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Abstract: Several initiatives have emerged during the COVID-19 pandemic to
gather scientific publications related to coronaviruses. Among them, the COVID-
19 Open Research Dataset (CORD-19) has proven to be a valuable resource that
provides full-text articles from the PubMed Central, bioRxiv and medRxiv reposito-
ries. Such a large amount of biomedical literature needs to be properly managed to
facilitate and promote its use by health professionals, for example by tagging docu-
ments with the biomedical entities that appear on them. We created a biomedical
named entity recognizer (NER) that normalizes (NEN) the drugs, diseases, genes
and proteins mentioned in texts with the codes of the main standardization systems
such as MeSH, ICD-10, ATC, SNOMED, ChEBI, GARD and NCBI. It is based on
fine-tuning the BioBERT language model independently for each entity type using
domain-specific datasets and an inverse index search to normalize the references. We
have used the resultant BioNER+BioNEN system to process the CORD-19 corpus
and offer an overview of the drugs, diseases, genes and proteins related to coron-
aviruses in the last fifty years.
Keywords: ner, normalization, bioentities, document retrieval.

Resumen: Durante la pandemia del COVID-19 han surgido varias iniciativas para
recopilar publicaciones cient́ıficas relacionadas con el coronavirus. Entre ellos, el con-
junto de datos de investigación abierta sobre COVID-19 (CORD-19) ha demostrado
ser un recurso valioso que proporciona el texto completo de art́ıculos extráıdos de los
repositorios PubMed Central, bioRxiv y medRxiv. Una cantidad tan grande de lit-
eratura biomédica debe gestionarse adecuadamente para facilitar y promover su uso
por parte de los profesionales de la salud, por ejemplo, etiquetando documentos con
las entidades biomédicas que aparecen mencionadas. Hemos creado un reconocedor
biomédico de entidades nombradas (NER) que normaliza (NEN) los fármacos, enfer-
medades, genes y protéınas mencionados en textos con los códigos de los principales
sistemas de estandarización como MeSH, ICD-10, ATC, SNOMED, ChEBI, GARD
y NCBI. Se basa en afinar el modelo de lenguaje BioBERT de forma independiente
para cada tipo de entidad utilizando conjuntos de datos espećıficos de dominio y
una búsqueda de ı́ndice inverso para normalizar las referencias. Hemos utilizado el
sistema BioNER+BioNEN resultante para procesar el corpus CORD-19 y ofrecer
una visión general de los fármacos, enfermedades, genes y protéınas relacionados
con el coronavirus en los últimos cincuenta años.
Palabras clave: identificación de entidades, normalización, bio-entidades, recu-
peración de documentos.

1 Introduction

Several initiatives have emerged during the
COVID-19 pandemic to gather scientific pub-
lications related to coronaviruses. The

COVID-19 Data Portal1, maintained by the
EU, or the Humandata2, focused on COVID-

1https://www.covid19dataportal.org
2https://data.humdata.org/event/covid-19
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19 cases around the world, are some exam-
ples. The Allen Institute for Artificial Intelli-
gence created the COVID-19 Open Research
Dataset (CORD-19)(Wang et al., 2020). It is
a continuously growing corpus with all pub-
licly available COVID-19 and coronavirus-
related research (e.g. SARS, MERS, etc.)
published during the last fifty years, with
a huge increase in the last two years. This
dataset provides full-text research papers in
PDF and JSON format, which can be used as
a source of information to extract knowledge
related to the infection and disease. At the
time of this study (January 2022), it is com-
posed of 334,572 scientific articles retrieved
from PubMed Central, a corpus maintained
by the World Health Organization (WHO),
bioRxiv and medRxiv pre-prints.

Such a large amount of biomedical litera-
ture needs to be properly managed to facil-
itate and promote its use by health profes-
sionals. Natural Language Processing (NLP)
facilitates document analysis through the ex-
traction of key information from the under-
lying texts and turning them into structured
knowledge that can be understood by hu-
mans (Pyysalo et al., 2007). One of the main
NLP tasks is the recognition of relevant enti-
ties found in texts, what is commonly known
as Named Entity Recognition (NER)(Nadeau
and Sekine, 2007). This task enables the ex-
ploration of texts guided by key terms and
the discovery of relationships between them.
The NER task identifies meaningful terms in
a domain, called named entities, and classi-
fies them into predefined entity classes (Li et
al., 2020). In the biomedical domain, these
entities are medical concepts such as drugs,
diseases, or gene mutations, and the task is
more specifically known as BioNER. Enti-
ties can also be classified according to exist-
ing taxonomies to avoid ambiguity, in a task
that is commonly known as Entity Linking
or Named Entity Normalization (NEN) and,
when applied in the biomedical domain, Bio-
NEN (Campos, Matos, and Oliveira, 2012).

