
Low-resource AMR-to-Text Generation: A Study on
Brazilian Portuguese

Generación de Texto a partir de AMR en Contexto de Bajos
Recursos: Un Estudio para el Portugués Brasileño

Marco Antonio Sobrevilla Cabezudo, Thiago Alexandre Salgueiro Pardo
Interinstitutional Center for Computational Linguistics (NILC)

Institute of Mathematical and Computer Sciences, University of São Paulo
msobrevillac@usp.br, taspardo@icmc.usp.br

Abstract: This work presents a study of how varied strategies for tackling low-
resource AMR-to-text generation for three approaches are helpful in Brazilian Por-
tuguese. Specifically, we explore the helpfulness of additional translated corpus,
different granularity levels in input representation, and three preprocessing steps.
Results show that translation is useful. However, it must be used in each approach
differently. In addition, finer-grained representations as characters and subwords
improve the performance and reduce the bias on the development set, and prepro-
cessing steps are helpful in different contexts, being delexicalisation and preordering
the most important ones.
Keywords: AMR-to-Text Generation, Low-resource setting, Brazilian Portuguese.

Resumen: Este trabajo presenta un estudio de cómo diversas estrategias para abor-
dar la generación de textos a partir de AMR en contextos de bajos recursos para tres
enfoques son útiles en portugués brasileño. Espećıficamente, exploramos la utilidad
de un corpus traducido, diferentes niveles de granularidad en la representación de
entradas y tres técnicas de preprocesamiento. Los resultados muestran que el corpus
traducido es útil. Sin embargo, debe usarse en cada enfoque de manera diferente.
Además, las representaciones más detalladas, como las basadas en caracteres y sub-
palabras, mejoran el rendimiento y reducen el sesgo en el conjunto de validación, y
los pasos de preprocesamiento son útiles en diferentes contextos, siendo la deslexi-
calización y el preordenamiento los más importantes.
Palabras clave: Generación de Texto a partir de AMR, Contexto de Bajos Recur-
sos, Portugués Brasileño.

1 Introduction

Abstract Meaning Representation (AMR) is
a semantic formalism that encodes the mean-
ing of a sentence as a rooted, acyclic, labeled,
and directed graph (Banarescu et al., 2013).
This representation includes several semantic
information, like semantic roles and named
entities, among others.

AMR has become a relevant research topic
in meaning representation, semantic pars-
ing, and natural language generation (NLG).
Its success is grounded on its attempt to
abstract away from syntactic idiosyncrasies,
and surface forms, its wide use of mature lin-
guistic resources such as PropBank (Palmer,
Gildea, and Kingsbury, 2005), and its useful-
ness on tasks like text summarisation (Liao,
Lebanoff, and Liu, 2018), event detection (Li
et al., 2015a) and machine translation (Song

et al., 2019).

The goal of the AMR-to-Text generation
task is to produce a text that represents the
meaning encoded by an input AMR graph.
For English, there are several works and
approaches for this, as techniques of Sta-
tistical Machine Translation (Pourdamghani,
Knight, and Hermjakob, 2016), tree and
graph to string transducers (Flanigan et al.,
2016) and, recently, neural models follow-
ing sequence-to-sequence (Castro Ferreira et
al., 2017; Konstas et al., 2017) and graph-
to-sequence architectures (Beck, Haffari, and
Cohn, 2018) or pretrained models (Mager et
al., 2020; Ribeiro et al., 2020). For other
languages, there are some multilingual work
(Fan and Gardent, 2020) that tries to gen-
erate sentences in several languages. How-
ever, they use the AMR for English as in-
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put and do not capture some particular lin-
guistic phenomena. In a different line, Sobre-
villa Cabezudo, Mille, and Pardo (2019) try
to generate Brazilian Portuguese (BP) sen-
tences from the corresponding AMR for BP;
nonetheless, the corpus is small (only 299 in-
stances).

One problem that limits the research in
other languages is the difficulty to get high-
quality corpora (due to the difficult and ex-
pensive annotation task that it represents),
resulting in smaller corpora and the inabil-
ity for state-of-the-art methods to be repli-
cated and/or achieve similar performance to
the English ones.

It is well-known that the lack of data de-
teriorates the performance produced by neu-
ral models, which usually are data-hungry.
To tackle this problem, some authors make
use of data augmentation techniques, cross-
lingual projection, and other strategies for
increasing the corpus size (Hedderich et al.,
2021). In the case of AMR-to-text genera-
tion, Sobrevilla Cabezudo, Mille, and Pardo
(2019) proposed to translate both AMR and
English sentences to their corresponding BP
ones and then used the translated corpus as
training/development set and a gold BP sub-
set as test.

One problem associated with scarce cor-
pus is data sparsity. Particularly, sparsity
usually happens at input level in Natural
Language Processing tasks. Word represen-
tation presents problems with unseen and
rare words, resulting in low performance.
Many works have proposed employing dif-
ferent granularities in input representation
to solve this problem. The most commonly
used are subwords (specifically Byte-pair en-
coding) (Sennrich, Haddow, and Birch, 2016)
and characters, resulting in better results. In
AMR-to-text generation, some work (Kon-
stas et al., 2017; Mager et al., 2020) used
finer-grained representations producing im-
provements; however, its benefits have not
been studied in depth in low-resource set-
tings.

This work explores three different strate-
gies on three approaches for tackling low-
resource AMR-to-text generation in Brazil-
ian Portuguese. Specifically, we focus on
machine translation and graph-to-sequence-
based approaches and study the helpfulness
of adding a translated corpus, using finer-
grained representations and applying diverse

preprocessing strategies.
It is worth noting that, even though the

current state-of-the-art model for this task
uses pretrained models (Mager et al., 2020;
Ribeiro et al., 2020) and there are pretrained
models for Brazilian Portuguese (Carmo et
al., 2020), our goal is to show how to use
simpler models and what kind of information
could be helpful in low-resource settings or
for other languages in which there are no pre-
trained models.

