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Abstract: This paper presents the overview of the AuTexTification shared task
as part of the IberLEF 2023 Workshop in Iberian Languages Evaluation Forum,
within the framework of the SEPLN 2023 conference. AuTexTification consists
of two subtasks: for Subtask 1, participants had to determine whether a text is
human-authored or has been generated by a large language model. For Subtask 2,
participants had to attribute a machine-generated text to one of six different text
generation models. Our AuTexTification 2023 dataset contains more than 160.000
texts across two languages (English and Spanish) and five domains (tweets, reviews,
news, legal, and how-to articles). A total of 114 teams signed up to participate, of
which 36 sent 175 runs, and 20 of them sent their working notes. In this overview, we
present the AuTexTification dataset and task, the submitted participating systems,
and the results.
Keywords: Machine-Generated Text, Large Language Models, Generalization, Au-
TexTification.

Resumen: Este art́ıculo presenta un resumen de la tarea AuTexTification como
parte del workshop IberLEF 2023 sobre el Iberian Languages Evaluation Forum, en
el marco de la conferencia SEPLN 2023. AuTexTification consta de dos subtareas:
en la Subtarea 1, los participantes tuvieron que determinar si un texto fue escrito
por un humano o generado por un modelo de lenguaje masivo. Para la Subtarea 2,
los participantes deb́ıan atribuir un texto generado automáticamente a uno de seis
modelos de generación de texto diferentes. El conjunto de datos AuTexTification
contiene más de 160.000 textos en dos idiomas (inglés y español) y cinco domin-
ios (tweets, reseñas, noticias, legislación y art́ıculos instructivos). Un total de 114
equipos se inscribieron para participar, de los cuales 36 enviaron 175 resultados y 20
de ellos enviaron art́ıculos. En este art́ıculo, presentamos el conjunto de datos y la
tarea AuTexTification, los sistemas enviados por los participantes y sus resultados.
Palabras clave: Texto Generado por Máquina, Modelos de Lenguaje Masivos,
Generalización, AuTexTification.

1 Introduction

Current developments in Large Language
Models (LLMs) have strongly improved the
quality of Machine-Generated Text (MGT).
Their latest surge in popularity through ser-
vices such as ChatGPT,1 and large-scale de-

1https://tinyurl.com/reuters-chatgpt

mocratization efforts to broaden the public’s
access to large models (Scao et al., 2022; Tou-
vron et al., 2023; Wolf et al., 2020; Seger
et al., 2023), have made it easier for non-
technical people to interact with and use
these models for various interesting applica-
tions (Eloundou et al., 2023; Liu et al., 2023).

However, these advances have also lowered
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Model adaptation
Human
Mod.

Pre-trained Fine-tuned

No

Full accessibility
Few comp. resources

Massive scale
Medium quality

Technical accessibility
Large comp. resources

Massive scale
High quality

Yes

High accessibility
Few comp. & human resources

Small scale
High quality

Technical accessibility
Large comp. & human resources

Small scale
High quality

Table 1: Types of MGT. The AuTexTifi-
cation 2023 Shared Task focuses on genera-
tions from pre-trained models with no human
modification. We cover the most accessible
approach, involving little computational and
human resources and can be used massively.

the barrier of entry for users to generate high-
quality, multi-style and multi-domain text
in a massive scale. This means that moti-
vated malicious users could easily generate
massive quantities of text without the need
of large computational resources, technical
knowledge, or human intervention (see Table
1). Supporting this concern, recent research
suggest that disinformation generated with
state-of-the-art LLMs is more credible than
the one generated by humans (Spitale, Biller-
Andorno, and Germani, 2023), thus showing
the difficulty for humans to distinguish be-
tween MGT and human-authored text.

As expected, the aforementioned advance-
ments have also promoted discussions in ethi-
cal AI (Widder et al., 2022) as well as model,
data and training regulations,2 and new li-
censes (Benjamin et al., 2019; Contractor et
al., 2022). Content moderation due to AI de-
mocratization, and the need for regulations,
are strong motivators for researchers to en-
sure a responsible use of LLMs and their gen-
erations. A promising research line to carry
this out involves identifying MGT, while also
attributing it to specific text generation mod-
els to learn about the specific actors behind
an MGT from a forensics viewpoint.