The main objective in BioNEN is to use
controlled and curated biomedical vocab-
ularies such as Medical Subject Headings
(MeSH) 3 codes or the Anatomical Therapeu-
tic Chemical (ATC)4 classification system, to
reduce ambiguities and to extend the infor-
mation about the entities. Once the entity

3https://www.nlm.nih.gov/mesh
4https://www.whocc.no

recognition and normalization tasks are ap-
plied in biomedical literature, a set of nor-
malized concepts can be used by Informa-
tion Retrieval processes, such as the creation
of efficient search algorithms, content clas-
sification, or Knowledge-Graph construction
among others (Chatterjee et al., 2021). These
processes play a key role in subsequent NLP
tasks such as Question-Answering, Relation
Extraction, Knowledge-base population, or
Semantic search (Nadeau and Sekine, 2007).

However, the biomedical language entails
some challenges in identifying entities (Zhou
et al., 2004): (1) highly specialized terms
(i.e. most of the terms are exclusive of
these kinds of texts, making it difficult to
reuse general domain knowledge to iden-
tify and classify specific domain concepts),
(2) sharing of nouns (e.g. ”5kb and 17kb
viruses” refers to ”5kb viruses and 17kb
viruses”), and (3) non-standardized naming
convention (e.g. ”N − acetyl − β − D −
glucosamine”, ”N − Acetylglucosamine”,
and ”C18H15NO6” refers to the same con-
cept).

This article describes how we performed
BioNER and BioNEN tasks on the CORD-
19 corpus, and our analysis of the presence
of diseases, drugs, genes and proteins in their
texts. Our main contributions are:

• A BioNER+BioNEN system based on
independently fine-tuned BioBERT
models to identify diseases, drugs and
genes/proteins from technical texts.5

• A collection of scientific texts tagged
with normalized terms and codes of
diseases, drugs, and genes/proteins6.
(Badenes-Olmedo, Alonso, and Corcho,
2022)

• A statistical analysis of the presence of
biomedical entities in the January 2022
edition of the CORD-19 corpus.

The paper is structured as follows: Sec-
tion 2 review the state-of-the-art methods to
identify biomedical entities and present our
approach. The normalization process that we
have followed is described in section 3. Sec-
tion 4 details how the CORD-19 corpus has
been processed, and show and discuss the re-
sults. Final remarks and future work are pre-
sented in section 5.

5https://github.com/drugs4covid/bio-ner
6https://doi.org/10.5281/zenodo.6532473
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2 Biomedical Named Entity
Recognition

NER tasks usually follow the pipeline showed
in Fig. 1. The text is firstly pre-processed de-
pending on the requirements of subsequent
processes (e.g. word cleaning, stemming,
verb tense normalization, etc). Afterwards,
a representation of the words which com-
pose a text span is made, what serves as
an input to a NER model which performs
the classification of these features to assign
tags to the words. Sometimes, in order to
refine the results, a post-processing step is
also required to extend or group the entities.
Biomedical-NER (BioNER) specializes the
NER classification task for the medical do-
main and, sometimes, particularizes the tech-
niques used to characterize texts. A BioNER
method, depending on the type of technique
used to classify terms, can be organized into:
Rule/Dictionary-based (i.e requires domain
knowledge to define patterns of the different
sorts of named entities to characterize them),
Machine Learning-based (i.e. discovers rules
through automatic patterns and reduces the
need for domain knowledge) and Hybrid ap-
proaches (i.e. combines methods to leverage
benefits from different approaches) (Li et al.,
2020) (Perera, Dehmer, and Emmert-Streib,
2020)(Yadav and Bethard, 2019).

