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Abstract: In this article we have presented a contribution to the prediction of the
complexity of simple words in the Spanish language whose foundation is based on
the combination of a large number of features of different types. We obtained the
results after run the fined models based on Transformers and executed on the pre-
trained models BERT, XLM-RoBERTa, and RoBERTa-large-BNE in the different
datasets in Spanish and executed on several regression algorithms. The evaluation of
the results determined that a good performance was achieved with a Mean Absolute
Error (MAE) = 0.1598 and Pearson = 0.9883 achieved with the training and evalu-
ation of the Random Forest Regressor algorithm for the refined BERT model. As a
possible alternative proposal to achieve a better prediction of lexical complexity, we
are very interested in continuing to carry out experimentations with data sets for
Spanish, testing state-of-the-art Transformer models.
Keywords: Lexical Complexity, Prediction, Encodings, Transformers.

Resumen: En este art́ıculo hemos presentado una contribución a la predicción de
la complejidad de palabras simples en lengua española cuyo fundamento se basa en
la combinación de un gran número de caracteŕısticas de distinta naturaleza. Obtuvi-
mos los resultados después de ejecutar los modelos afinados basados en Transformers
y ejecutados sobre los modelos pre-entrenados BERT, XLM-RoBERTa y RoBERTa-
large-BNE en los diferentes conjuntos de datos en español y corridos con varios
algoritmos de regresión. La evaluación de los resultados determinó que se logró un
buen desempeño con un Error Absoluto Medio (MAE) = 0.1598 y Pearson = 0.9883
logrado con el entrenamiento y evaluación del algoritmo Random Forest Regressor
para el modelo BERT afinado. Como posible propuesta alternativa para lograr una
mejor predicción de la complejidad léxica, estamos muy interesados en seguir real-
izando experimentaciones con conjuntos de datos para español probando modelos
de Transformer de última generación.
Palabras clave: Complejidad Léxica, Predicción, Incrustaciones de Palabra, Trans-
formadores.

1 Introduction

A common assumption is that people who are
familiar with the vocabulary of a text can
often understand the meaning of the words,
even if they have difficulty with grammati-
cal structures (Uluslu, 2022). The task of
detecting in the content of the documents
the words that are difficult or complex to
understand by the people of a given group

is known as Complex Word Identification -
CWI (Rico-Sulayes, 2020) and it is a task
that constitutes a fundamental step in many
applications related to natural language, such
as Text Simplification. Automatic lexical
simplification can then become an effective
method of making the text accessible to dif-
ferent audiences (Uluslu, 2022).

Deep learning and its revolutionary tech-
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nology constitute the new state of the art in
various Natural Language Processing (NLP)
tasks (Singh and Mahmood, 2021), in which
lexical complexity prediction (LCP) is no ex-
ception (Nandy et al., 2021). It is impor-
tant to point out that, after the comparison
and analysis of other approaches versus deep
learning approaches, a viable path of pos-
sible solutions is generated for low-resource
languages where deep models are not always
available or work as well as those of deep
learning in English language. Likewise, it
should be taken into account that the com-
putational requirements for the application
of deep learning models turn out to be sig-
nificantly higher compared to those used in
traditional approaches (Bender et al., 2021).

The field of NLP has shown incredible
progress in the last two years, this is par-
ticularly due to the Transformer architecture
(Vaswani et al., 2017) that takes advantage
of large amounts of unlabeled text corpus
(Canete et al., 2020). Deep learning mod-
els show significant improvement over shal-
low machine learning models with the rise
of transfer learning and pretrained language
models. The deep learning pretrained lan-
guage models, BERT and XLM-RoBERTa,
are considered state-of-the-art in many NLP
tasks (Yaseen et al., 2021).

We present our approach aimed at pre-
dicting the complexity score for single words
in the Spanish language, since resources are
scarce and are not as numerous as those avail-
able for the English language.

Our model leverages the combination of
advanced NLP techniques of deep learning
models based on Transformers: BERT (Liu
et al., 2019), XLM-RoBERTa (Conneau et
al., 2019), RoBERTa-large-BNE (Gutiérrez-
Fandiño et al., 2021) and pre-trained word
embeddings together with a set of textual
complexity features made by hand (Hand-
Crafted Features). For this, we use the cor-
pus in Spanish CLexIS2 corpus proposed by
(Zambrano and Montejo-Ráez, 2021). Our
challenge is achieving to improve the lexical
complexity prediction implementing a fine-
tuned model on a previously trained model,
for which, we follow the research done by
(Rojas and Alva-Manchego, 2021).