There have been many efforts to de-
tect MGT, including zero-shot approaches
(Mitchell et al., 2023; Zellers et al.,
2019a), supervised systems (Ippolito et al.,
2020; Uchendu et al., 2020; Maronikolakis,
Schütze, and Stevenson, 2021), and evalu-
ation campaigns (Kashnitsky et al., 2022;
Shamardina et al., 2022). While it has been
found that in-domain MGT detection with
supervised approaches is easy (Bakhtin et al.,

2European Commission, Proposal for a Regulation
of the European Parliament https://tinyurl.com/
EURAIAct

2019), most of the works often overlooked
that MGT detection systems would be ap-
plied to a broad variety of domains, writ-
ing styles, and generation models. Therefore,
there is a need to evaluate the generalization
of MGT detectors through a more realistic
lens. In this regard, some works have stud-
ied generalization across model families and
scales (Sarvazyan et al., 2023), however, the
generalization to new domains is still under-
explored.

In this context, we present the AuTexTi-
fication (Automated Text IdenTification)
task. This shared task is proposed to study:
(i) the automatic detection of MGT, (ii)
the generalization capabilities of MGT detec-
tors to new domains, and (iii) the feasibil-
ity of fine-grained MGT attribution to one of
many generation models. Furthermore, we
automatically collect a multi-domain anno-
tated dataset of human-authored text and
MGT generated by various LLMs, which is
a valuable resource for exploratory linguistic
analysis of machine-generated and human-
authored texts. To our knowledge, AuTex-
Tification is the first shared task to study
both MGT detection and attribution in a
multi-domain setting for English and Span-
ish, while also focusing on generalization of
MGT detectors to new domains.

2 Task Description

The AuTexTification 2023 Shared Task in-
cludes two subtasks in English and Spanish
in five different domains.

Subtask 1: MGT Detection. This sub-
task consists in distinguishing between hu-
man and generated text. It is framed as a bi-
nary classification task of human text (Hum)
and MGT (Gen), where text from three do-
mains is included in the training set, and sub-
missions are evaluated in two unseen ones.
This way, we aim to study the MGT de-
tectors’ cross-domain generalization capabil-
ities.

Subtask 2: MGT Attribution. In this
subtask, participants must attribute MGT
to the model that generated it, out of six
models. Thus, Subtask 2 is framed as a six-
class classification task, where we strive to
study the feasibility of fine-grained attribu-
tion. Differently to Subtask 1, the training
and test splits include all five domains.
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English Spanish
Legal MultiEURLEX MultiEURLEX
News XSUM MLSUM & XLSUM
Reviews Amazon Reviews COAR & COAH
Tweets TSATC XLM-Tweets & TSD
How-to WikiLingua WikiLingua

Table 2: Human-authored source datasets
for the AuTexTification 2023 dataset.

3 Dataset

The AuTexTification dataset consists of texts
written by humans and LLMs in five do-
mains: tweets, reviews, how-to articles,
news and legal documents. These do-
mains were chosen to encompass a range
of writing styles, from more structured and
formal to less structured and more in-
formal. We collected human texts from
publicly available datasets, namely: Mul-
tiEURLEX (Chalkidis, Fergadiotis, and An-
droutsopoulos, 2021), XSUM (Narayan, Co-
hen, and Lapata, 2018), XLSUM (Hasan et
al., 2021), MLSUM (Scialom et al., 2020),
Amazon Reviews (McAuley and Leskovec,
2013), WikiLingua (Ladhak et al., 2020),
COAR & COAH (González et al., 2014),
XLM-Tweets (Barbieri, Espinosa Anke, and
Camacho-Collados, 2022), TSATC (Naji,
2012), and TSD (Leis et al., 2019). Table
2 groups these datasets per domain and lan-
guage.

The MGT was generated from the human
texts by using three BLOOM models (Scao
et al., 2022), BLOOM-1B7,3 BLOOM-3B,4

and BLOOM-7B1 ;5 as well as three GPT-
3 models (Brown et al., 2020; Ouyang et
al., 2022): babbage, curie, and text-davinci-
003, with 1b, 6.7b and 175b parameter scales
respectively. Our motivation behind using
these models were fourfold: (i) both BLOOM
and GPT-3 show great capabilities in multi-
ple languages, (ii) BLOOM models’ usage is
not as restricted via licensing (as opposed to
other popular models such as LLaMA (Tou-
vron et al., 2023) or OPT (Zhang et al.,
2022a)), (iii) GPT-3 has been one of the most
popular and best performing language mod-
els until recently,6 and (iv) we aimed to cover
a broad spectra of model families and scales.
While we were hoping to include BLOOM-

3https://tinyurl.com/bloom-1b7
4https://tinyurl.com/bloom-3b
5https://tinyurl.com/bloom7b
6GPT-3.5-turbo and GPT-4 were not released at

time of compiling our dataset.