2.1 Our Approach

We have created a hybrid system for the
recognition and normalization of biomedical
entities based on state-of-the-art methods.
Our model specializes the BioBERT (Lee et
al., 2020) model pretrained with millions of
scientific and biomedical articles, with addi-
tional training corpora to extend the BioNER
task and to cover the BioNEN task from mul-
tiple external standardization databases.

The entity classes considered for our sys-
tem were the most widely used classes in
BioNER modelling and the ones with a
higher number of corpora available for a fine-
tuning process (see Table 1). It is important
to note that these biomedical entities can be
mentioned in different ways and this further
makes it more difficult to achieve a correct
recognition and normalization. Variations
can be trivial names (e.g. water), technical
names (.e.g lung infection with Mycoplasma
pneumoniae to refer to Bacterial Pneumo-
nia), brands (e.g. Veklury®), systematic IU-
PAC names (e.g. 2,5,5-trimethyl-2-hexene),

Figure 1: NER pipeline.

generic names (e.g. Benzenes), molecular
formulas (e.g. CH3), abbreviated forms (e.g.
DMA for dimethylacetamide) and identifiers
of curated databases such as ChEBI7 (e.g.
145994 ).

For each entity class (i.e. disease, drugs
and gene/proteins), a different BioNER
model was created (see Fig. 2). One model
was fine-tuned to recognize disease entities,
another for chemical (i.e. drugs) entities and
another for genes/proteins. We adopted this
strategy because it has proven to behave bet-
ter for fine-tuned tasks than combining sev-
eral entity classes in the same task in only one
model. The more specific the model is, the
better results will be usually obtained for a
specific task (Gururangan et al., 2020). Sep-
arate models capture better patterns within
each of the entity classes allowing to max-
imize its tagging performance, resulting in
a system with the better model possible for
each of the entities. Our system offers slightly
lower performance than BioBERT model be-
cause we jointly use several datasets for fine-
tuning. The aim is to increase the ability
to identify as many entities as possible, even
at the cost of penalizing the accuracy of the
model, since our pipeline incorporates an ad-
ditional normalization step where the enti-
ties will be filtered out. The post-processing
tasks are based on an inverse index search.
The architecture of the system is described
in Fig. 2 and further details about each of
the components are revised along the follow-
ing sections.

2.2 Datasets

We have added an untrained fully-connected
layer on top of a BioBERT model to per-
form the fine-tuning. At least three fine-
tuning processes have been done to cover the

7https://www.ebi.ac.uk/chebi
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Figure 2: Overview of our BioNER+BioNEN architecture.

three different entities (i.e diseases, drugs and
genes/proteins). The corpora used for each
training process were selected from existing
datasets (see Table 1) according to criteria
based on data volume and quality. Further-
more, since the techniques used to identify
entities slightly differ between the existing
datasets despite being the same target en-
tity, we use two corpora for each entity class
to supply the model with a better generaliza-
tion capacity in situations where a never-seen
text is used (Lee et al., 2020).

2.2.1 Diseases Dataset

The BC5CDR-Diseases dataset (Li et al.,
2016), with around 13,000 annotations, and
the NCBI-Diseases dataset (Doğan, Leaman,
and Lu, 2014), with almost 7,000, were the
corpora used to recognize diseases. These
datasets are the most widely used in BioNER
tasks for disease entities and most models
provide results for each of them, includ-
ing BioBERT which obtained an F1-score
of 89.71 for NCBI-Diseases and 87.15 for
B5CDR-Diseases. Our model, created by
combining both datasets during the fine-
tuning process, offers a slightly lower per-
formance with a F1-score of 87.4 and 85.8,
respectively. This is likely because of the
hyperparameter search intensity and because
the number of epochs done is lower.

2.2.2 Drugs Dataset

For chemical entities, the two selected
datasets were BC4CHEMD (Krallinger et al.,

2015) and BC5CDR-Chemicals (Li et al.,
2016) with around 80,000 and 15,000 entities
respectively. The largest annotated corpus,
BioSemantics (Akhondi et al., 2014), was
not considered since it is based on patents
which could slightly differ from biomedical
articles that are the kind of texts in which
our system is focused on. The selected
datasets were also the most widely adopted
corpora for NER tasks in chemical entities
and most models provide performance results
for them. BioBERT obtained state-of-the-art
results in BC4CHEMD with an F1-score of
92.36 and the second best result for BC5CDR
with 93.47, which is almost the same than
the state-of-the-art result obtained by Blue-
BERT (Peng, Yan, and Lu, 2019) which was
93.5 . Our system obtained F1 results of 91.7
for BC4CHEMD and 92.99 for BC5CDR-
Chemicals.