The models used achieve a good perfor-
mance shown in the results with a MAE =
0.1592 and a Person correlation 0.9883 for the
identification of simple complex words.

2 Related Work

In past decades, the application of very sim-
ple metrics such as calculating the number of
syllables in words (Mc Laughlin, 1969) or ver-
ifying whether the word was part of a specific
list to classify it as easy or complex (Dale and
Chall, 1948) were the techniques that were
applied in text legibility tasks.

After, the systems based on the charac-
terization of words (using contextual, lex-
ical and semantic characteristics) and the
application of a Random Forest classifier
(Breiman, 2001) to determine whether a
word is complex or not are presented. A
total of 45 handwritten features were com-
puted in these systems, and each word was
modeled as a feature vector. Surface func-
tions (three functions), dependency tree func-
tions (eight functions), Corpus-based func-
tions (fifteen functions), WordNet functions
(eleven functions), and WordNet and corpus
frequency functions (four functions) were ap-
plied. The best result obtained was a Preci-
sion value of 0.186, a Recall of 0.673, a G-
score of 0.750 99 and an F-score of 0.292.

The investigations in the last years are
directed to the Identification of Complex
Words - CWI. The objective of these applica-
tions is to be able to predict the complexity
of words based on the construction of their
features, as exposed in the work carried out
by (Shardlow, Cooper, and Zampieri, 2020)
presenting their approach on a set of features
of word embeddings from Glove, InferSent,
and various linguistic features obtained as
predictive sources of lexical complexity, such
as word frequency, word length, or number
of syllables. Then, they trained a linear re-
gression model using different subsets of func-
tions, obtaining as a result an MAE = of
0.0853.

(Shardlow et al., 2021) developed a system
for predicting word complexity for the shared
LCP task hosted on SemEval 2021 where
task organizers distributed to participants
the CompLex corpus (Shardlow, Cooper, and
Zampieri, 2020) but in its augmented version.
The task was located on the Lexical Seman-
tics track, which consisted of predicting the
complexity value of words in context.

(Ortiz-Zambrano and Montejo-Ráez,
2021) Carried out a machine learning
approach that was based on 15 linguistic
features obtained at the word level and
their environment. Trained a supervised
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random forest regression algorithm on the
set of features. Several runs were made with
different values to observe the performance
of the algorithm. The best results achieved
were a MAE = 0.07347, MSE = 0.00938 and
RMSE = 0.096871.

In our approach, we review the use of
word embeddings from the pre-trained and
fine-tuned models, and compare them to a
broader list of linguistic features at the lexi-
cal level. Our objective is to provide an ex-
haustive evaluation that shows more clearly,
the executions carried out on several differ-
ent data sets in the Spanish language, how
the lexical features together with the deep
encodings contribute to the prediction of lex-
ical complexity.

3 Materials and Method

This section briefly details about the pre-
trained models and their application for the
generation of encodings at both the sentence
and word levels. Likewise, the data sets that
have been used in the different experiments
are presented. Finally, the different classi-
fication algorithms and the applied features
are shown.

3.1 Dataset

The CLexIS2 corpus was elaborated with
the transcripts of the recorded classes of
the professors of the degrees of Computer
Systems Engineering and Software Engineer-
ing, two degrees that belong to the Fac-
ulty of Mathematical Sciences of the Univer-
sity of Guayaquil (Ecuador) (Zambrano and
Montejo-Ráez, 2021).

CLexIS2 has become a resource of great
interest and importance, due to the fact that
there are few resources in Spanish available
for NLP researchers1, and some of them do
not usually contain annotations that facili-
tate the development of NLP models (David-
son et al., 2020). For its construction, the
collection presented in the ALexS 2020 com-
petition at IberLEF 2020 (Ortiz-Zambranoa
and Montejo-Ráezb, 2020) was taken as a ref-
erence.

Annotated words as complex have an as-
sociated level of complexity, computed based
on the number of annotators that agreed to
consider it as a complex word. Therefore,
the task we are facing here can be faced as

1CLexIS2 - https://osf.io/kfpc9/?viewonly =
18ae61a2049a48cb91c6773d53fb8ac2

a regression problem, so error metrics will be
used to evaluate different systems.

Table 1 shows some statistics on different
type of words present in the CLexIS2 dataset.

3.2 Transformer based language
models

The models were taken from the Transform-
ers2 library.

• The pre-trained BERT model that we
chose was the one that the Spanish com-
munity uses mostly in research work
to date, which is bert-base-uncased
(BETO) (Canete et al., 2020).

BERT-base model has the number of
layers L=12, the hidden size H=768,
the number of self-attention heads
A=12,and Total Parameters=110M.