This is my opinion
about the hotel.

LLM

<BOS>It was
exceptional, with all

kind of facilities,
dining options, and
attractions. <EOS>

This is my opinion about the hotel:
Simply perfect.

Prompt

Human
Prefix

 
Simply perfect. Perfect

location to spend a
great vacation.   

Wonderful breakfast.

Human text

Generated text

Perfect location to spend a great
vacation. Wonderful breakfast.

It was exceptional, with all kind of
facilities

Human
continuation

Generated sampleHuman sample

Clean &
Filter

I III

IV

II

Figure 1: Data gathering process.

175B generations too, this was not possible
due to the lack of public APIs.

We manually tuned the decoding param-
eters to obtain MGT that appears realistic
through subjective evaluations carried out by
two of the authors. We found that with nu-
cleus sampling (Holtzman et al., 2020), using
a top-p of 0.9 and a temperature of 0.7, the
models generated texts of higher quality. The
maximum number of completion tokens was
manually selected for each domain to be sim-
ilar to the median token-length of the human
texts: 20 tokens for tweets, 70 for reviews,
and 100 for news, legal, and how-to articles.

3.1 Gathering process

We aim to build a dataset of human and gen-
erated texts that share the same prefix. For
instance, given a human text “Today it’s 20
degrees. It is sunny in Valencia.”, we could
use “It is sunny in Valencia.” as human text,
and generate a continuation by prompting an
LLM with “Today it’s 20 degrees.”. In this
manner, both generated and human texts are
plausible continuations of the same prefix and
they can be compared fairly in terms of top-
ics and domains. To build the dataset in
this way, we opted for a data gathering pro-
cess consisting in the steps depicted in Fig-
ure 1, namely (i) gathering human data, (ii)
preparing the inputs for LLMs, (iii) generat-
ing MGTs, and (iv) cleaning and filtering the
resulting texts.

We first gather a set of human-authored
texts H from the source datasets for each
domain and language. We manually analyze
and define extraction schemes for splitting H
into prefixes Hp and continuations Hc such
that H = Hp ⊕ Hc. In some domains and
source datasets, we also define prompts P
to prevent the generation models from gen-
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erating topic-inconsistent texts, e.g., guiding
models to generate hotel reviews instead of
car reviews when using a prefix from the
COAH dataset, made up of hotel reviews.
Afterwards, the prompts and prefixes P⊕Hp

are fed into each LLM to obtain one resulting
generation per prompt and prefix. We refer
to the set of generations as G. Texts from
both Hc and G are fed into a text cleaning
pipeline that removes duplicated spaces, mul-
tiple line breaks, and special symbols. Addi-
tionally, we ensure that the human continua-
tion and generation obtained from the same
prefix have roughly the same token-lengths
by truncating to the minimum length of the
two texts, thus removing token-length bias.
Then, we apply a set of language identifi-
cation filters: langdetect,7 SpaCy FastLang,8

and fastText (Joulin et al., 2017). If one of
these filters finds a text to be not in Span-
ish or English, the text is removed from our
dataset.

To obtain the dataset for Subtask 1, we
sample a subset of Hc labeled as Hum and a
subset of G labeled with Gen. The dataset
was then split into training and test sets
for a cross-domain scenario: tweets, how-to
articles and legal documents were included
in the training set, while reviews and news
data comprised the test set. To compile the
dataset for Subtask 2, we only sample texts
from G, labeling each text with the LLM’s
name that generated it. The dataset is ran-
domly split into training and test sets follow-
ing 80%-20% proportions. All the five do-
mains are included in both training and test
splits. The released version of the dataset for
Subtask 2 includes anonymized model labels
to remove bias toward particular models or
model families in participating submissions.