In general, our main contributions are:

• An analysis of the helpfulness of an addi-
tional translated corpus in different set-
tings;

• An exploratory study about the effects
of diverse granularity levels in input
representation for low-resource AMR-to-
text generation; and,

• A deep analysis of three commonly used
preprocessing strategies in AMR-to-text
generation: delexicalisation, compres-
sion, and linearisation.

We start by briefly reviewing AMR funda-
mentals (Section 2) and presenting the main
related work (Section 3). Section 4 reports
the techniques and methods that we investi-
gate, while the achieved results are discussed
in Section 5. Section 6 concludes this paper.

2 Abstract Meaning
Representation

As previously mentioned, AMR aims to en-
code the meaning of a sentence in a di-
rected, labeled, acyclic, and rooted graph
(Banarescu et al., 2013). Furthermore, this
representation may comprehend semantic in-
formation related to semantic roles, named
entities, spatial-temporal information and co-
references, among others.

Figure 1 presents an example of an AMR
graph for the sentence “The boy destroyed
the room”. It is worth noting that, as
AMR abstracts away the syntactic informa-
tion, multiple possible sentences can corre-
spond to this graph. This way, another pos-
sible sentence that represents the graph could
be “the destruction of the room by the boy”.

The current AMR-annotated corpus for
English contains 59,255 instances1. For Non-
English languages, there are some efforts to

1https://catalog.ldc.upenn.edu/LDC2020T02
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Figure 1: AMR example for the sentence
“The boy destroyed the room.”.

build corpora leveraging the alignments and
existing parallel corpora by using AMR as
an interlingua (Xue et al., 2014; Anchiêta
and Pardo, 2018). Additionally, other works
adapt the AMR guidelines to their languages
(Sobrevilla Cabezudo and Pardo, 2019).
However, most corpora are far from present-
ing a size similar to the English one.

For Brazilian Portuguese, as far as we
know, there are two AMR corpora, one fo-
cused on annotating the sentences of “The
Little Prince” book (Anchiêta and Pardo,
2018), and another one that contains man-
ually annotated news text sentences (Sobre-
villa Cabezudo and Pardo, 2019). Similarly
to Banarescu et al. (2013), some concepts
of both corpora were annotated using Verbo-
Brasil (Duran and Alúısio, 2015), a lexi-
cal resource analogous to PropBank (Palmer,
Gildea, and Kingsbury, 2005). Concerning
the size of these corpora, the “Little Prince”
corpus contains 1,527 annotated sentences
(instances), and the second corpus comprises
299 instances, being both small and making
it hard to replicate results obtained by state-
of-the-art methods.

3 Related Work

In the last years, several AMR-to-Text gen-
eration methods for English have been pro-
posed. Initially, methods inspired on Statis-
tical Machine Translation (SMT) techniques
(Pourdamghani, Knight, and Hermjakob,
2016) and tree-to-string or graph-to-string
transducers (Flanigan et al., 2016) were pro-
posed. Recently, neural models as sequence-
to-sequence (Neural Machine Translation or
NMT) (Castro Ferreira et al., 2017; Kon-
stas et al., 2017) and, mainly, graph-to-
sequence (Beck, Haffari, and Cohn, 2018) and
pretrained-based ones (Mager et al., 2020),
have emerged, outperforming the previous
approaches.

To the extent of our knowledge, the only
work focused on AMR-to-Text generation for

a Non-English language is proposed by So-
brevilla Cabezudo, Mille, and Pardo (2019).
The authors explore the automatic construc-
tion of an AMR corpus for Brazilian Por-
tuguese (BP) from its English version and
evaluate SMT and NMT approaches on a BP
test set composed of 299 instances. Other
non-English work (Fan and Gardent, 2020)
have tried to generate sentences in diverse
languages from English AMR graphs. Al-
though the results are promising, this work
does not deal with some specific linguistic
phenomena as the previous one does.

In what follows, we detail the dataset that
we use in this work and the methods that we
investigate.

4 AMR-to-Text Generation

4.1 Data

The methods that we investigate are trained
on two corpora and their combinations.
The first one is an updated version of the
AMR corpus for Brazilian Portuguese (Sobre-
villa Cabezudo and Pardo, 2019), which rep-
resents our target (gold) dataset. This ver-
sion is a manually annotated corpus compris-
ing 870 instances divided into 402, 224, and
244 instances for training, development, and
test, respectively.

The second one is a portion of an automat-
ically generated AMR corpus for Portuguese
and represents our augmented (translated)
dataset. This corpus is generated by translat-
ing both AMR graphs and sentences from the
English AMR corpus2 to Portuguese and in-
heriting the alignments between node/edges
and surface tokens3 (Sobrevilla Cabezudo,
Mille, and Pardo, 2019).

In general, this corpus comprises 18,219
and 1,027 instances in the training and devel-
opment set, respectively, that correspond to
the higher-quality translations according to
BLEU (Papineni et al., 2002) and METEOR
(Lavie and Agarwal, 2007) scores.4 It is
worth noting that, differently from the work
of Sobrevilla Cabezudo, Mille, and Pardo
(2019), that translates only aligned concepts

2In this work, we use the LDC2016E25 corpus to
perform the experiments.

3Surface tokens are those included in the reference
sentence.

4The actual portion of the dataset contains 20,000
and 1,271 instances for training and development, re-
spectively. However, some instances were filtered out
because they presented some format errors.
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in the AMR graphs, all concepts in the AMR
graphs are translated.

4.2 Machine Translation-based
Techniques

AMR-to-text generation receives an AMR
graph as an input and generates a text in nat-
ural language; however, Machine Translation
models are trained on linear input/output
pairs. This way, we need to generate a
flattened version of the AMR graph as in-
put. Some flattened versions that have been
used in the literature are the ones generated
by the PENMAN notation (Matthiessen and
Bateman, 1991) and the depth-first search
(DFS) algorithm. However, other preprocess-
ing steps can generate a flattened AMR ver-
sion. Figure 2 shows an example of a flat-
tened AMR version for the sentence A crise
na Venezuela foi um assunto que permeou as
reuniões. (“The crisis in Venezuela was an
issue that permeated the meetings.”).

