering domain of our corpus. 

In summary, we applied and evaluated eight 

different DSMs: BOW, W2V, FTX, GloVe, pre-trained 
BERT, and the three compositional pre-trained models. 

4.4 Evaluation of the DSMs 

First, for each bay included in the gold standard 
datasets, a sorted list of neighbours was obtained by 

computing a similarity/distance measure between the 

bay’s vector and the vectors of all other context terms. 
Then, these context terms were sorted in descending 

order of magnitude. As such, for each bay, a list of 

ranked retrieval results was compiled. 
Subsequently, the sorted lists of neighbours were 

evaluated on the whole gold standard dataset 

constructed for each of the three semantic relations. 

The measure used to evaluate the models was Mean 
Average Precision (MAP) (Manning C.D. et al., 

2009: 158-162). Unlike the Precision, Recall, and 

F-score measures, which are computed using 
unordered sets of items, MAP is more appropriate for 

the evaluation of ranked retrieval results, such as ours. 

MAP provides a single-figure measure of quality 

across recall levels, and so it is roughly the average 
area under the precision-recall curve for a set of queries. 

Additionally, MAP has been shown to have especially 

good discrimination and stability (ibidem, p. 160). This 
measure tells us the overall accuracy level of the sorted 

lists of neighbours obtained for all bay queries, based 

on the rank of the related terms according to the gold 
standard. The nearer the related terms are to the top of 

the list for each bay, the higher the MAP. 

The evaluation process delineated above was 

repeated for each of the five similarity/distance 
measures computed between a bay’s vector and the 

vectors of all other context terms. The five measures 

evaluated in this study were Euclidean distance, cosine 
similarity, Jaccard coefficient, Pearson correlation 

coefficient, and averaged Kullback-Leibler divergence. 

For space constraints, we refer readers to Huang A. 
(2008) for a detailed description of the properties and 

formulas of these measures. 

5 Results 

The eight models were compared by observing the 

MAP of each model on the three datasets. Regarding 

the similarity/distance measures, it was found that, 
except for the Euclidean distance, which performed 

the worst, the other four measures had comparable 

effectiveness for all the DSMs and semantic relations, 

according to the results of the ANOVA tests, run to 
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determine the significance of the performance-wise 

differences amongst the similarity/distance measures. 

MAP scores were used as the basis of comparison. 
This behavior is in line with previous research on 

similarity measure comparison by Huang A. (2008), 

and Strehl A. et al. (2000). For that reason, Table 4 
shows the maximum MAP achieved by each model 

when applied cosine similarity, since this measure is 

widely used in NLP systems. 
 

Dataset 
BOW model 

Maximum MAP 
Weighting 

scheme 
Window size 

takes_place_in 0.552 (0.395 ± 0.080) LL 4 

located_at 0.410 (0.308 ± 0.054) LL 2 

attribute_of 0.339 (0.197 ± 0.052) LL 3 

Dataset 
GloVe model 

Maximum MAP  Window size 

takes_place_in 0.522 (0.395 ± 0.077)  4 

located_at 0.381 (0.278 ± 0.050)  2 

attribute_of 0.302 (0.190 ± 0.042)  3 

Dataset 
FTX model 

Maximum MAP  Window size 

takes_place_in 0.482 (0.284 ± 0.107)  4 

located_at 0.339 (0.223 ± 0.061)  2 

attribute_of 0.274 (0.136 ± 0.057)  3 

Dataset 
W2V model 

Maximum MAP  Window size 

takes_place_in 0.349 (0.312 ± 0.031)  4 

located_at 0.209 (0.183 ± 0.014)  2 

attribute_of 0.170 (0.111 ± 0.032)  3 

Dataset 
Uncased BERT-Base model 

Maximum MAP 

(single value) 

  

takes_place_in 0.355   

located_at 0.213   

attribute_of 0.173   

Dataset 
pt-GloVe-BAM model 

Maximum MAP 

(single value) 
 