The statistics of each subtask’s contents
per domain, class, and language are pre-
sented in Table 3. In both subtasks, both
languages contain similar amounts of texts,
and the domains and classes are balanced in
both splits. This way we guarantee that our
analysis is fair by ensuring that every dimen-
sion is balanced. Besides, we checked that the
generated texts follow the Zipf and Heap’s
empirical laws, thus ensuring a high quality
of the dataset.9

7https://tinyurl.com/langdetect
8https://tinyurl.com/fastlang
9See https://tinyurl.com/overview-datasets
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Figure 2: Human performance in English
(top) and Spanish (bottom). The grey dot-
ted line is the random baseline.

3.2 Human Assessment

We performed a small-scale study to assess
the difficulty of the Subtask 1 for human an-
notators. The study consisted in asking hu-
man annotators to classify texts as human or
generated.10 Five annotators were involved:
four Spanish native speakers (SP) and one
Italian native speaker (IT). All of them were
men between the ages of 25 and 35, with C1-
C2 proficiency level in English. From these
annotators, SP1 and SP4 are familiar with
generated text (they created the dataset and
analysed hundreds of examples), while the
others were exposed to the task for the first
time.

We provided the same 40 texts to each an-
notator, drawn from the test set of the Sub-
task 1 both for English and Spanish. The
texts were balanced in terms of classes and
domains: 20 texts were generated by LLMs
and 20 were written by a human, half of them
were news and the other half were reviews.
The generated texts were only obtained from
BLOOM models: 6 texts from BLOOM-1b7,
6 texts from BLOOM-3b1, and 8 texts from
BLOOM-7b1. Figure 2 shows the Macro-F1

score of each annotator in each domain.
For both languages, the average annota-

tor performance is very similar, most anno-
tators are close to the random baseline. Re-
garding the domains, it seems more difficult
for humans to distinguish between human-
authored and machine-generated news rather
than reviews. Most of the annotators per-

10The annotation interface and instruc-
tions are available at https://tinyurl.com/
colab-annotation
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Subtask 1 Subtask 2
BLOOM GPT

Gen Hum Σ 1b7 3b 7b1 1b 6b7 175b Σ

S
p
a
n
is
h

Legal 4,846 4,358 9,204 640 665 712 919 942 919 4,797
News 5,514 5,223 10,737 839 860 881 972 978 987 5,517
Reviews 5,695 3,697 9,392 952 962 935 945 941 947 5,682
Tweets 5,739 5,634 11,373 967 965 965 928 930 964 5,719
How-to 5,690 5,795 11,485 894 929 960 970 983 966 5,702
Total 27,484 24,707 52,191 4,292 4,381 4,453 4,734 4,774 4,783 27,417

E
n
g
li
sh

Legal 5,124 5,244 10,368 809 779 832 890 887 927 5,124
News 5,464 5,464 10,928 747 854 906 983 984 984 5,458
Reviews 5,726 5,178 10,904 944 946 939 977 974 972 5,752
Tweets 5,813 5,884 11,697 987 968 980 951 963 969 5,818
How-to 5,862 5,918 11,780 962 976 982 993 993 963 5,869
Total 27,989 27,688 55,677 4,449 4,523 4,639 4,794 4,801 4,815 28,021

Table 3: Number of samples per domain, class, and language in both subtasks.

form worse than the random baseline distin-
guishing texts from the news domain. On the
contrary, humans are typically better than
the random baseline in the reviews domain,
especially in English.

Language proficiency seems to play a role.
IT1 shows better performance in English
than in Spanish, where he is not proficient.
Despite how SP1 and SP4 are familiar with
generated texts, there seems to be no signif-
icant difference between them and other an-
notators.

The human annotators did not follow any
systematic pattern to detect MGT. For re-
views, some mentioned that the generated re-
views seemed generic, describing many gen-
eral aspects with short sentences. In con-
trast, human reviews focused on few and
more concrete aspects.

4 Systems and Results

In this section, we briefly introduce the par-
ticipants’ systems, describe the baselines and
evaluation metrics, and study the results of
the shared task.