In order to evaluate how the use of var-
ious flattened AMR versions affect the per-
formance in AMR-to-text generation, we ex-
plore the strategies that include the prepro-
cessing steps used by Castro Ferreira et al.
(2017). In particular, the preprocessing steps
are:

• Delexicalisation: that anonymises some
entities of the graph;

• Compression: that determines which
nodes and relations should be in the flat-
tened graph; and,

• Linearisation: that determines how the
nodes and relations should be put into
the flattened graph.

We study two machine translation ap-
proaches, a statistical phrase-based one
(Koehn, Och, and Marcu, 2003) as a strong
baseline and one based on neural models
(Bahdanau, Cho, and Bengio, 2015) in a sim-
ilar way to Castro Ferreira et al. (2017).

4.2.1 Statistical Machine Translation
(SMT)

The training parameters in SMT are the
same of Castro Ferreira et al. (2017) and a
5-gram language model trained on the Brazil-
ian Portuguese corpus provided by Hartmann
et al. (2017) by using KenLM (Heafield,
2011). Furthermore, we use Moses (Koehn
et al., 2007) to train the statistical machine
translation models.

4.2.2 Neural Machine Translation
(NMT)

The architecture and the parameters used
in NMT are described as follows: the en-
coder and the decoder are a 1-layer RNN,
and a 2-layers RNN with LSTM, each with
a 512D hidden unit, respectively. Besides,
the RNN decoder also uses bilinear attention
(Luong, Pham, and Manning, 2015). Fur-
thermore, the vocabulary is shared, and we
apply weight tying between the source, tar-
get, and output layers. Additionally, source
and target word embeddings are 512D each,
and both are trained jointly with the model.

Among other parameters, the maximum
sequence length in the decoder is 80, and we
apply dropout with a probability of 0.25 in
source embeddings. Moreover, models are
trained using the Adam optimizer with a
learning rate of 0.0003, a learning rate re-
duce factor of 0.5, and the learning rate de-
cays if perplexity does not improve after 3
checkpoints/epochs. Besides, we use mini-
batches of size 16. Finally, we apply early
stopping for model selection based on per-
plexity scores. Training is halted if a model
does not improve on the development set for
more than 8 checkpoints/epochs. Sockeye5

(Hieber et al., 2017) provides all other pa-
rameters.

4.3 Graph-to-Sequence (G2S)

Unlike previous approaches, which depend on
preprocessing steps and can lose information,
the Graph-to-Sequence approach tries to cap-
ture the whole graph information more effec-
tively. This work also follows the Graph-to-
Sequence approach proposed by Beck, Haf-
fari, and Cohn (2018), that models AMR
graphs using a Gated Graph Neural Network
(GGNN) (Li et al., 2015b).

In general, model input is defined by the
nodes (concepts and relations) and positional
embeddings of a graph. To consider AMR
relations as nodes, the authors transform the
original AMR graph into its respective Levi
graph6 (Levi, 1942). Finally, the output is a
version of the original sentence.

We use the same architecture and parame-
ters as Beck, Haffari, and Cohn (2018). Thus,
the number of layers in the GGNN encoder

5https://github.com/beckdaniel/sockeye/
6A Levi graph is a modification of a labeled graph

so that relations are converted into nodes generating
an unlabeled graph.
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Figure 2: Sentence A crise na Venezuela foi um assunto que permeou as reuniões. (“The crisis
in Venezuela was an issue that permeated the meetings.”), its corresponding AMR graph and
a flattened version that includes only aligned nodes/edges. Alignments in AMR graph are in
bold.

is 8. All dimensionalities are fixed at 512D
except for the GGNN encoder, which uses
576D. The decoder uses a 2-layer LSTM and
the Bilinear attention proposed by (Luong,
Pham, and Manning, 2015). The remained
parameters are the same as the NMT ap-
proach.

4.4 Preprocessing Strategies

The preprocessing strategies that we test in
this work include:

• Delexicalisation: we delexicalise con-
stants like named-entities or numbers,
replacing the original information for
tags such as name1 and quant1 for
NMT (Castro Ferreira et al., 2017) and
person 1 and quantity 1 for G2S (Beck,
Haffari, and Cohn, 2018). A list of tag-
values is kept, aiming to rebuild the out-
put sentence after generation;

• Compression: it is performed using a
Conditional Random Field (CRF) and
executed sequentially over a flattened
representation obtained by depth-first
search through the AMR graph, and
its name and the parent name repre-
sent each element. We use the CRF-
Suite toolkit7 (Okazaki, 2007) to train
our model;

• Linearisation: we apply two strate-
gies. The first consists of performing
a depth-first search through the AMR
graph, printing the elements (nodes and
edges) according to the visiting order.
The other strategy is based on the 2-
step maximum entropy classifier devel-
oped by Lerner and Petrov (2013) and
adapted by Castro Ferreira et al. (2017)
(we called it preordering). Given an

7https://www.chokkan.org/software/
crfsuite/

AMR graph represented by a tree, this
consists of ordering a head and its cor-
responding subtrees, i.e., defining which
subtrees should be at left/right of the
head, and then ordering the subtrees in
each built group (left and right side of
the head).

All models are tested on inputs/outputs
that include or not the preprocessing steps.
However, we only explore compression and
linearization (preordering) for SMT and
delexicalisation for G2S. In addition, when
compression is not considered, we include all
elements from an AMR graph (nodes and
edges).

4.5 Representation Levels

We explore three different representation lev-
els for both input (AMR graph) and output
(sentence): words, subwords, and characters.
It is expected that finer-grained representa-
tions, such as subwords and characters, pro-
duce better results, handling in a better way
rare words or even possible mismatches be-
tween the translated and the gold corpora.

Subwords are generated by using the
Bertimbau’s vocabulary provided by Souza,
Nogueira, and Lotufo (2020)8 that uses the
sentencepiece tool9 and the BPE algorithm
(Sennrich, Haddow, and Birch, 2016). In the
case of the flattened AMR graph, we do not
decompose the relations. This way, relations
such as “:ARG0” or “:mod” are kept intact,
differently from concepts, such as “ferida”,
that are changed to “fer ##ida” in the case
of subwords and “f e r i d a” in the case of
characters.