BERT-large model has the number of
layers=24, the hidden size=1024, the
number of self-attention heads=16, and
Total Parameters=335M (Conneau et
al., 2019).

• The -RoBERTa model applied was xlm-
roberta-base (Conneau et al., 2019).

The XLM-RoBERTa-base model has
the number of layers L=12, the hid-
den size H=768, the number of self-
attention heads A=12,and Total Param-
eters=270M.

XLM-RoBERTa-large model has the
number of layers L=24, the hidden
size H=1024, the number of self-
attention heads A=16, and Total Pa-
rameters=550M (Conneau et al., 2019).

• The RoBERTa-large-BNE model used
was PlanTL-GOB-ES/roberta-large-bne
being the largest Spanish-specific model
to date (Gutiérrez-Fandiño et al., 2021).

XLM-RoBERTa-large is a transformer-
based masked language model for the
Spanish language. It is based on the
RoBERTa large model3.

The RoBERTa-large-BNE model has
the number of layers L=24, the hid-
den size H=1024, the number of self-
attention heads A=16,and Total Param-
eters=335M(Conneau et al., 2019).

2https://huggingface.co/
3https://huggingface.co/PlanTL-GOB-

ES/roberta-large-bne
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Number of Count
Sum. of content words (verbs, adjectives and nouns) 153,885
Different content words 200,785
Rare words (low frequency in CREA corpus (Saggion et al., 2015)) 143,464
Sentences 9,756
Complex sentences 4,101
Total words 300,420

Table 1: Volumetrics for CLexIS2.

3.3 Experiments design

Our purpose is to demonstrate how the com-
bination of different types of features con-
tribute to a better performance in predicting
lexical complexity. We base our proposal on
several of the works presented at the Inter-
national Workshop on Semantic Evaluation -
SemEval-2021 (Shardlow et al., 2021) where
a total of 198 teams were presented, of which
54 teams officially sent their executions4; but
the work that most attracted us due to its
methodology was the experimentation car-
ried out by (Zaharia, Cercel, and Dascalu,
2021) about Combining Deep Learning and
Hand-Crafted Features for Lexical Complex-
ity Prediction.

The figure 1 presents the workflow of
the process executed to obtain of the Lexi-
cal Complexity Prediction. First, we chose
the data sets for training were: the first
data set was made up of the linguistic fea-
tures made by hand - Hand-Crafted Fea-
tures (HCF) and the second data set was
made up of the Transformers encodings from
the models: BERT in Spanish, multilin-
gual XLM-RoBERTa and RoBERTa-grande-
BNE. Next, we applied a fitted model on top
of the previously trained model to demon-
strate how running the fitted model on the
previously trained model contributed to more
accurate LCP results as see figure 1.

Finally, the different supervised learning
algorithms were executed on the training
data set to evaluate which of them achieved
the best prediction score. Triple cross-
validation was performed to ensure that the
partitions contained independent data for
training and testing. We have used some
metrics that were applied to the results of
the experiments presented in Sem-Eval 2021
(Shardlow et al., 2021), which are appropri-
ate for evaluating continuous and classified
data, such as: MAE, MSE, RMSE and Pear-

4https:// semeval.github.io/SemEval2021/tasks

son’s correlation.

3.3.1 Features

• Hand-Crafted Features - HCF

To obtain the morphological aspects of the
text, we perform several experiments apply-
ing a total of 23 linguistic features and com-
bine them with the word and sentence em-
beddings of previously trained deep learning
models.

We have considered the 15 HCF pro-
posed by (Ortiz-Zambrano and Montejo-
Ráez, 2021) and added a sets of features
computed from POS categories counts (Vet-
tigli and Sorgente, 2021), (Liebeskind, Elka-
yam, and Liebeskind, 2021), giving a to-
tal of 23 Hand-Crafted Features. We used
the Spacy library together with the model
es core news sm to extract these features.
All these features were normalized with a z-
score transformation before passing them to
the learning algorithm.

1. Absolute frequency : the absolute fre-
quency.
The frequency of words is a measure that
serves as an indicator of lexical com-
plexity. If in common parlance a word
occurs frequently, it is more likely to
be recognized (Rayner and Duffy, 1986)
and (Shardlow, Cooper, and Zampieri,
2020).

2. Relative frequency : the relative fre-
quency of the target word.

3. Word length: the number of characters
of the token. The length of the word
was calculated in number of its charac-
ters. It is often the case that longer
length words are more difficult to pro-
cess and can therefore be considered
complex. (Shardlow, 2013) (Shardlow,
Cooper, and Zampieri, 2020) (Paetzold
and Specia, 2016).
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Figure 1: Representation of the workflow to obtain the Lexical Complexity Prediction.