4.1 Submitted Approaches

The AuTexTification shared task received
submissions from 36 teams, belonging to 30
different institutions and 18 different coun-
tries. All teams participated in the English
track of Subtask 1, with 23 teams also tak-
ing part in the Spanish track. For Subtask
2, 19 teams participated in the English track
and 14 in the Spanish track. Teams were al-
lowed to submit a maximum of 3 runs per
subtask and language. Overall, AuTexTifica-

tion received a total of 175 runs, comprising
71 for the English track of Subtask 1, 47 for
the Spanish track, 33 for the English track
of Subtask 2, and 24 for the Spanish track.
Outside of the competition scope, the AuTex-
Tification datasets have been used in NLP
courses within academic institutions. We are
aware of at least 3 institutions,11 with 17 par-
ticipating teams and 58 runs.

Following the trend in the Natural Lan-
guage Processing (NLP) field, most teams
relied on pre-trained Transformer (Vaswani
et al., 2017) models. The most used
ones were BERT-based models (Devlin et
al., 2019) like RoBERTa (Liu et al., 2019)
and DeBERTa (He, Gao, and Chen, 2021).
Also, domain-specific and multilingual vari-
ants of BERT were frequent, including XLM-
RoBERTa (Conneau et al., 2020), Rem-
BERT (Chung et al., 2020), and Twhin-
BERT (Zhang et al., 2022b). A smaller set
of participants included generative models in
their systems such as GPT-2 (Radford et
al., 2019), Grover (Zellers et al., 2019b), and
OPT (Zhang et al., 2022a).

Most of the best performing approaches
used ensembles of pre-trained models, as well
as combinations of lexical, stylometric or sta-
tistical features. In some cases, participants
fine-tuned their models using auto-train pro-
cedures and performed hyper-parameter tun-
ing. Some teams also included Convolu-
tional Neural Networks (LeCun et al., 1989)
or Long Short Term Memory (LSTM) Net-
works (Hochreiter and Schmidhuber, 1997)

11Universitat Politècnica de València, Aix-
Marseille Université, and IMT Atlantique.
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as part of their systems. Traditional ma-
chine learning models like Logistic Regression
and Support Vector Machines (SVM) (Cortes
and Vapnik, 1995) were also frequent among
the participants. However, these approaches
generally performed worse than Transformer-
based approaches.

There was also a great diversity in terms
of features. Probabilistic token-level fea-
tures from generative language models seem
to play an important role in the best per-
forming approaches. Most participants used
contextual representations from pre-trained
models, either as features, or through end-to-
end fine-tuning. Linguistic features includ-
ing lexical, structural, and discourse features
were also frequent. Among the most com-
mon linguistic features, we observed bag of
word/char n-grams, counts of personal pro-
nouns, stop-words, punctuations, and POS
tags. Some participants also incorporated
linguistic and factual knowledge directly in
their models. Among these, we found the
inclusion of syntactic dependencies in pre-
trained models through contrastive learning,
Wikipedia fact-checking, and native language
identification.

The best ranked systems for each subtask
ranged from complex ensembles of many dif-
ferent models and features, to single gen-
erative models fine-tuned for the task. In
Subtask 1, both for English and Spanish,
the best system was proposed by TALN-
UPF (Przybyla, Duran-Silva, and Egea-
Gómez, 2023). This system relied on a bidi-
rectional LSTM (Schuster and Paliwal, 1997)
model trained with a combination of prob-
abilistic token-level features from different
GPT-2 versions, linguistic token-level fea-
tures such as word-frequencies or grammar
errors, and text representations from pre-
trained encoders. Besides, TALN-UPF was
the only team that considered a cross-domain
evaluation in the validation step, by perform-
ing cross-validation over topically-split data
after inferring the topics using Latent Dirich-
let Allocation (Blei, Ng, and Jordan, 2003).
In the Spanish track, the TALN-UPF system
performed similar to the Lingǘıstica UCM
system (Alonso et al., 2023), consisting of
an SVM trained with a set of morphological,
lexical, and discourse features selected ac-
cording linguistic expertise and human anal-
ysis.

In Subtask 2, both for English and Span-

ish, the three runs of the Drocks team (Ab-
buri et al., 2023) were the highest ranked
ones. These systems were ensembles of five
different Transformer-based classifiers fine-
tuned on the task. The best ensembles dif-
fered for each language. For English, the best
ensemble was an Error-Correcting Output
Codes (Dietterich and Bakiri, 1994) model
trained using the concatenation of the classi-
fication probabilities as features. For Span-
ish, the best ensemble was implemented with
an SVM using the average of the classifica-
tion probabilities as features.