It is worth mentioning that, in the case of
G2S, each subword/character is represented

8https://github.com/neuralmind-ai/
portuguese-bert

9https://github.com/google/sentencepiece
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by a node, and all subwords/characters that
compose a concept are linked sequentially in
two directions. For example, we create an
edge from subword “fer” to “##ida” and
vice-versa.

We present and analyze the achieved re-
sults in what follows.

5 Results and Analysis

Tables 1, 2, 3, and 4 show the overall re-
sults for SMT, NMT and G2S approaches
in terms of BLEU (Papineni et al., 2002),
METEOR (Lavie and Agarwal, 2007), and
chrF++ (Popović, 2017) evaluation metrics
10. The tables contain the results when the
translated corpus (T), the gold corpus (G),
a join of the training translated and gold
corpora (T + G), and a join of the train-
ing/development translated and gold corpora
(T + G Train/dev) are used. In addition, the
results of using some preprocessing steps and
representation levels are shown. Preprocess-
ing steps are identified as +D (delexicalisa-
tion), +C (compression), and +P (preorder-
ing) and the opposite when these are not in-
cluded in the preprocessing.

In general, the best result11 for SMT hap-
pens when we train the model on T + G
and use compression and preordering. Like-
wise, the best result for NMT occurs when
the training is performed on T + G, using
delexicalisation and preordering, and char-
level representations. At last, G2S performs
better when the model is trained on T +
G train/dev, and lexicalisation and bpe-level
presentation are applied.

Results on gold corpus show that SMT
is by far the best approach to be used in
the case of low-resource settings. It is ex-
pected as neural models usually need lots of
data to achieve good performance, and SMT
uses a pre-built language model that guides
the decoding, differently from NMT and G2S
in which the language model is built dur-
ing training. In particular, using compress-
ing (+C) and preordering (+P) produces the
best results, being preordering the most criti-
cal preprocessing step, similarly to the results
obtained by Castro Ferreira et al. (2017).

Concerning neural models, NMT produces
the best performance; however, this is far

10We execute 4 runs for each experiment and show
the mean and standard deviation for NMT and G2S.

11Best results are highlighted in bold in Tables.

from the SMT one yet. Char-level represen-
tation and Delexicalisation (+D) are the best
strategies when BLEU is evaluated. How-
ever, lexicalisation (-D) is better when the
metric is chrF++. Moreover, preordering
(+P) seems useful when char-level represen-
tation is used. Finally, G2S presents the
worst performance, being char-level repre-
sentation and delexicalisation (+D) the best
strategies.

In the following subsections, we will study
how the performance changes in different
contexts and try to answer three questions:
(1) how helpful is the translated corpus? (2)
what are the most useful preprocessing steps?
(3) how fine-grained should be the represen-
tations to achieve better performance?

5.1 How helpful is the translated
corpus?

To determine the helpfulness of the translated
corpus, we study the performance when mod-
els are trained on T and T + G.

In general, the translated corpus is help-
ful as all models trained on it present bet-
ter results than models trained on only gold
corpus, however, there exists a mismatch be-
tween translated and gold corpora, as values
for all measures in development set are quite
higher than the obtained in test set (see re-
sults on translated corpus - T). This behav-
ior can be generated by domain mismatch, in
which the vocabulary is different even though
both corpora are on news, or by structure
mismatch between AMR graphs, since trans-
lated AMR graphs are English-biased and
can introduce noise during training (as its
size is bigger than the gold corpus).

Regarding the change in the performance
when gold corpus is added to the trans-
lated one (T + G), SMT gets leveraging the
data increase better. On the other hand,
NMT performance presents a slight improve-
ment when gold corpus is added. Finally,
the G2S performance slightly drops in all
cases and can suggest that there is a struc-
tural mismatch between the translated and
gold AMR graphs, as this approach considers
structural information, different from SMT
or NMT, which use a flattened version with
some nodes/edges included in it.

In order to evaluate how to deal with the
possible mismatch, we add the translated de-
velopment set (1,027 instances) to the gold
one as well. Table 4 shows the result for each
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DEV TEST
BLEU METEOR chrF++ BLEU METEOR chrF++

Gold

+C+P 11.58 0.31 0.48 10.00 0.30 0.48
+C-P 11.36 0.29 0.47 7.95 0.26 0.46
-C+P 6.06 0.24 0.43 6.05 0.24 0.43
-C-P 7.31 0.24 0.44 4.89 0.22 0.43

Translated

+C+P 27.18 0.45 0.57 9.98 0.29 0.47
+C-P 26.10 0.44 0.56 10.50 0.28 0.46
-C+P 23.73 0.42 0.55 10.47 0.30 0.48
-C-P 24.02 0.42 0.55 7.83 0.26 0.46

Translated + Gold

+C+P 18.67 0.38 0.52 14.83 0.33 0.49
+C-P 17.75 0.37 0.51 11.96 0.32 0.47
-C+P 17.38 0.37 0.51 13.91 0.32 0.49
-C-P 14.86 0.35 0.50 11.96 0.32 0.48

Table 1: Overall SMT results.

setting and approach. Unlike the previous
setting (T+G), both SMT and NMT present
a small improvement in all metrics. However,
G2S presents bigger improvements, suggest-
ing that adding translated instances can make
models more robust to possible structural di-
vergences, leading to performance improve-
ments.

5.2 What are the most useful
preprocessing strategies?

5.2.1 Statistical Machine Translation

Pre-ordering (+P) seems to lead to improve-
ments, however, this improvement is noto-
rious when translated + gold corpora are
used in the training set. Another point to
highlight is the importance of compression
(+C). Initial experiments (T and T + G)
show that compression leads to slight im-
provements. However, no compression (-C)
produces the best results when the classifier
is trained on T + G train/dev.

5.2.2 Neural Machine Translation

Delexicalisation (+D) seems to be a good
strategy for word and char-level representa-
tions, but it is not relevant for bpe-level.
Moreover, compression (+C) generally harms
the performance or produces mixed results,
being better when lexicalisation (-D) is ap-
plied in char-level representation. Finally,
pre-ordering (+P) seems to produce small
improvements in all settings.