2.2.3 Gene and Proteins Dataset

Gene and protein entities were jointly con-
sidered since they belong to similar semantic
types. This consideration is widely adopted
in most existent corpus, which consider them
together (Goyal, Gupta, and Kumar, 2018).
The pair of selected datasets were JNLPBA
(Kim et al., 2004) and BC2GM (Smith
et al., 2008), which offer around 35,000
and 25,000 annotations respectively. The
CRAFT corpus (Bada et al., 2012), which is
the largest Gene/Protein NER corpus, was
discarded since most models report results
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Year Reference Corpus Name Entities # Annotations # Tokens

2004 (Kim et al., 2004) JNLPBA
Genes/Proteins 35460

597333
Cell Lines 4332

2008 (Smith et al., 2008) BC2GM Genes/Proteins 24583 508257

2012 (Bada et al., 2012) CRAFT

Chemicals 8137

560000
Genes/Proteins 49961

Species 7449

Cell Lines 5760

2013 (Pafilis et al., 2013) Species-800 Species 3646 195197

2013 (Ohta et al., 2013) BioNLP13CG

Species

21683 129878Anatomy

Genes/Proteins

2013 (Segura Bedmar, Mart́ınez, and Herrero Zazo, 2013) SemEval2013 - DrugBank Chemicals 15745 ≈ 65000

2013 (Segura Bedmar, Mart́ınez, and Herrero Zazo, 2013) SemEval2013 - Medline Chemicals 2746 ≈ 20000

2013 (Pyysalo et al., 2015) BioNLP13PC
Genes/Proteins

15901 108356
Chemicals

2014 (Bagewadi et al., 2014) mi-RNA

Genes/Proteins 1006

65998Species 726

Diseases 2123

2014 (Akhondi et al., 2014) BioSemantics Chemicals 386110 5690518

2014 (Pyysalo and Ananiadou, 2014) AnatEM Anatomy 13000 250000

2014 (Doğan, Leaman, and Lu, 2014) NCBI Disease Diseases 6881 174487

2015 (Goldberg et al., 2015) LocText Species 276 22550

2015 (Krallinger et al., 2015) BC4CHEMD Chemicals 79842 2235435

2016 (Li et al., 2016) BC5CDR
Diseases 12694

323281
Chemicals 15411

2016 (Kaewphan et al., 2016)
CLL

Cell Lines
341 6547

Gellus 640 278910

2020 (Legrand et al., 2020) PGxCorpus

Diseases 635

≈ 35000Chemicals 1718

Genes/Proteins 1708

Table 1: Corpora with biomedical entities.

based on those corpus and a comparison be-
tween them can be established. BioBERT
reported state-of-the-art results on BC2GM
results with a F1 of 84.72 and in JNLPBA
results (77.59) were slightly worse than state-
of-the-art which were reported by PubMed-
BERT with a F1 of 80.06. Results from our
fine-tuning model were a bit worse with 83.0
and 76.0 for BC2GM and JNLPBA respec-
tively. Results on this joint entity class are
significantly worse than other entity classes,
perhaps due to the broad range of suben-
tity classes which take part within this class.
This makes the amount of linguistic variabil-
ity larger, and hence harder to capture than
the former entity classes.

Once the models have been fine-tuned, we
require some additional steps before having
a homogeneous representation of the enti-
ties (see Fig. 2). The following section de-
tails the entity normalization process and the
additional tasks required in our NER+NEN
pipeline ( Fig. 1).

3 Entity Normalization

The normalization process has been ad-
dressed through an inverted index search.
Each entity is associated with a set of related
terms extracted from external coding sys-
tems. Once the medical term is recognized,
we search for entities that contain that term
in any of their related fields, and we sort that
set of candidates based on the BM25 rank-
ing function (Robertson et al., 1994). Those
with fewer related terms will have greater
relevance. Each type of entity has its own
database (i.e index). This way, indexes can
be built separately with curated and related
terms that helps to map concepts with terms
and codes (see Table 2). Multiple sources
were taken into account in each of the en-
tity classes, mainly from BioPortal ontolo-
gies8, but also from the Comparative Toxi-
cogenomics Database9 and PubChem10.