4.2 Baselines

We consider several baselines for each sub-
task and language. Namely, we include a
random baseline (Random), zero-shot (SB-
ZS ) and few-shot (SB-FS ) approaches based
on text and label embedding similarities, a
bag-of-words encoding with logistic regres-
sion (BOW+LR), Low Dimensional Seman-
tic Embeddings (LDSE ), and fine-tuned lan-
guage specific transformers (Transformer),
DeBERTaV3 (He, Gao, and Chen, 2021)12

for English and RoBERTa-BNE (Fandiño et
al., 2022)13 for Spanish. These baselines con-
sist in the following:

Random. The random baseline assuming
class balance. Defined as 1

C where C is the
number of classes.

SB-ZS and SB-FS. Zero-shot and Few-
Shot Symanto Brain API,14 a ©Symanto
solution optimized for highly efficient and
scalable state-of-the-art zero-shot and few-
shot classification (Mueller, Pérez-Torró, and
Franco-Salvador, 2022). We verbalize labels
for Subtask 1,15 but not for Subtask 2 given
the anonymity of the classes. For SB-FS we
use 1024 shots.

BOW+LR. We encode the texts with bag
of n-grams, using the top 5K word n-grams,
n ∈ {1, 2} and character n-grams, n ∈
{2, . . . , 6} following (Pizarro, 2019). We train
a Logistic Regression model offered by scikit-
learn (Pedregosa et al., 2011) with default
parameters on z-score normalized and con-
catenated features.

12https://tinyurl.com/debertav3
13https://tinyurl.com/robertabne
14https://www.symanto.com/nlp-tools/

symanto-brain/
15Hum: “This text has been written by a human.”

Gen: “This text has been automatically generated by
a bot.”
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Rank Team Run Macro-F1

1 TALN-UPF HB plus 80.91
2 TALN-UPF HB 74.16
3 CIC-IPN-CsCog run2 74.13
22 turquoise titans run1 65.79
23 BOW+LR baseline 65.78
33 turing testers run3 60.64
34 LDSE baseline 60.35
37 OD-21 run3 59.49
38 SB-FS baseline 59.44
51 swissnlp team run2 57.20
52 Transformer baseline 57.10
69 UMZ run1 50.18
70 Random baseline 50.00
74 SB-ZS baseline 43.47
77 UAEMex run1 33.87

Table 4: Ranking of Subtask 1 (English).

LDSE. We represent texts on the basis
of the probability distribution of occurrence
of their tokens in the different classes with
LDSE (Rangel, Franco-Salvador, and Rosso,
2018). We train an SVM classifier provided
by scikit-learn (Pedregosa et al., 2011) with
default parameters.

Transformer. We use the HuggingFace
ecosystem (Wolf et al., 2020) to fine-tune a
pre-trained Transformer with a randomly ini-
tialized classification head for 5 epochs and
default hyperparameters. We use a batch size
of 32 texts for DeBERTaV3 and a batch size
of 64 for RoBERTa-BNE.

4.3 Evaluation

The submissions for both subtasks are eval-
uated with the Macro-F1 score. Statistical
significance is computed through bootstrap-
ping with replacement at a confidence level
of α = 0.95 with 1,000 resamples.

4.4 Subtask 1: MGT Detection

For the MGT detection subtask, we received
71 submissions from 36 different teams in En-
glish, and 47 submissions from 23 teams in
Spanish. Tables 4 and 5 show the top-3 per-
forming teams, the weakest team, as well as
the first team that beats each baseline, both
for English and Spanish.

The best system was proposed by the
TALN-UPF team, with 80.91 and 70.77
Macro-F1 scores in English and Spanish. In
English, the best team is significantly better
than the second-best ranked team. However,
in Spanish there are no significant differences
between the two best teams and the best
baseline. In Figure 3, we illustrate the rank-
ordered Macro-F1 scores for all the teams in
both languages.

Rank Team Run Macro-F1

1 TALN-UPF HB plus 70.77
2 Ling UCM run1 70.60
3 Transformer baseline 68.52
20 GLPSI run3 63.90
21 LDSE baseline 63.58
25 turing testers run1 62.77
26 BOW+LR baseline 62.40
39 bucharest run2 56.49
40 SB-FS baseline 56.05
46 ANLP run1 51.38
47 Random baseline 50.00
50 UAEMex run3 35.17
51 SB-ZS baseline 34.58
53 LKE BUAP run3 31.60

Table 5: Ranking of Subtask 1 (Spanish).
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Figure 3: Rank-ordered Macro-F1 with error
bars for Subtask 1 in English (top) and Span-
ish (bottom). Colored lines are baselines.