5.2.3 Graph-to-Sequence

About Graph-to-Sequence approach, Delex-
icalisation (+D) improves the performance
when word and char-level presentations are
used. However, the contrary happens when
bpe-level representation is used. A possible
explanation is that delexicalisation reduces
data sparseness when word-level representa-
tion is applied together and allows to deal
with large graphs in the case of char-level
representation. However, in the case of bpe,

delexicalisation seems to introduce noise and
makes the model more prone to generate hal-
lucinations.

5.3 How fine-grained should be
the representations to achieve
better performance?

Concerning the representation levels, charac-
ters and bpe produce the best and second-
best performance for NMT. The main gain in
both representations is in terms of METEOR
and chRF++, which is expected as these rep-
resentations are finer-grained and the evalua-
tion measures take stems and characters into
account.

Different from NMT, bpe produces the
best performance for G2S. However, and
as it was previously mentioned, this perfor-
mance happens when delexicalisation is ap-
plied. This way, we hypothesise two possi-
ble problems: (1) word-level representations
suffer more from mismatch problems as ex-
periments on T and T + G show low per-
formance, and (2) char-level representations
can generate larger AMR graphs for which
semantics can be challenging to be captured
by G2S.

Another point to highlight is that finer-
grained representations usually help reducing
the bias to the development set, mainly when
char-level representations are used. Conse-
quently, mismatch problems are mitigated.
This can be seen in the difference between
development and test performance for exper-
iments on T and T + G train/dev. For exam-
ple, Figure 3 shows the difference mentioned
for NMT. Experiments on T + G present a
BLEU overall difference of 10.45, 9.9, and
5,67 between development and test for word,
bpe, and char-level representations. Simi-
larly, differences for METEOR and chrF++
are 0.11, 0.11, and 0.03, and 0.11, 0.09, and
0.00, respectively.
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DEV TEST
BLEU METEOR chrF++ BLEU METEOR chrF++

G

word

+D+C+P 0.00±0.00 0.06±0.00 0.05±0.00 2.66±0.14 0.10±0.00 0.13±0.01
+D+C-P 0.87±0.87 0.10±0.01 0.12±0.00 2.48±0.37 0.11±0.00 0.14±0.01
+D-C+P 0.00±0.00 0.10±0.01 0.11±0.00 2.61±0.23 0.11±0.00 0.13±0.00
+D-C-P 0.37±0.63 0.10±0.01 0.11±0.01 2.39±0.18 0.10±0.00 0.13±0.01
-D+C+P 0.00±0.00 0.03±0.02 0.02±0.02 0.00±0.00 0.03±0.02 0.02±0.02
-D+C-P 0.00±0.00 0.03±0.02 0.02±0.02 0.00±0.00 0.03±0.02 0.02±0.02
-D-C+P 0.00±0.00 0.02±0.00 0.01±0.00 0.00±0.00 0.02±0.00 0.01±0.00
-D-C-P 0.00±0.00 0.02±0.00 0.01±0.00 0.00±0.00 0.02±0.00 0.01±0.00

bpe

+D+C+P 0.00±0.00 0.02±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00
+D+C-P 0.34±0.58 0.05±0.04 0.07±0.05 0.88±0.90 0.06±0.04 0.08±0.06
+D-C+P 0.33±0.56 0.07±0.03 0.09±0.04 1.33±0.81 0.08±0.04 0.10±0.05
+D-C-P 0.33±0.57 0.03±0.03 0.04±0.05 0.39±0.67 0.03±0.03 0.04±0.05
-D+C+P 0.00±0.00 0.03±0.02 0.02±0.02 0.00±0.00 0.03±0.02 0.02±0.02
-D+C-P 0.00±0.00 0.03±0.02 0.02±0.02 0.00±0.00 0.03±0.02 0.02±0.02
-D-C+P 0.00±0.00 0.02±0.00 0.01±0.00 0.00±0.00 0.02±0.00 0.01±0.00
-D-C-P 0.00±0.00 0.02±0.00 0.01±0.00 0.00±0.00 0.02±0.00 0.01±0.00

char

+D+C+P 0.59±0.67 0.11±0.03 0.22±0.06 3.12±0.37 0.15±0.02 0.26±0.05
+D+C-P 1.61±1.00 0.11±0.01 0.19±0.01 2.80±0.27 0.11±0.00 0.19±0.00
+D-C+P 2.28±0.36 0.12±0.01 0.22±0.04 3.12±0.10 0.13±0.01 0.22±0.03
+D-C-P 1.63±0.09 0.10±0.00 0.18±0.00 2.88±0.35 0.11±0.00 0.19±0.00
-D+C+P 1.35±0.82 0.14±0.05 0.27±0.09 1.77±1.14 0.14±0.05 0.28±0.09
-D+C-P 0.00±0.00 0.11±0.00 0.26±0.00 0.48±0.82 0.13±0.01 0.27±0.01
-D-C+P 1.45±0.87 0.16±0.01 0.31±0.01 0.70±1.22 0.16±0.01 0.31±0.01
-D-C-P 0.72±0.74 0.09±0.04 0.20±0.07 0.00±0.00 0.09±0.04 0.19±0.07