Fixed 

window size 

takes_place_in 0.264  10 

located_at 0.151  10 

attribute_of 0.109  10 

Dataset 
pt-FTX-BAM model 

Maximum MAP 

(single value) 
 

Fixed 

window size 

takes_place_in 0.231  15 

located_at 0.114  15 

attribute_of 0.072  15 

Dataset 
pt-W2V-BAM model 

Maximum MAP 

(single value) 
 

Fixed 

window size 

takes_place_in 0.199  15 

located_at 0.089  15 

attribute_of 0.046  15 

Table 4: Maximum MAP of the models on each 

dataset when applied cosine similarity. Average and 
standard deviation are shown in brackets, LL stands 

for the log-likelihood weighting scheme. 

 

The results indicated that the BOW model obtained 

the best performance in terms of MAP on the three 

semantic relations when its parameters were correctly 
tuned. They also showed that the takes_place_in 

relation was the most accurately captured by all models 

when they were tuned for this relation, followed by the 
located_at and attribute_of relations. 

The greater accuracy of takes_place_in may be due 

to the large number of instances in specialized texts in 
Coastal Engineering which express the processes that 

occur in named bays. As for the located_at and 

attribute_of relations, these texts frequently mention the 

entities in named bays and the properties of these 
landforms. However, it seems that the number of 

instances of both semantic relations in the whole 

corpus is not large enough for the DSMs to represent 
them as accurately as takes_place_in instances. 

Table 4 also shows that the maximum MAP of 

the BOW model was achieved when: 
1. The statistical association measure for the three 

semantic relations was log-likelihood, transformed by 

adding 1 and calculating the natural logarithm. 

2. The window size for the takes_place_in relation 
was 4 words. 

3. The window size for the attribute_of relation 

was 3 words. 
4. The window size for the located_at relation was 

2 words. 

Strikingly, the BERT and the three compositional 

pre-trained models performed the worst of all DSMs. 
Various factors are known to be associated with this 

behavior. Firstly, in NLP systems for specialized 

domains, the performance of domain-specific term 
vectors is higher than that of pre-trained embeddings, 

even when the size of the specialized corpus is 

considerably smaller (Nooralahzadeh F. et al., 2018). 
Secondly, domain-specific terms are inefficiently 

represented in pre-trained embeddings since there are 

few statistical clues in the underlying general-domain 

corpora for these words (Bollegala D. et al., 2015; 
Pilehvar M.T. and Collier N., 2016). Thirdly, BAM 

models tend to perform worse in comparison to their 

non-compositional counterparts that learn multi-word 
term vectors (Nguyen N.T.H. et al., 2017). 

Interestingly, in each dataset, the maximum MAP 

of the BOW, GloVe, FTX, and W2V models was 
reached when the window size was the same. For that 

reason, to assess the impact of the window size on the 

accuracy of the DSMs, the average MAP for each 

setting of this parameter (i.e., for each window size 
between 1 and 10 words) is illustrated in Figure 2. The 

average MAP was used, instead of the maximum, 

because it allowed us to determine which window-size 
settings consistently produced satisfactory results, 

regardless of the settings used for the other parameters. 
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Figure 2: Average MAP of BOW (always left), 

GloVe (upper right), FTX (middle right), and W2V 
(bottom right) w.r.t. window size. 

 

In Figure 2 we can observe that, in the four DSMs 
(BOW, GloVe, FTX, and W2V), the optimal window 

size was 4 words for the takes_place_in relation, 3 

words for attribute_of, and 2 words for located_at. 

The compositional pre-trained models were not 
shown owing to their extremely suboptimal 

performance and their fixed window sizes. 

Since the count-based model BOW notably 
outperformed predictive models on the three datasets, 

for the sake of simplicity, the setting influence of the 

other four hyperparameters of FTX and W2V are 
succinctly reported because they did not lead to 

substantial accuracy improvements on either dataset. 