8http://bioportal.bioontology.org
9http://ctdbase.org

10https://pubchem.ncbi.nlm.nih.gov
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Type Entities Codes Sources

Diseases 126573 5 4

Drugs 344238 7 5

Genes 946584 3 4

Table 2: Resources used for normalization.

For each entity, regardless of whether it
is a drug, disease or gene/protein, the fol-
lowing information was collected: (1) a term
or description of the underlying concept (e.g.
”Hydroxychloroquine”) ; (2) a list of syn-
onyms that holds all possible related words
present for a given term (e.g. ’Oxichloro-
quine’, ’Polirreumin’); (3) a semantic type
(e.g. ’Pharmacologic Substance’ ) and (4) a
list of identifiers based on MeSH, CUI, ATC,
or any other more specific database cross
references (e.g. mesh id:D006886, cid:3652,
atc:P01BA02 ). The range of possibilities to
refer to the same element (i.e by code, term
or synonym) allow choosing the one with the
higher score between different search crite-
ria (e.g. terms or synonyms; strict or similar
matches) and filtering criteria (e.g. based on
word order, or single terms). The result with
the higher score is considered.

3.1 Diseases

Four different sources were merged in the
same index to normalize disease terms based
on the mappings between their codes and the
medical terms used to represent them.

MeSH - Diseases: Medical Subject
Headings11 is a thesaurus with hierarchi-
cal and controlled vocabulary produced by
the National Library of Medicine (NLM).
This thesaurus includes thousands of terms
regarding to several semantic types with
disease-related terms among them. BioPortal
includes an ontology version of this thesaurus
from which we have extracted disease-related
terms attending to the UMLS Semantic Type
each term belongs to.

CTD - Diseases: CTD’s MEDIC dis-
ease vocabulary is a modified subset of the
“Diseases” branch of the NLM’s MeSH, com-
bined with genetic disorders from the Online
Mendelian Inheritance in Man12 (OMIM)
database. These terms have been merged
with the previous ones through an outer join
on MeSH IDs.

DOID: The Human Disease Ontology

11https://www.nlm.nih.gov/mesh
12https://www.omim.org

(Schriml et al., 2012) is a comprehensive
knowledge base of inherited, developmental
and acquired human diseases. It integrates
terms from a wide range of medical vocab-
ularies such as MeSH, SNOMED, NCI, or
OMIM, and has been used to extend terms
which were not previously captured by the
other sources. The way this was done is
through an outer join on MeSH IDs.

ICD-10-CM: The International Classifi-
cation of Diseases is a hierarchical classifica-
tion listed by the World Health Organization
(WHO), in which are encoded a wide range of
signs, symptoms, abnormal findings, causes
of damage, diseases, and/or other disease-
related terms. The ICD-10-CM is the 10th
version of this classification with a Clinical
Modification of the source. Since this clas-
sification is used in its proper BioPortal on-
tology, further mapping concepts are added,
which is the case of Unified Medical Lan-
guage System identifiers (CUIs). The way
this source extends the previous sources is
through this CUI since not MeSH IDs are in-
cluded. For that purpose, an outer join on
this id was done.

3.2 Drugs

Five sources were considered to merge chemi-
cal terms in a shared index. The main objec-
tive was to capture the wide range of possible
chemical mentions that this entity class can
support

PubChem: PubChem is the world
largest chemistry open database maintained
by the National Institute of Health (NIH).
Among the classification systems offered to
organize the chemical entities, we used the
MeSH hierarchy for our database. Approxi-
mately 130000 terms were considered which
is expected to have the most widely adopted
chemical terms within all the collection.