4. Number of syllables: the number of syl-
lables. A good estimate of complexity
is the number of syllables contained in a
word (Shardlow, 2013) (Ronzano et al.,
2016) (Shardlow, Cooper, and Zampieri,
2020) (Paetzold and Specia, 2016).

5. Target word position (token-position):
the position of the target word in the
sentence. Position of the word (Word-
Position) (Shardlow, 2013) (Ronzano et
al., 2016).

6. Number of words in the sentence : num-
ber of words in the sentence. Words in
sentence (NumSentenceWords) (Shard-
low, 2013) (Ronzano et al., 2016).

Based on the work proposed by (Ron-
zano et al., 2016) in the exploring lin-
guistic features for lexical complexity
prediction.

7. Part Of Speech (POS): the Part Of
Speech category.

8. Relative frequency of the previous token:
the relative frequency of the word before
the token.

9. Relative frequency of the word after the
token: the relative frequency of the word
after the token.

10. Length of previous word : the number of
characters in the word before the token.

11. Length of the after word : the number of
characters in the word after the token.

12. Lexical diversity - MTDL: the lexical di-
versity of the target word in the sen-
tence.

Additionally, the following WordNet fea-
tures were also considered for each tar-
get word, as in the works carried out by
(Gooding and Kochmar, 2018):

13. Number of synonyms.

14. Number of hyponyms.

15. Number of hyperonyms.

We follow the recommendations of
(Paetzold and Specia, 2016), (Ronzano et
al., 2016), (Gooding and Kochmar, 2018),
(Liebeskind, Elkayam, and Liebeskind,
2021), (Desai et al., 2021) with the aim of
improving results, generating 8 new features
originating from the POS, which were:

1. PROPN - Number of pronouns within
the sentence.

2. AUX - Number of auxiliaries within the
sentence.

3. VERB - Number of verbs within the sen-
tence.

4. ADP - Number of adverbs within the
sentence.

5. NOUN - Number of nouns within the
sentence.

6. NN - Number of Nouns, singular or mas-
sive.
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7. SYM - Number of symbols within the
sentence.

8. NUM - Number of numbers within the
sentence.

• BERT vector: The bert-base-uncased
model from the Hugging Face trans-
former library (Wolf et al., 2020) was ap-
plied. We took all the 768-dimensional
numerical representation produced by
the pre-trained and fine-tuned BERT
model (Devlin et al., 2018) and added
the twenty-three Hand-Crafted Features
obtaining a dataset with a total of 1559
linguistic features of different nature.

• XLM-RoBERTa vector: As in the
case of the BERT model, we take all
the 768-dimensional numerical repre-
sentation produced by the pre-trained
RoBERTa model (Conneau et al., 2019)
in the different combinations of sentence
and target word encodings, for both the
pre-trained model and the model fine-
tuned, reaching a total of 1559 linguistic
characteristics of different nature.

• RoBERTa-large-BNE vector: Re-
garding this model, we take all the 1024-
dimensional numerical representation
produced by the pre-trained RoBERTa-
large-model model (Gutiérrez-Fandiño
et al., 2021), in the same way that they
were applied in the previous models, the
data sets were made up of for the differ-
ent combinations of sentence and target
word encodings, for both the pre-trained
model and the fine-tuned model, reach-
ing a total of 2071 linguistic characteris-
tics of different nature.

3.3.2 Machine Learning Algorithms

Similar to the work done by (Zaharia, Cer-
cel, and Dascalu, 2021) in the case of the al-
gorithms, the training and evaluation of the 
different c ombinations o f t he s ets w as car-
ried out with a total of eight supervised al-
gorithms for the regression, these are:

1. AdaBoost - AB (Paetzold, 2021).

2. Desicion Tree - DT (Shardlow, Evans,
and Zampieri, 2021).

3. Gradient Boosting - GB (Vettigli and
Sorgente, 2021).

4. Stochastic Gradient - SG (Bottou,
2010).

5. Nearest Neighbors - KNN (Liebeskind,
Elkayam, and Liebeskind, 2021).

6. Support Vector Machines - SVM (Liebe-
skind, Elkayam, and Liebeskind, 2021).

7. Passive Aggressive - PA (Crammer et al.,
2006).

8. Random Forest - RF) (Zaharia, Cercel,
and Dascalu, 2021), (Desai et al., 2021).

Several experiments were carried out for
each of the datasets where different config-
urations were explored for each of the algo-
rithms. We apply the default values for the
algorithms except for the case for tree-based
algorithms, achieving to determine the best
hyper-parameters with the following number
of nodes:

• AdaBoost with 100 nodes.