Many teams surpassed the best baseline in
English by large margins, whereas for Span-
ish only two teams were able to outperform
it with small differences in Macro-F1. More-
over, the performance of the top-11 ranked
teams in English is higher than the perfor-
mance of the best team in Spanish. This
could suggest that detecting MGT and gen-
eralizing to new domains is easier in English
than in Spanish, either due to language id-
iosyncrasies or because of the larger avail-
ability and quality of English NLP models.
For both languages, we observe a linear re-
lationship between the rank-ordered Macro-
F1 scores, with a small set of outliers in
both tails. This hints that, even though
the resulting Macro-F1 scores in each lan-
guage are in different ranges, there is similar
variability and difficulty in both languages.
The teams’ systems cover almost the en-
tire Macro-F1 range in both languages, and,
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(c) Per class precision-recall plots.

Figure 4: Fine-grained plots for Subtask 1 in English (top) and Spanish (bottom).

in many cases, they are very similar (same
Transformer-based models, similar linguistic
features, etc.). Therefore, one has to be care-
ful when developing a MGT detector, small
changes could lead to large improvements or
declines.

We also include fine-grained results per-
domain and per-class in Figure 4. When ob-
serving the domain-wise Macro-F1 scores in
Figure 4a, we find that the systems gener-
alized better to reviews than to news, with
a mean Macro-F1 below the random base-
line for the latter. Furthermore, both do-
mains show long-tailed distributions, reveal-
ing the variability in generalization capabil-
ities of the systems. Concerning class-wise
F1 scores in Figure 4b, we find that the sys-
tems are better at classifying generated text,
and there is lower dispersion among the sys-
tems’ F1 scores for this class than for the hu-
man class. From the precision-recall distribu-
tions depicted in Figure 4c, we observe that
systems are more biased towards predicting
text to be generated (high recall), often do-
ing so incorrectly (low precision). We observe
the opposite for human texts, few predictions
(low recall) that are mostly correct (high pre-
cision). All the conclusions above hold for
both languages.

For the sake of completeness, we refer the
reader to the AuTexTification repository,16

which includes additional plots, the most dif-

16https://tinyurl.com/overview-results

ficult and easiest examples for the systems,
complete rankings including submissions out-
side the competition, etc.

4.5 Subtask 2: MGT Attribution

For the MGT Attribution subtask we re-
ceived 33 submissions from 19 different teams
in English, and 24 submissions from 14 teams
in Spanish. Tables 6 and 7 show the top-3
performing teams, the weakest team, as well
as the first team that beats each baseline,
both for English and Spanish.

The best system was submitted by team
Drocks, obtaining 62.5 and 65.37 Macro-F1

scores for English and Spanish, respectively.
This is in contrast to the best scores of Sub-
task 1 nearing 80 and 70 Macro-F1, show-
ing that in-domain MGT attribution is more
difficult than out-of-domain MGT detection.
In this subtask, teams did not deviate sig-
nificantly from the baselines, and for both
languages the relative ranking of baselines
remained the same, as opposed to Subtask
1. Rank ordered Macro-F1 scores for both
languages are presented in Figure 5. Few
teams were able to surpass the best base-
lines, with most submissions performing be-
tween the top-2 baseline scores. Similarly to
Subtask 1, we observe a linear relationship
between rank and Macro-F1 with outliers in
the right tail, meaning that there is variabil-
ity and difficulty in attributing MGT irre-
spective of language. However, teams cover
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Rank Team Run Macro-F1

1 Drocks run3 62.50
2 Drocks run1 61.29
3 Drocks run2 61.27
4 ViDa run1 60.99
5 Transformer baseline 60.42
31 LKE BUAP run1 45.62
32 LDSE baseline 44.56
33 turquoise titans run2 43.37
34 BOW+LR baseline 39.98
35 UAEMex run2 33.19
36 SB-FS baseline 28.94
37 Random baseline 16.66
38 SB-ZS baseline 15.70
39 ANLP run1 14.61