ChEBI: ChEBI is a chemical database
mainly focused on small chemical compo-
nents of molecular entities and therefore it
complements other types of terms considered
in the rest of sources. Any biological or
synthetical component present in biological
organisms is aimed to be captured on this
database. An outer join on InChIKey was
used for connecting these terms with the ones
present in the previous source. InChIKey is a
hashed key of InChI, an International Iden-
tifier for chemicals, which offers an IUPAC
identifier for an standardized codification of
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chemicals.
MeSH - Chemicals: MeSH also includes

thousands of terms regarding to chemical-
related terms. The ontology version in Bio-
Portal has been used to extract chemical-
related terms attending to the UMLS Se-
mantic Type each term belongs to. Since
PubChem already includes MeSH terms, this
source has been just used to add MeSH IDs
and extend information from the previous
terms. This source was combined with the
previous ones through checking if the term is
found either on term field or on the synonyms
list. If it is not found, it has been appended
to chemical terms.

CTD - Chemicals: Database that incor-
porates terms from multiple chemical sources
and therefore it has been used for comple-
menting previously existent processed terms.
It also helps to extend the retrieved informa-
tion about previously considered terms. Non
previously found terms have been appended
from this source.

ATC: Classification of pharmacological
substances organized in therapeutic levels.
The ontology version of BioPortal has been
the source considered for ATC since it in-
corporates further information and relations
with other terms. Information regarding
ATC level and ATC code was added to the
previously considered terms. If the term is
not present, it has been appended.

3.3 Genetics

This entity class is composed of a broad se-
mantic type since it includes both gene and
proteins-related terms. They are close se-
mantic types and even in some occasions the
use of the same expressions is diffuse. This
has led to a wide range of terms within this
entity class in which four large and comple-
mentary sources were merged in the same
index to cover the biggest amount of entity
variability possible.

GO: The knowledgebase underlying the
Gene Ontology (Ashburner et al., 2000) is the
largest source for the functions of genes and
therefore it has been used aiming to capture
terms related to genetic mechanisms.

OGG: The Ontology of Genes and
Genomes (He, Liu, and Zhao, 2014) collects
genes and genomes of certain organisms such
as humans, virus and bacteria. Mappings to
multiple sources are found in the BioPortal
ontology.

Entities
Coverage Normalization

(%) (%)

Diseases 18,355 49.4 4.2

Drugs 55,120 15.1 22.3

Genes/Proteins 79,063 16.6 9.1

Table 3: CORD-19 statistics (January-2022). To-
tal number of appearances (Entities), diversity
(Coverage) and standardization (Normalization)
ratio.

PR: The Protein Ontology (Natale et al.,
2017) contains a wide range of protein-related
entities along with relations between them.
This source contains a large amount of terms
that covers the protein part.

CTD - Genes: It contains a vocabu-
lary retrieved from multiple sources with a
great variety of genes in multiple species.
It has been used to extend the gene terms
which were not previously captured, append-
ing non-retrieved genes.

4 CORD-19 Entities

The BioNER+BioNEN system described in
this paper was used to identify and normalize
the drugs, diseases and genetic-related terms
mentioned in the CORD-19 corpus (January
2022 Edition). The recognition process was
time consuming (approximately 48 days) in
a server composed by a 32 CPU-cores In-
tel Xeon with 256GB RAM. The lack of
GPUs made the process considerably slower
(i.e. 1173hours at a rate of 0,4s/task )
since it requires matrix computation for the
transformer-based language models, one for
each biomedical concept. The source code is
publicly available 13.

Entity recognition and normalization was
done for each paragraph of the scientific
article. A first group of labels is created to
identify the medical terms as they appear
in the text (i.e. diseases ss, chemicals ss,
genetics ss), and in a standardized way
(i.e. disease terms ss, chemical terms ss,
genetic terms ss). In the case of diseases and
genes/proteins, a predefined category is also
established during the normalization process
(i.e. disease types ss, genetic types ss).
The following group of labels contains the
codes for each of the classification systems
described in Section 3 (i.e. mesh codes ss,
atc codes ss, cid codes ss, doid codes ss,
cui codes ss, icd10 codes ss, icd9 codes ss,

13https://github.com/drugs4covid/cord-19
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gard codes ss, snomed codes ss, nci codes ss,
ncbi codes ss, uniprot codes ss). The suffix
ss in all tags indicates that the format is a
textual list (i.e. string sequence).