• Random forest with 241 nodes.

• Gradient Boosting algorithm with 350
nodes.

4 Results

4.1 Features Sets

We build several datasets composed of the
combination of the features described above
to run them on the pre-trained models. The
table 2 table presents the description of the
abbreviations that will be used for a better
understanding of the features applied to the
data sets. The detail below:

• The Hand-Crafted Features with the fea-
tures coming from the 768-dimensional
vector of the initial [CLS] token as sen-
tence embeddings (BERTsent).

• The Hand-Crafted Features with the
768-dimensional vector corresponding to
the target token as word embeddings
(BERTword).

• The Hand-Crafted Features with encod-
ings of the [CLS] token and encodings of
the target token.

• The encodings of the [CLS] token.

• The encodings of the target token.

• The encodings of the [CLS] token with
the encodings of the target token.
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Features identifier Description

HCF Hand-Crafted (linguistic) Features.
BERTsent Sentence encodings from BERT models.
BERTword Token encodings from BERT models.
XLMRsent Sentence encodings from XLM-RoBERTa model.
XLMRword Token encodings from RoBERTa model.
RBNEsent Sentence encodings from RoBERTa-large-BNE model.
RBNEword Token encodings from RoBERTa-large-BNE model.

Table 2: Description of the Feature sets.

For the evaluation of the trained and
fine-tuned models, those that were widely
applied to LCP for the shared LCP task
hosted in SemEval 2021: Mean Absolute Er-
ror (MAE), Mean Square Error (MSE), Root
Mean Square Error (RMSE) and Pearson cor-
relation (Shardlow et al., 2021).

4.2 BERT model pre-trained

The table 3 shows the eight best perfor-
mances corresponding to different combina-
tions of features described in section 4.1 exe-
cuted with BERT pre-trained.

As we can see in the three best results in
predicting lexical complexity were achieved
by the ABR and SVR algorithms. The best
performance was achieved by the ABR - Ad-
aBoost algorithm presenting the best predic-
tion for the Spanish language with a MAE =
0.1632 and a Pearson = 0.999 in the execu-
tion with the data set made up of the com-
bination of the features generated at the sen-
tence level and at the word level - BERTsent⊕
BERTword.

4.3 BERT model fine-tuned

We have applied the fine-tuned BERT model
on top of the pre-trained BERT model for
the purpose of the results. The table 4 shows
the eight best executions, positioning RFR
- Random Forest Regressor algorithm and
the GBR - Gradient Boosting Regressor al-
gorithm in the first places.

The best performance was obtained with
the dataset composed of the combination of
the features with target word encodings to-
gether with sentence encodings from BERT
fine-tuned. The same combination of fea-
tures achieved the best performance in the
pre-trained model, but with lower results.

It should be noted that the RFR algorithm
does not appear within the top eight places in
the execution of the pre-trained model, but it

achieves its best result when the model is re-
fined, placing first and third within the three
best executions tuned. RFR presented the
best prediction for the Spanish language with
a MAE = 0.1592 and a Pearson = 0.988 com-
bining BERTsent⊕ BERTword.

4.4 XLM-RoBERTa model
pre-trained

Similar to the BERT model, the top eight
sites were taken from all the runs that were
done on the different data sets. The results
of the best place for the pre-trained XLM-
RoBERTa model were achieved by the ABR
- AdaBoots algorithm with a MAE = 0.1623
and a Pearson = 0.9973 result of the combi-
nation of the features with target word and
sentence encodings together with the HCF
- XLMRsent⊕ XLMRword⊕ HCF, as can be
seen in the table 5. It can be clearly shown
that the pre-trained XLM-RoBERTa model
has a better performance compared to the
pre-trained BERT model, achieving a better
prediction of Lexical Complexity.

4.5 XLM-RoBERTa model
fine-tuned

We also highlight that in the execution of
the XLM-RoBERTa tuned model, it achieved
a significant improvement compared to the
results of the pre-trained model, reaching
a MAE = 0.1601 and a Pearson = 0.998
as result of the combination of the features
with target word encodings together HCF -
XLMRword⊕ HCF. See table 6.