As such, for both predictive models, settings can be 

summarized as follows: (1) The neural network 
architecture skip-gram worked, on average, better than 

CBOW; (2) a negative sampling of 10 samples reached 

a larger MAP than the hierarchical softmax; (3) the 
subsampling threshold was not conducive to significant 

gains; and (4) the optimal setting for the dimensionality 

of the term embeddings was 300 dimensions. 

These optimal settings for the predictive models 
FTX and W2V were thus in line with previous 

research (Chiu B. et al., 2016). Moreover, FTX 

seemed to perform markedly better that W2V for the 
three semantic relations. This behavior may be linked 

to the fact that, as FTX exploits character-level 

similarities between terms, it is able to model 
low-frequency terms more effectively, thereby 

achieving better performance for small-sized corpora 

(Bojanowski P. et al., 2017: 140-141). 

Regarding GloVe, with 300-dimension vectors, it 
was the only predictive model whose performance 

reached values similar to those of BOW. There is 

some evidence that the generalization ability of neural 

network-based models, such as FTX, W2V, and 

BERT, decreases when they learn on a limited 

amount of data (Collobert R. et al., 2011). 
Accordingly, since GloVe is not implemented with 

neural networks, the model did not seem unduly 

affected by the reduced corpus size. 
In order to verify our observations on the behavior 

of the BOW, GloVe, FTX, and W2V models, 

statistical tests were run to determine the significance 
of the performance-wise differences amongst the 

models. MAP scores were used as the basis of 

comparison. As they did not deviate from the normal 

distribution according to Shapiro-Wilk test results 
(p-value>0.05), parametric statistical tests were thus 

carried out. For each semantic relation, we conducted 

the independent measures one-way ANOVA test, 
followed by post-hoc multiple pairwise comparisons 

between the models. For the multiple testing 

correction, we employed false discovery rate using 
the Benjamini-Hochberg procedure (Benjamini Y. 

and Hochberg Y., 1995). 

The conclusions drawn from the statistical test 

results can be outlined as follows, and apply to the 
three semantic relations: (1) The performance of 

BOW was not significantly better than that of GloVe 

(p-value>0.05), whereas both models significantly 
outperformed the remaining DSMs (p-values<0.05); 

(2) there was no significant difference between the 

performance of the FTX and W2V models 

(p-value>0.05), despite the maximum MAP values 
for FTX were higher than those for W2V. 

The evaluation indicated, in all models, MAP 

scores that could initially be regarded as quite low. 
These results are striking, given that the models were 

specially tuned to work in the specified scenario and 

with three semantic relations. To truly appreciate the 
value of this work and the difficulty of the task 

involved, we compare our results to those of two 

other studies that addressed similar scenarios, and 

which also compared count-based and 
prediction-based DSMs. 

Bernier-Colborne G. and Drouin P. (2016) 

compared the ability of both types of DSM to capture 
relations from the web-crawled PANACEA 

Environment English monolingual corpus 

(Prokopidis P. et al., 2012),15 with a size of over 50 
million tokens. The authors reported maximum MAP 

figures ranging from 0.199 to 0.544. These values are 

surprisingly similar to those found in our study for the 

BOW, Glove, FTX, and W2V models (from 0.170 to 
0.552, according to Table 4), although the size of our 

corpus is much smaller (7 million tokens). 

 
15 http://catalog.elra.info/en-us/repository/browse/ELRA-

W0063/ 

Extraction of Terms Semantically Related to Colponyms: Evaluationin a Small Specialized Corpus

147



 

 