—

T

word

+D+C+P 11.02±1.37 0.26±0.02 0.32±0.01 4.16±0.65 0.20±0.01 0.29±0.01
+D+C-P 4.66±0.19 0.18±0.01 0.24±0.01 2.46±0.29 0.13±0.00 0.19±0.00
+D-C+P 20.53±0.56 0.38±0.00 0.46±0.00 5.88±0.23 0.24±0.01 0.33±0.01
+D-C-P 19.35±0.92 0.37±0.01 0.44±0.00 5.88±0.30 0.23±0.00 0.32±0.01
-D+C+P 17.96±0.76 0.36±0.01 0.42±0.01 3.79±0.34 0.18±0.01 0.25±0.01
-D+C-P 2.32±0.37 0.12±0.01 0.16±0.01 0.12±0.21 0.06±0.00 0.09±0.01
-D-C+P 19.22±0.75 0.38±0.01 0.43±0.02 3.96±0.62 0.18±0.01 0.26±0.02
-D-C-P 19.81±0.77 0.37±0.01 0.42±0.01 3.17±0.33 0.17±0.01 0.24±0.01

bpe

+D+C+P 8.96±2.07 0.26±0.02 0.36±0.01 3.90±1.03 0.21±0.02 0.32±0.01
+D+C-P 12.89±3.52 0.33±0.02 0.44±0.02 3.57±1.10 0.21±0.02 0.33±0.01
+D-C+P 15.41±2.46 0.36±0.02 0.46±0.01 5.39±0.68 0.24±0.01 0.36±0.00
+D-C-P 20.04±0.60 0.38±0.00 0.48±0.01 7.05±1.00 0.27±0.02 0.38±0.01
-D+C+P 19.34±4.59 0.41±0.03 0.49±0.02 6.10±1.42 0.24±0.03 0.36±0.02
-D+C-P 13.60±2.37 0.36±0.02 0.46±0.01 2.86±0.74 0.19±0.01 0.32±0.01
-D-C+P 22.39±1.57 0.44±0.01 0.51±0.00 7.08±0.71 0.27±0.02 0.37±0.02
-D-C-P 20.87±1.16 0.42±0.01 0.50±0.01 5.47±0.63 0.24±0.01 0.35±0.00

char

+D+C+P 13.39±0.37 0.27±0.00 0.37±0.00 8.69±1.33 0.29±0.01 0.43±0.01
+D+C-P 15.45±0.50 0.31±0.00 0.43±0.01 8.02±0.40 0.28±0.01 0.42±0.01
+D-C+P 13.73±0.40 0.31±0.00 0.43±0.01 8.21±0.95 0.28±0.01 0.42±0.01
+D-C-P 13.06±1.22 0.29±0.01 0.42±0.01 7.18±0.88 0.27±0.00 0.42±0.00
-D+C+P 16.06±2.91 0.33±0.04 0.43±0.03 7.63±2.23 0.28±0.03 0.42±0.03
-D+C-P 17.75±0.41 0.34±0.01 0.44±0.01 6.16±1.13 0.26±0.01 0.41±0.00
-D-C+P 15.73±1.19 0.33±0.02 0.43±0.02 6.97±1.40 0.26±0.02 0.41±0.02
-D-C-P 11.26±4.63 0.24±0.09 0.34±0.10 4.04±3.64 0.17±0.09 0.29±0.12

T+G

word

+D+C+P 2.77±0.57 0.16±0.01 0.22±0.02 4.76±0.38 0.20±0.01 0.28±0.02
+D+C-P 3.65±0.54 0.19±0.02 0.27±0.02 4.23±1.00 0.19±0.02 0.27±0.03
+D-C+P 5.15±0.82 0.23±0.01 0.31±0.01 6.04±0.30 0.22±0.01 0.30±0.01
+D-C-P 4.42±0.52 0.20±0.01 0.28±0.01 4.81±0.64 0.20±0.01 0.27±0.02
-D+C+P 2.93±0.73 0.17±0.01 0.24±0.00 3.59±0.38 0.18±0.00 0.24±0.00
-D+C-P 2.70±0.48 0.14±0.01 0.20±0.01 2.58±0.67 0.14±0.02 0.20±0.01
-D-C+P 3.51±0.77 0.16±0.02 0.23±0.02 2.57±0.27 0.16±0.02 0.22±0.02
-D-C-P 3.63±0.89 0.17±0.01 0.24±0.02 2.99±0.80 0.16±0.01 0.23±0.01

bpe

+D+C+P 2.72±0.73 0.19±0.01 0.30±0.01 4.71±0.38 0.23±0.01 0.34±0.01
+D+C-P 3.38±1.35 0.20±0.04 0.32±0.03 3.21±1.43 0.19±0.04 0.31±0.03
+D-C+P 7.10±1.10 0.28±0.02 0.39±0.02 7.52±1.10 0.28±0.02 0.37±0.01
+D-C-P 5.68±1.21 0.26±0.02 0.37±0.02 5.78±1.38 0.25±0.02 0.35±0.01
-D+C+P 3.56±0.52 0.21±0.01 0.34±0.01 4.47±1.21 0.22±0.02 0.35±0.01
-D+C-P 4.45±1.02 0.22±0.02 0.33±0.01 4.60±1.36 0.22±0.02 0.34±0.02
-D-C+P 7.10±0.40 0.27±0.00 0.37±0.01 7.42±0.70 0.26±0.01 0.36±0.01
-D-C-P 6.69±0.77 0.26±0.01 0.36±0.01 5.93±1.35 0.25±0.01 0.36±0.01

char

+D+C+P 7.82±0.44 0.26±0.01 0.38±0.01 9.38±0.22 0.30±0.01 0.44±0.01
+D+C-P 8.36±0.51 0.29±0.01 0.42±0.01 8.65±0.90 0.28±0.01 0.42±0.01
+D-C+P 7.28±0.49 0.29±0.01 0.42±0.01 10.03±0.37 0.31±0.01 0.44±0.01
+D-C-P 7.04±0.14 0.27±0.00 0.42±0.00 7.34±0.88 0.27±0.01 0.41±0.01
-D+C+P 7.48±0.74 0.29±0.01 0.43±0.01 8.85±0.78 0.29±0.01 0.43±0.01
-D+C-P 7.99±1.57 0.27±0.01 0.41±0.01 7.96±0.69 0.27±0.01 0.42±0.01
-D-C+P 5.98±0.59 0.27±0.02 0.41±0.02 8.25±0.94 0.29±0.02 0.43±0.02
-D-C-P 5.33±1.89 0.23±0.05 0.37±0.05 5.20±3.06 0.24±0.05 0.38±0.05

Table 2: Overall NMT results.

5.4 Manual Revision

We present now some analysis of actual gen-
erated cases. Figure 4 shows the AMR graph,
the reference, and the output generated
by the three approaches for the sentences
“He/She does not want it” (“não quer”) and
“He/She attended excellent schools, and ma-
jored in economics at Yale.” (“frequentou ex-
celentes escolas, e se formou em economia

por Yale.”). We can see some mistakes for
each approach associated with hidden sub-
jects (highlighted in red), wrong conjugation
(blue), fluency/concordance (green), repeti-
tions (purple), random words (yellow), and
entity copying (pink).