Table 3 shows some statistics about entity
classes once the corpus was processed. As ex-
pected, almost half of the paragraphs contain
at least one mention of a disease or symptom
(see column Coverage), while drugs, genes
or proteins appear less frequently. This is
strongly influenced by the criteria used by
Allen AI to create the CORD-19 corpus, as
they filter articles that contain coronavirus-
related terms in their title or abstract. This
guide the content of the article and also ex-
plains why the variety of disease and symp-
tom entities (see column Entities) is far infe-
rior to drugs and genetic information. How-
ever, what is striking is the high rate of stan-
dard terms (according to our model) used to
refer to drugs, with respect to the rest of
biomedical entities. Column Normalization
shows the ratio of entities mentioned in the
text using any of the terms extracted from
the classification systems described in section
3. We think that there is more flexibility in
scientific texts to refer to symptoms or dis-
eases than to drugs or active ingredients, with
respect to the standards (e.g. ATC, MeSH,
ICD-10 or SNOMED mainly). Regarding ge-
netic information, perhaps the cause lies in
the precision in the recognition of the bound-
ary that defines the entity, being sometimes
eliminated part of the chemical expression of
the entity itself.

Table 4 shows the most widely captured
entities according to the following classi-
fication systems: ICD-10, MeSH, ChEBI,
ATC, MedGen (CUID), GARD, NCBI and
SNOMED. Jointly with the code and descrip-
tion of the entity, the occurrences of these
words are given (column Ratio). This allows
us to have an idea about the relevance of the
concept in the corpus with respect to the rest
of the concepts of the same classification sys-
tem. In top positions we can find general con-
cepts related to respiratory difficulties. As we
go down in the top, more specific terms begin
to appear. In the systems that cover diseases
such as MeSH or ICD-10, we can find as the
most relevant concept the COVID-19 disease,
as expected, and the related symptoms (e.g.
U07.1 in ICD-10, D000086382 in MeSH or
C5203670 in MedGen). The systems more
oriented to chemicals identify substances re-

lated to respiratory disorders (e.g. Dioxyegn
in ChEBI or Oxygen in ATC). And the sys-
tems focused on genetic and protein informa-
tion show, with similar relevance, the path-
ways of the coronavirus (e.g. Angiotensin
converting enzyme 2, Interleukin-6 or Inter-
feron in NCBI).

Thanks to the normalization process that
we incorporate in our entity recognition sys-
tem, we can use the hierarchies defined in
the underlying classification system to estab-
lish more or less general labels. For exam-
ple, the Anatomical Therapeutic Chemical
(ATC) classification system, which is sup-
ported by the World Health Organization
(WHO) and widely used in hospital pharma-
cies to identify drug components, organizes
active substances according to the organ or
system on which they act and their thera-
peutic, pharmacological, and chemical prop-
erties. Drugs are classified into groups at five
different levels. The first one corresponds to
main groups, the second one to pharmacolog-
ical or therapeutic subgroups, the third and
the fourth one are chemical-pharmacological-
therapeutic subgroups and the last one is the
chemical substance. Once the code of a drug
has been identified in this classification sys-
tem, we can extend the labels of the text with
those groups of the hierarchy, enabling addi-
tional ways of exploiting the results of the
annotation process.

In the following experiment we want to
take advantage of the labels generated by our
system to find evidence about the anatom-
ical behavior of drugs used to treat coron-
avirus. We do not know a priori which groups
of drugs are related in this domain, and we
assume that an evidence implies the joint
presence of several groups in the same para-
graph. Since the ATC classification system
is hierarchical and establishes 14 anatomic
groups at the first level of drug organiza-
tion, we can create a matrix with the para-
graphs where drugs are mentioned and the
anatomic groups to which they belong. Fig-
ure 3 shows the correlation between each
of these anatomical groups based on anal-
ysis of mentions of drugs in texts. It can
be seen how the highest correlation exists
between drugs associated with Sensory or-
gans and Anti-infectives for systemic use.
This may be due to the fact that many of
the anti-infective active substances used sys-
temically (i.e. orally or intravenously) are
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Entity