Comparing the results of the BERT and
XLM-RoBERTa both tuned models, BERT
tuned is so far the one that has an important
performance achieved by a MAE = 0.1592
with the execution of the RFR algorithm
combining BERTsent⊕ BERTword.
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BERT model pre-trained with CLexIS2

Features Alg MAE MSE RMSE Pearson

BERTsent⊕ BERTword ABR 0,1632 0,0502 0,2343 0,9999
BERTword SVR 0,1634 0,0432 0,2074 0,9023
BERTword ABR 0,1643 0,0512 0,2332 0,9947
BERTword GBR 0,1653 0,0494 0,0447 0,6977
BERTword⊕ HCF GBR 0,1655 0,0454 0,2088 0,7040
BERTsent⊕ BERTword⊕ HCF GBR 0,1659 0,0418 0,2074 0,7147
BERTsent⊕ BERTword GBR 0,1694 0,0444 0,2039 0,7167
BERTsent⊕ BERTword⊕ HCF ABR 0,1699 0,0554 0,2334 0,9939

Table 3: Results of the model BERT pre-trained with features of different nature.

BERT model fine-tuned with CLexIS2

Features Alg MAE MSE RMSE Pearson

BERTsent⊕ BERTword RFR 0,1592 0,0379 0,1982 0,9883
BERTsent⊕ BERTword⊕ HCF GBR 0,1600 0,0367 0,1979 0,8202
BERTsent⊕ BERTword⊕ HCF RFR 0,1610 0,0401 0,1988 0,9987
BERTsent⊕ BERTword⊕ HCF ABR 0,1610 0,0506 0,2242 0,9998
BERTsent⊕ BERTword⊕ HCF ABR 0,1621 0,0487 0,2300 0,9999
BERTword⊕ HCF GBR 0,1622 0,0430 0,1984 0,8983
BERTword SVR 0,1622 0,0429 0,2018 0,9183
BERTword GBR 0,1632 0,0472 0,0429 0,7083

Table 4: Results of the model BERT tuned with features of different nature.

4.6 RoBERTa-large-BNE model
pre-trained

The novelty of this research is to have incor-
porated the executions with the pre-trained
model RoBERTa-large-BNE and its adjusted
model. The eight best results are displayed
in the table 7. The best position were
achieved by the ABR-AdaBoost algorithm
with a MAE = 0.1609 and a Person =
0.6754 combining the sentence and word en-
codings together with the HCF - RBNEsent⊕
RBNEword⊕ HCF.

It should be noted that the pre-trained
model RoBERTa-large-BNE is the one that
achieves a better prediction for lexical com-
plexity in the Spanish language compared
to the pre-trained models BERT and XLM-
RoBERTa. See table 9.

4.7 RoBERTa-large-BNE model
fine-tuned

Executing the RoBERTa-large-BNE tuned
model, the results are encouraging, there is
an improvement compared to the results of
the pre-trained model. The table 8 displays
the first places reached by the GBR-Gradient
Boosting Regressor and SVR-Super Vector
Regressor algorithms. It presents a low im-
provement, achieving in its performance a
MAE = 0.1609 and a Pearson = 0.6754
combining the sentence and word encod-
ings together with the HCF - RLBNEsent⊕

RLBNEword⊕ HCF, and the second and third
places prove it in comparison with the pre-
trained model.

It should be noted that the tuned model
BERT is the one that achieves a better pre-
diction for lexical complexity in the Span-
ish language compared to the tuned models
XLM-RoBERTa and RBNE. See table 10.

It can be seen that the fined models based
on Transformers make an important contri-
bution to the Prediction of Lexical Complex-
ity in the Spanish language. The table 11
presents the best five best results of all the ex-
periments carried out with the models, both
pre-trained and fined. It is important to men-
tion that the Hand-Crafted Features, being
such simple features because they are only
based on the frequency of the words and sev-
eral manual calculations, have been shown to
contribute to improving the level of predic-
tion of the complexity of the words.

5 Discussion

We have applied the BERT, RoBERTa, and
RoBERTa-large-BNE models for our research
in predicting lexical complexity in Spanish.
We have closely followed the methodology ap-
plied in several of the works presented in the
LCP task of the SemEval 2021 International
Conference (Shardlow et al., 2021) which has
allowed us to achieve very important results
that demonstrate a relevant contribution in
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XLM-RoBERTA model pre-trained with CLexIS2

Features Alg MAE MSE RMSE Pearson

XLMRsent⊕ XMLRword⊕ HCF ABR 0,1623 0,0527 0,2270 0,9973
XLMRword⊕ HCF ABR 0,1623 0,0513 0,2273 0,9973
XLMRsent⊕ HCF ABR 0,1630 0,0524 0,2293 0,9973
XLMRword⊕ HCF GBR 0,1653 0,0433 0,2073 0,4848
XLMRsent⊕ XMLRword⊕ HCF GBR 0,1658 0,0434 0,2074 0,4874
XLMRsent⊕ HCF GBR 0,1663 0,0433 0,2082 0,4807
XLMRword⊕ HCF SVR 0,1680 0,0483 0,2194 0,3095
XLMRword⊕ HCF RFR 0,1690 0,0445 0,2093 0,9803

Table 5: Results of the model XLMR pre-trained with features of different nature.