Table 6: Ranking Subtask 2 (English).

a smaller range of Macro-F1 scores than in
Subtask 1, suggesting there is less variabil-
ity when attributing MGT than detecting
it. In contrast to Subtask 1, teams gener-
ally obtained better Macro-F1 scores in Span-
ish than English, but the differences were
marginal, which could be because of the ran-
domness of the learning procedures or due
to a smaller number of participants in Sub-
task 2. Generally, MGT attribution appears
promising but limited, suggesting the need
for further research into new approaches or
framings of the problem. Fine-grained per-
domain and per-class results for Subtask 2
are presented in Figure 6. Per-domain results
(Figure 6a) show that attribution of gener-
ated tweets is much more difficult than the
remaining domains. For tweets, systems are
unable to reach 50% Macro-F1, while for the
other domains they surpass it by a large mar-
gin. We additionally find many outliers to-
ward lower scores, indicating the difficulty of
the task. Finally, most domains have similar
distributions centered around different medi-
ans, meaning that the variability of partici-
pating systems is maintained through all five
domains. We also present per-class results in
Figure 6b, where we find that it is easier to
attribute generated text to BLOOM-1B7 and
text-davinici-003. Moreover we observe large
variability for curie, while the other classes
have narrower distributions.

Additionally, we computed overall confu-
sion matrices by taking the median at each
position of the confusion matrix from all the
participant’s systems. Figure 6c shows the
results for English and Spanish. In both
languages, the largest confusions are across
models within the same families, suggest-
ing that it is easier to distinguish generation

Rank Team Run Macro-F1

1 Drocks run2 65.37
2 Drocks run3 64.72
3 Drocks run1 64.17
7 TALN-UPF Hybrid plus 61.45
8 Transformer baseline 61.34
20 iimasPLN run1 51.43
21 LDSE baseline 45.46
22 BOW+LR baseline 45.31
25 UAEMex run2 33.78
26 SB-FS baseline 31.38
28 ANLP run1 17.93
29 Random baseline 16.66
30 SB-ZS baseline 16.23

Table 7: Ranking Subtask 2 (Spanish).
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Figure 5: Rank-ordered Macro-F1 for Sub-
task 2 in English (top) and Spanish (bottom).
Colored lines are baselines.

models of different families. Besides, text-
davinci-003 is the model with less number
of confusions, being different enough to be
easily distinguished from the other models.

Once again, we refer to the AuTexTifica-
tion repository16 for additional plots, results
and analyses.

5 Conclusions and Future Work

This paper describes the AuTexTification
shared task at IberLEF 2023, which aimed
to study the automatic detection of MGT in
cross-domain scenarios and MGT attribution
to specific generation models, across five do-
mains and two languages. The AuTexTifica-
tion dataset was comprised of around 160,000
texts collected through an automatic data
gathering process which can be easily ex-
tended to new domains and languages. The
task received a significant amount of partic-
ipation: 175 runs from 36 teams, belonging
to 30 different institutions and 18 different
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Figure 6: Fine-grained plots for Subtask 2 in English (top) and Spanish (bottom). B- prefix
denotes BLOOM models and G- prefix denotes GPT models.

countries, thus showing the overall interest of
the community in addressing MGT detection
and attribution. Moreover, other 17 teams
submitted 58 runs although after the dead-
line, for a total of 233 runs by 53 teams.

The participating systems relied on a wide
variety of approaches, with a strong trend
towards the use of pre-trained Transformer
models. Ensembles of pre-trained models and
combinations of probabilistic, lexical, and
stylometric features led to the best perform-
ing systems in both subtasks. The results
suggest that cross-domain MGT detection is
easier in English than in Spanish, and that
MGT attribution is generally more challeng-
ing than MGT detection. While MGT attri-
bution appears promising, the small gap be-
tween the participant’s systems and the base-
lines encourage further research. Overall, the
results suggest that MGT detection and at-
tribution remain challenging tasks and there
is potential for further progress.

As future work, we hope to expand the
AuTexTification dataset to include more lan-
guages, domains, generation models and de-
coding strategies, to encourage the develop-
ment of more robust and generalizable sys-
tems. Furthermore, it would be valuable to
explore alternative formulations of MGT at-
tribution, as fine-grained attribution remains
a challenging task.

Acknowledgements

We would like to thank Guillermo Pérez-
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