The first example is simple, and the three
approaches present similar outputs. SMT
produces almost the same reference; however,
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DEV TEST
BLEU METEOR chrF++ BLEU METEOR chrF++

G

word
+D 0.00 ±0.00 0.03 ±0.01 0.02 ±0.01 0.00 ±0.00 0.03 ±0.01 0.02 ±0.01
-D 0.00 ±0.00 0.03 ±0.01 0.02 ±0.01 0.00 ±0.00 0.03 ±0.01 0.02 ±0.01

bpe
+D 0.00 ±0.00 0.03 ±0.01 0.03 ±0.02 0.00 ±0.00 0.03 ±0.02 0.03 ±0.02
-D 0.00 ±0.00 0.02 ±0.01 0.01 ±0.00 0.00 ±0.00 0.02 ±0.01 0.01 ±0.00

char
+D 0.00 ±0.00 0.09 ±0.01 0.13 ±0.01 1.59 ±0.47 0.09 ±0.01 0.14 ±0.01
-D 0.00 ±0.00 0.05 ±0.00 0.09 ±0.00 0.00 ±0.00 0.05 ±0.00 0.09 ±0.00

T

word
+D 14.88 ±4.17 0.32 ±0.06 0.38 ±0.06 4.66 ±1.50 0.18 ±0.04 0.26 ±0.05
-D 10.41 ±4.20 0.24 ±0.06 0.30 ±0.07 1.95 ±1.74 0.13 ±0.04 0.19 ±0.05

bpe
+D 8.44 ±1.60 0.23 ±0.02 0.29 ±0.01 2.60 ±0.37 0.14 ±0.00 0.22 ±0.01
-D 21.04 ±1.09 0.42 ±0.01 0.48 ±0.00 6.75 ±0.51 0.26 ±0.01 0.36 ±0.01

char
+D 11.46 ±1.67 0.25 ±0.02 0.32 ±0.03 6.07 ±2.02 0.23 ±0.04 0.35 ±0.05
-D 7.09 ±2.24 0.18 ±0.03 0.24 ±0.02 1.43 ±0.78 0.12 ±0.03 0.23 ±0.03

T+G

word
+D 3.52 ±2.14 0.17 ±0.05 0.23 ±0.05 3.80 ±2.01 0.16 ±0.04 0.23 ±0.05
-D 1.00 ±1.74 0.10 ±0.04 0.15 ±0.05 1.00 ±1.72 0.09 ±0.04 0.15 ±0.06

bpe
+D 1.37 ±0.35 0.12 ±0.01 0.18 ±0.00 1.82 ±0.32 0.12 ±0.01 0.19 ±0.01
-D 5.62 ±0.43 0.26 ±0.01 0.36 ±0.01 6.44 ±0.79 0.26 ±0.01 0.36 ±0.01

char
+D 5.21 ±1.25 0.22 ±0.03 0.33 ±0.05 6.09 ±1.50 0.22 ±0.04 0.34 ±0.05
-D 2.53 ±1.63 0.17 ±0.04 0.28 ±0.05 2.63 ±1.94 0.17 ±0.04 0.29 ±0.05

Table 3: Overall G2S results.

DEV TEST
BLEU METEOR chrF++ BLEU METEOR chrF++

SMT word

+C+P 25.66 0.43 0.56 12.92 0.31 0.48
+C-P 24.72 0.42 0.55 12.52 0.31 0.48
-C+P 22.09 0.41 0.54 14.69 0.34 0.50
-C-P 22.29 0.41 0.54 10.03 0.30 0.48

NMT

word

+D+C+P 11.21 ±1.36 0.25 ±0.01 0.32 ±0.02 5.38 ±1.03 0.22 ±0.02 0.30 ±0.02
+D+C-P 14.25 ±0.92 0.31 ±0.01 0.39 ±0.01 4.95 ±0.52 0.21 ±0.01 0.29 ±0.01
+D-C+P 16.82 ±0.81 0.34 ±0.01 0.42 ±0.00 6.70 ±0.79 0.24 ±0.01 0.32 ±0.01
+D-C-P 17.10 ±0.47 0.34 ±0.00 0.42 ±0.00 6.68 ±0.20 0.23 ±0.00 0.32 ±0.01
-D+C+P 14.88 ±1.42 0.32 ±0.01 0.38 ±0.01 3.94 ±0.64 0.19 ±0.01 0.26 ±0.01
-D+C-P 14.98 ±1.48 0.31 ±0.01 0.37 ±0.01 3.25 ±0.51 0.17 ±0.01 0.24 ±0.01
-D-C+P 17.64 ±0.74 0.35 ±0.01 0.41 ±0.01 4.76 ±0.44 0.20 ±0.01 0.28 ±0.01
-D-C-P 16.87 ±0.47 0.33 ±0.01 0.39 ±0.01 4.48 ±0.31 0.19 ±0.00 0.26 ±0.01

bpe

+D+C+P 11.81 ±0.43 0.28 ±0.01 0.37 ±0.01 6.65 ±1.10 0.25 ±0.01 0.35 ±0.01
+D+C-P 14.32 ±0.87 0.33 ±0.01 0.43 ±0.01 5.09 ±0.54 0.24 ±0.01 0.35 ±0.01
+D-C+P 16.98 ±3.23 0.37 ±0.02 0.47 ±0.02 7.70 ±1.53 0.27 ±0.01 0.38 ±0.01
+D-C-P 16.32 ±2.56 0.36 ±0.02 0.45 ±0.01 6.15 ±0.87 0.26 ±0.01 0.36 ±0.01
-D+C+P 13.80 ±3.03 0.35 ±0.03 0.46 ±0.01 5.61 ±0.82 0.24 ±0.02 0.36 ±0.02
-D+C-P 14.53 ±3.18 0.35 ±0.02 0.45 ±0.01 4.79 ±1.55 0.22 ±0.02 0.34 ±0.02
-D-C+P 21.38 ±0.93 0.41 ±0.01 0.48 ±0.01 7.80 ±0.77 0.27 ±0.01 0.37 ±0.01
-D-C-P 20.25 ±1.06 0.40 ±0.01 0.49 ±0.01 6.38 ±1.16 0.26 ±0.01 0.38 ±0.01