Ratio Code Description

ICD-10

51.1 U07.1 COVID-19

8.0 J12.81 Pneumonia due to SARS-associated coronavirus

3.7 J11.1 Influenza due to unidentified influenza virus with other respiratory manifestations

3.3 A79.0 Trench fever

3.2 F53.0 Postpartum depression

MeSH

34.0 D000086382 COVID-19

11.1 D000085343 Latent Infection

4.5 D018352 Coronavirus Infections

3.9 D003643 Death

3.7 D045169 Severe Acute Respiratory Syndrome

ChEBI

8.8 15379 Dioxygen

5.2 33708 Amino-acid Residue

3.8 172234 TG(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/24:1(15Z))

3.2 30879 Alcohol

2.9 5801 Hydroxychloroquine

ATC

14.6 V03AN01 Oxygen

6.4 V04CA02 Glucose

4.9 P01BA02 Hydroxychloroquine

3.0 A12AA Calcium

2.8 V03AN04 Nitrogen

MedGen (CUI)

40.6 C5203670 COVID-19

13.2 C0872054 Latent Infection

6.4 C1175175 Severe acute respiratory syndrome

4.3 C3714514 Infection

3.0 C0003467 Anxiety

GARD

26.9 9237 SARS

11.7 5698 Acute respiratory distress syndrome

5.9 6427 Farmer’s lung

4.1 2035 Lymphatic filariasis

2.9 6254 Dengue fever

NCBI

6.6 59272 Angiotensin converting enzyme 2

5.5 100628202 Interleukin-6

4.5 100304604 Interferon

4.3 101180090 Immunoglobulin G level

4.0 7124 tumor necrosis factor

SNOMED

57.4 840539006 Disease caused by 2019 novel coronavirus (disorder)

6.3 398447004 Severe acute respiratory syndrome (disorder)

4.2 155559006 Influenza (disorder)

4.1 266391003 Pneumonia and influenza or pneumonia (disorder)

3.8 82214002 Trench fever (disorder)

Table 4: Presence (Ratio) of the most frequent entities (Code) organized by coding system.

also categorized within the sensory organs
group, for example the Ciprofloxacin, since
they can also be administered by the otic or
ophthalmic route. Thanks to the tags cre-
ated by our system, it is sufficient to fil-
ter the paragraphs labeled with the ATC
codes ’S’ (i.e Sensory organs) and ’J’ (i.e.
Anti-infectives) to find the candidates for ev-
idence. The other most notable correlation is
between Anti-infectives for systemic use and
Anti-parasitic products. It could be explained
because the anti-infective drugs used for par-

asites are classified as anti-parasitic products,
and the active substances most used exper-
imentally for the treatment of coronavirus
were found within these categories, such as
Lopinavir/Ritonavir (anti-infective) and Hy-
droxychloroquine (anti-parasitic). Again, we
can take advantage of the tags in our system
to find texts in the articles that help us vali-
date this assumption.

173

An Overview of Drugs, Diseases, Genes and Proteins in the CORD-19 Corpus 



Figure 3: Correlation matrix of ATC data at Anatomical group level.

5 Conclusions

We have created a corpus with the diseases,
drugs, genes, and proteins mentioned in the
paragraphs of the articles in the January edi-
tion of the CORD-19 corpus. It contains not
only the biomedical entities, but also their
normalized references based on several cu-
rated databases such as MeSH, ICD-10, ATC,
ChEBI or SNOMED. The generated corpus is
publicly available and is updated periodically
to take up changes in the CORD-19 dataset.

An analysis has been carried out on this
corpus to measure the presence and degree of
normalization of each type of biomedical en-
tity. As expected, practically half of the para-
graphs contain some reference to a disease or
symptom. However, only 4% of them were
mentioned using any of the standard codes
or alias. The behavior in genes and proteins
is similar although much lower in terms of
presence. Drugs are the least present and
most varied type of entity in the corpus. The
correlation between the anatomical groups of
the drugs has also been measured to value the
usefulness of the tags created. The procedure

to easily extract the evidence, i.e. paragraphs
where the groups are mentioned, is also de-
scribed.

Our biomedical named entity recognizer
created to produce the tags is also described.
It is based on the pre-trained BioBERT lan-
guage model and combines three different
models each of them specialized in the recog-
nition of a different biomedical entity: dis-
ease, drug and gene/protein. In the future
we want to explore the ability of the tags
to produce knowledge, either to organize en-
tities or to discover relationships that may
arise between them, and to take advantage
of the knowledge acquired to create a Span-
ish BioNER+BioNEN model.
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