XLM-RoBERTA model fine-tuned with CLexIS2

Features Alg MAE MSE RMSE Pearson

XLMRword⊕ HCF ABR 0,1601 0,0501 0,2251 0,9987
XLMRsent⊕ XMLRword⊕ HCF ABR 0,1620 0,0526 0,2268 0,9987
XLMRsent⊕ HCF ABR 0,1620 0,0519 0,2287 0,9979
XLMRsent⊕ HCF GBR 0,1630 0,0420 0,2062 0,4790
XLMRword⊕ HCF GBR 0,1638 0,0429 0,2034 0,4800
XLMRsent⊕ XMLRword⊕ HCF GBR 0,1652 0,0430 0,2069 0,4930
XLMRword⊕ HCF SVR 0,1660 0,0482 0,2172 0,3083
XLMRword⊕ HCF RFR 0,1669 0,0427 0,2013 0,9849

Table 6: Results of the model XLMR tuned with features of different nature.

RoBERTa-large-BNE model pre-trained with CLexIS2

Features Alg MAE MSE RMSE Pearson

RBNEsent⊕ RBNEword⊕ HCF ABR 0,1609 0,0421 0,2047 0,6754
RBNEsent⊕ RBNEword ABR 0,1675 0,0556 0,2347 0,9952
RBNEsent⊕ RBNEword⊕ HCF GBR 0,1691 0,0434 0,2073 0,6607
RBNEword ABR 0,1693 0,0563 0,2360 0,9948
RBNEword GBR 0,1696 0,0447 0,2101 0,6400
RBNEsent⊕ RBNEword GBR 0,1698 0,0447 0,2102 0,6450
RBNEsent⊕ RBNEword⊕ HCF SVR 0,1708 0,0507 0,2224 0,2363
RBNEsent⊕ HCF SVR 0,1708 0,0507 0,2224 0,0857

Table 7: Results of the model RBNE pre-trained with features of different nature.

RoBERTa-large-BNE model fine-tuned with CLexIS2

Features Alg MAE MSE RMSE Pearson

RBNEsent⊕ RBNEword⊕ HCF GBR 0,1609 0.0421 0.2047 0.6754
RBNEsent⊕ RBNEword⊕ HCF SVR 0,1630 0,0435 0,2070 0,4883
RBNEword⊕ HCF SVR 0,1666 0,0466 0,2136 0,4220
RBNEword ABR 0,1677 0.0551 0,2336 0,9952
RBNEsent⊕ RBNEword SVR 0,1684 0.0472 0.2152 0.4425
RBNEsent⊕ RBNEword⊕ HCF GBR 0,1686 0,0432 0,2067 0,6854
RBNEword SVR 0,1686 0,0468 0,2146 0,5021
RBNEsent⊕ RBNEword⊕ HCF ABR 0,1689 0,0558 0,2351 0,9951

Table 8: Results of the model RBNE tuned with features of different nature.

The Spanish Language Models pre-trained
Best Result

Model Features Alg MAE

RBNE RBNEsent⊕ RLBNEword⊕ HCF ABR 0.1609
XLMR XLMRsent⊕ XLMRword⊕ HCF ABR 0.1623
BERT BERTsent⊕ BERTword ABR 0.1632

Table 9: Best results models pre-trained.
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The Spanish Language Models fine-tuned
Best Result

Model Features Alg MAE

BERT BERTsent⊕ BERTword RFR 0,1592
XLMR XLMRword⊕ HCF ABR 0,1601
RBNE RBNEsent⊕ RBNEword⊕ HCF GBR 0,1609

Table 10: Best results models fine-tuned.

Summary of best results on the CLexIS2 corpus

Model Features Alg MAE MSE RMSE Pearson

BERTfine−tuned BERTsent⊕ BERTword RFR 0,1592 0,0379 0,1982 0,9883
BERTfine−tuned BERTsent⊕ BERTword⊕ HCF GBR 0,1600 0,0367 0,1979 0,8202
XLMRfine−tuned XLMRword⊕ HCF ABR 0,1601 0,0501 0,2251 0,9987
RBNEfine−tuned RBNEsent⊕ RBNEword GBR 0,1609 0,0421 0,2047 0,6754
BERTfine−tuned BERTsent⊕ BERTword⊕ HCF RFR 0,1610 0,0401 0,1988 0,9987

Table 11: Summary of best results on the CLexIS2 dataset.

the area of Lexical Simplification for Span-
ish.