char

+D+C+P 12.61 ±0.50 0.27 ±0.00 0.37 ±0.00 9.42 ±0.47 0.30 ±0.00 0.44 ±0.00
+D+C-P 14.59 ±0.43 0.31 ±0.00 0.43 ±0.01 9.07 ±0.80 0.29 ±0.02 0.43 ±0.01
+D-C+P 13.20 ±0.16 0.31 ±0.00 0.43 ±0.01 9.83 ±0.88 0.30 ±0.01 0.44 ±0.01
+D-C-P 12.91 ±0.53 0.30 ±0.01 0.42 ±0.01 8.49 ±0.88 0.29 ±0.01 0.42 ±0.01
-D+C+P 17.18 ±0.54 0.35 ±0.00 0.45 ±0.00 10.14 ±0.38 0.30 ±0.01 0.44 ±0.01
-D+C-P 16.65 ±0.72 0.33 ±0.01 0.44 ±0.01 8.10 ±0.88 0.28 ±0.01 0.42 ±0.01
-D-C+P 12.19 ±4.38 0.27 ±0.08 0.37 ±0.09 5.93 ±3.48 0.24 ±0.10 0.36 ±0.12
-D-C-P 14.58 ±0.58 0.31 ±0.01 0.43 ±0.00 7.61 ±0.82 0.27 ±0.01 0.42 ±0.00

G2S

word
+D 16.84 ±1.88 0.36 ±0.02 0.43 ±0.02 7.70 ±1.74 0.26 ±0.03 0.34 ±0.03
-D 9.73 ±5.58 0.23 ±0.09 0.29 ±0.09 2.73 ±2.17 0.14 ±0.05 0.20 ±0.06

bpe
+D 7.59 ±1.97 0.22 ±0.02 0.28 ±0.02 3.28 ±0.74 0.15 ±0.01 0.23 ±0.01
-D 20.85 ±1.21 0.41 ±0.02 0.48 ±0.02 8.69 ±0.59 0.29 ±0.02 0.38 ±0.02

char
+D 11.10 ±1.95 0.25 ±0.03 0.32 ±0.02 7.03 ±2.46 0.24 ±0.04 0.35 ±0.05
-D 7.94 ±1.22 0.22 ±0.02 0.30 ±0.02 4.00 ±0.49 0.19 ±0.01 0.32 ±0.02

Table 4: Results of adding translated development set to the gold one. It is called T + G
train/dev.

this includes the pronoun “ele” (“he/she”)
that is treated as a hidden subject in the
reference. Conversely, NMT and G2S omit
the pronoun, making the generated sentence
more natural; nevertheless, both approaches
generate the verb “querer” (“want”) in a dif-
ferent conjugation (1st person). A possible
explanation is that NMT and G2S are trained
on char and bpe-level representations, this
way, they can generate different conjugations
easily. In addition, NMT generates the word
“dizer” (”to say”) that is not part of the
AMR graph.

The second one is a harder example with
more relations and concepts such as named
entities (“university”), co-references (“e1 /

ele” or “he/she”) and connectors (“e”). In
this case, none of the approaches can omit
the pronoun “ele” as the reference does. An-
other common problem in all approaches is
the lack of agreement/fluency. For example,
the expression “na yale” should be replaced
by “em yale” in order to be more fluent.

Analyzing other issues, SMT tries to gen-
erate sentences with all possible concepts in-
cluded in the graph, even if the generated
text is not fluent. On the other hand, neural
models suffer from classical problems such as
repetition and random word generation (the
hallucination problem).
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Figure 3: Difference between development
and test performance for experiments on (1)
T and (2) T + G train/dev.

Figure 4: Outputs generated by the different
approaches.

6 Conclusion and future work

This work presented a study of different
strategies for tackling low-resource AMR-to-
text generation for Brazilian Portuguese. We
explore the helpfulness of additional trans-
lated corpus, different granularity levels in
input representation, and three preprocess-
ing strategies. It is worth noting this study
can be helpful for work in other languages or
meaning representations, mainly, when there
is no pretrained models available.

Concerning the use of translated corpus,
we can confirm its helpfulness. However,
there are different contexts for each approach
in which we can better leverage it. SMT
improves its performance when the model is
trained on the translated and gold corpora to-
gether. Neural models benefit from translated

corpus more than SMT, even when these are
trained on it solely. However, its join with the
gold corpus can produce different results. In
particular, G2S showed that there are struc-
tural divergences between translated and gold
AMR graphs that can harm the performance
when models are trained on both corpora.
However, adding translated corpus to the de-
velopment set allows to make the model more
robust and achieve better performance.

About the representation levels, we high-
light the use of finer-grained representations
such as subwords and characters. Char-level
seems to be the best option for NMT and bpe
for G2S. However, it is worth noting that our
study focuses on sentences of 23 tokens at
maximum. This way, if we extend the work
to longer sentences, bpe would probably per-
forms better than char for NMT.

Finally, different combinations of prepro-
cessing strategies are helpful for each ap-
proach, being preordering the best strategy
for both machine translation approaches and
delexicalisation for NMT. In the case of G2S,
delexicalisation produces mixed results, be-
ing important just for word and char-level
representations.

As future work, we plan to explore state-
of-the-art approaches that are usually based
on transformers, such as T5 (Ribeiro et al.,
2020), or GPT-2 (Mager et al., 2020). Be-
sides such issues, given some divergences be-
tween the translated and gold corpora that
can harm the performance, it would be inter-
esting to explore transfer learning for leverag-
ing the knowledge learned from the translated
corpus instead of training on both corpora to-
gether.

To the interested reader, more details
about this work may be found at the web
portal of the POeTiSA project at https://
sites.google.com/icmc.usp.br/poetisa.
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