On the other hand, Nguyen N.T.H. et al. (2017), 

among other objectives, aimed to extract, with both 

types of DSM, scientific and vernacular names 
synonymous to plant species from the English subset 

of the Biodiversity Heritage Library (BHL) (Gwinn 

N. and Rinaldo C., 2009),16 an open-access repository 
containing millions of digitized pages of legacy 

literature on biodiversity. The enormous corpus size 

of the English subset of BHL amounts to around 49 
gigabytes of data. Nonetheless, the authors reported 

moderate maximum MAP scores, ranging from 0.283 

to 0.621. In contrast, Table 4 shows that the 

maximum MAP values obtained by the BOW model 
varied from 0.339 to 0.552. These are extremely 

promising measures, especially considering the tiny 

size of our corpus compared to that of BHL corpus. 
Overall, the MAP values of our BOW model are 

striking because they are quite high despite the small 

size of the corpus. 
Finally, the error analysis revealed that the terms 

in the gold standard datasets with the lower number of 

mentions in the corpus systematically occupied lower 

positions in the lists of ranked retrieval results 
compiled for each DSM. Thus, this fact negatively 

affected the MAP scores. 

6 Conclusions 

The representation in EcoLexicon of the conceptual 

structures (Faber P., 2012) that underlie the usage of 

colponyms in a small-sized, English Coastal 
Engineering corpus requires terminologists to 

manually extract from the corpus the terms which 

relate to each colponym through the semantic 
relations takes_place_in, located_at, and attribute_of, 

the three most frequent relations held by named bays 

in the corpus. Since this is a time-consuming task, the 

overall aim of this study was to provide terminologists 
with three lists of term candidates for a colponym, one 

list per semantic relation, by applying DSMs. 

Accordingly, count-based and prediction-based 
DSMs, pre-trained models, and five similarity 

measures were applied to the corpus. Since the 

construction of DSMs is highly parameterized, and 
their evaluation in small specialized corpora has 

scarcely received attention, this study identified both 

parameter combinations in DSMs and similarity 

measures suitable for the extraction of terms which 
related to colponyms through the abovementioned 

semantic relations. The models were thus evaluated 

using three gold standard datasets. 
Count-based models, with the log-likelihood 

association measure, showed the best performance for 

 
16 https://www.biodiversitylibrary.org/ 

the three semantic relations. These results reinforce 

the findings of previous research that states, on the 

one hand, that count-based DSMs surpass 
prediction-based ones on small-sized corpora of under 

10 million tokens (Asr F. et al., 2016; Sahlgren M. 

and Lenci A., 2016; Nematzadeh A. et al., 2017), and 
on the other hand, that log-likelihood achieves greater 

accuracy for medium- to low-frequency data than 

other association measures (Alrabia M. et al., 2014). 
In this respect, research on the application of DSMs in 

small specialized corpora, such as ours, is particularly 

scarce, compared to the plethora of work that 

analyzes DSMs in large general corpora. Hence, more 
studies of this type are needed so that further insights 

can be gained into the efficient representation of small 

specialized corpora in DSMs. 
For both count-based and prediction-based DSMs, 

the optimal window size depended on the semantic 

relation that was to be captured, and the specific values 
coincided in both types of DSM, namely, a window 

size of 4 words for the takes_place_in relation, 3 words 

for attribute_of, and 2 words for located_at. The 

dependence of the window size on the specific 
semantic relation is in line with the findings by 

Bernier-Colborne G. and Drouin P. (2016). 

It was also found that the takes_place_in relation was 
the most accurately represented by the DSMs, followed 

by located_at and attribute_of. This was possibly due to 

the insufficient number of instances of both semantic 

relations in the corpus for the DSMs to represent them as 
accurately as takes_place_in instances. 

The pre-trained models GloVe, word2vec, 

fastText, and BERT performed the worst of all DSMs. 
In addition, they only provided a single list of term 

candidates for a colponym, which became less 

meaningful because it was not clear the relation of the 
listed terms to the colponym. 

Regarding the similarity measures, it was found 

that, except for the Euclidean distance, which 

performed the worst, the other four measures had 
comparable effectiveness for all the DSMs and 

semantic relations. This behavior is in agreement with 

previous research on similarity measure comparison by 
Huang A. (2008), and Strehl A. et al. (2000). 

Finally, an extension of this work will include 

testing the same DSMs and similarity/distance 
measures on gold standard datasets for named beaches. 
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