We observe that according to the results
of the final evaluation, especially in terms of
fine-tuning, the Spanish language fined mod-
els made an important contribution to the
prediction of lexical complexity by outper-
forming the proposal presented after the ex-
ecution of the manual features-HCF. In the
case of the RoBERTa-large-BNE model, we
have found a performance that exceeds the
rest of the models after the execution of the
pre-trained model and even remains within
the three best executions in the results of
the tuned models, such as the proposals pre-
sented by (Gutiérrez-Fandiño et al., 2021)

6 Conclusions and Further Work

In this article, we have presented a contri-
bution to predict the complexity of simple
words in the Spanish language, combining a
large number of features of different types.
We consider that, after the multiple experi-
mentations that we carried out, it allowed us
to know the maximum performance for the
different combinations of the data sets by ap-
plying the regression algorithms.

In our experiments, we obtained the re-
sults after the execution of several previ-
ously trained transformer-based models on
several datasets in Spanish, combining fea-
tures of different nature. The application
of the fine-tuned models to generate fea-
tures (embeddings) achieved a better per-
formance of explored machine learning algo-
rithms, which led to a MAE = 0.1598 and a

Pearson of 0.9883 achieved with the evalua-
tion and training of the Random Forest Re-
gressor algorithm for the tuned model BERT.

Additional features can boost pre-trained
models to levels of performance close to those
of fine-tuned models alone, so it could be a
feasible approach when there are not enough
computational resources for such a down-
stream training.

As a possible alternative proposal to
achieve a better prediction of lexical complex-
ity, we are very interested in continuing to
carry out experimentations on data sets for
Spanish, testing state-of-the-art Transformer
models. To this end, extrinsic evaluation will
be overcome, comparing the best systems on
this specific task with the possibilities of in-
tegrating external features like the ones pro-
posed in this work.
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Saggion, H., S. Štajner, S. Bott, S. Mille,
L. Rello, and B. Drndarevic. 2015. Mak-
ing it simplext: Implementation and eval-
uation of a text simplification system for
spanish. ACM Transactions on Accessible
Computing (TACCESS), 6(4):1–36.

Shardlow, M. 2013. A comparison of tech-
niques to automatically identify complex
words. In 51st Annual Meeting of the
Association for Computational Linguis-
tics Proceedings of the Student Research
Workshop, pages 103–109.

Shardlow, M., M. Cooper, and M. Zampieri.
2020. Complex: A new corpus for lexi-
cal complexity prediction from likert scale
data. arXiv preprint arXiv:2003.07008.

Shardlow, M., R. Evans, G. H. Paetzold, and
M. Zampieri. 2021. Semeval-2021 task
1: Lexical complexity prediction. arXiv
preprint arXiv:2106.00473.

Shardlow, M., R. Evans, and M. Zampieri.
2021. Predicting lexical complex-
ity in english texts. arXiv preprint
arXiv:2102.08773.

Singh, S. and A. Mahmood. 2021. The nlp
cookbook: Modern recipes for transformer
based deep learning architectures. IEEE
Access, 9:68675–68702.

Uluslu, A. Y. 2022. Automatic lexical
simplification for turkish. arXiv preprint
arXiv:2201.05878.

Vaswani, A., N. Shazeer, N. Parmar,
J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin. 2017. Atten-
tion is all you need. In Advances in neu-
ral information processing systems, pages
5998–6008.

Vettigli, G. and A. Sorgente. 2021. Compna
at semeval-2021 task 1: Prediction of lex-
ical complexity analyzing heterogeneous
features. In Proceedings of the 15th In-
ternational Workshop on Semantic Eval-
uation (SemEval-2021), pages 560–564.

Wolf, T., L. Debut, V. Sanh, J. Chaumond,
C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, et al. 2020. Trans-
formers: State-of-the-art natural language
processing. In Proceedings of the 2020
conference on empirical methods in nat-
ural language processing: system demon-
strations, pages 38–45.

Yaseen, T. B., Q. Ismail, S. Al-Omari, E. Al-
Sobh, and M. Abdullah. 2021. Just-blue
at semeval-2021 task 1: Predicting lexi-
cal complexity using bert and roberta pre-
trained language models. In Proceedings
of the 15th International Workshop on Se-
mantic Evaluation (SemEval-2021), pages
661–666.

Zaharia, G.-E., D.-C. Cercel, and M. Das-
calu. 2021. Upb at semeval-2021 task
1: Combining deep learning and hand-
crafted features for lexical complexity pre-
diction. arXiv preprint arXiv:2104.06983.

Zambrano, J. A. O. and A. Montejo-Ráez.
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