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Abstract: Automatic text evaluation metrics are widely used to measure the per-
formance of a Natural Language Generation (NLG) system. However, these metrics
have several limitations. This article empirically analyses the problem with current
evaluation metrics, such as their lack of ability to measure the semantic quality of a
text or their high dependence on the texts they are compared against. Additionally,
traditional NLG systems are compared against more recent systems based on neural
networks. Finally, an experiment with GPT-4 is proposed to determine if it is a
reliable source for evaluating the validity of a text. From the results obtained, it can
be concluded that with the current automatic metrics, the improvement of neural
systems compared to traditional ones is not so significant. On the other hand, if we
analyse the qualitative aspects of the texts generated, this improvement is reflected.
Keywords: Natural Language Generation, evaluation metrics, NLG architectures,
language models.

Resumen: Las métricas automáticas de evaluación de texto se utilizan amplia-
mente para medir el rendimiento de un sistema de Generación de Lenguaje Natural
(GLN). Sin embargo, estas métricas tienen varias limitaciones. Este art́ıculo pro-
pone un estudio emṕırico donde se analiza el problema que tienen las métricas de
evaluación actuales, como la falta capacidad que tienen estos sistemas de medir la
calidad semántica de un texto, o la alta dependencia que tienen estas métricas so-
bre los textos contra los que se comparan. Además, se comparan sistemas de GLN
tradicionales contra sistemas más actuales basados en redes neuronales. Finalmente,
se propone una experimentación con GPT-4 para determinar si es una fuente fiable
para evaluar la calidad de un texto. A partir de los resultados obtenidos, se puede
concluir que con las métricas automáticas actuales la mejora de los sistemas neu-
ronales frente a los tradicionales no es tan significativa. En cambio, si se analizan
los aspectos cualitativos de los textos generados, si que se refleja esa mejora.
Palabras clave: Generación de Lenguaje Natural, métricas de evaluación, arqui-
tecturas de generación, modelos de lenguaje.

1 Introduction

Natural Language Generation (NLG) is a
sub-field within the Natural Language Pro-
cessing (NLP) field that has rapidly evolved
in recent years, attracting the interest of the
scientific community (Ji et al., 2023). Its
evolution and the subsequent advancements
have provoked a change in the NLG archi-
tectures paradigm, going from architectures
that split the generation of language into dif-
ferent sub-tasks to architectures that perform
all the generation in just a single task (Gatt
and Krahmer, 2018). Two breakthroughs can

be highlighted to understand this paradigm
shift. On the one hand, the development of
deep learning methods improved the state of
the art of NLG, generating more coherent
and natural text by capturing complex lan-
guage patterns and context (Gatt and Krah-
mer, 2018). On the other hand, the proposal
of the Transformers architecture (Vaswani
et al., 2017) increased considerably the per-
formance of the models, thanks to its self-
attention mechanism.

However, these developments have not
been reflected in the automatic evaluation of
texts. Evaluating the quality of NLG sys-
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tems’ output still remains a challenge (Dong
et al., 2023). There is a lack of standard
automated evaluation metrics, as the tradi-
tional metrics such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), OR SPICE (An-
derson et al., 2016) tend not to correlate well
with human judgements (Khapra and Sai,
2021). Most of these metrics rely on com-
paring a candidate sentence to one or several
target sentences, based on a feature overlap
(i.e., words or fragments). Thus, the result-
ing score for the candidate sentence largely
depends on how it aligns with the reference
sentence (Tang et al., 2023).

This issue can be accentuated in some
tasks where the output can vary in content
and does not need to follow a predefined
structure. Therefore, these texts can also
be valid, although quite different from the
target sentences. For instance, consider the
CommonGen task (Lin et al., 2020), where
the model is given a tuple of words and a
sentence that incorporates all those words
must be generated. Then, that generated
sentence is compared against a set of target
sentences. In this task, there can be vari-
ous candidate sentences that can be valid, al-
though they differ from the target sentences.
Consequently, when relying on classical eval-
uation metrics, a model that produces such
different sentences might be penalised, even
though the generated sentence is both syn-
tactically and semantically correct. Figure 1
shows an example of the CommonGen task,
for different models.

To address this, researchers have explored
the hypothesis that Large Language Mod-
els (LLMs) can exhibit strong correlations
with human judgements, being a more suit-
able approach for evaluating text (Tang et
al., 2023). In this line, novel metrics based
on LLMs have been proposed, including
BARTScore (Yuan, Neubig, and Liu, 2021)
and GPTScore (Fu et al., 2023). However,
despite efforts to find more suitable metrics,
the most popular metrics to evaluate text are
still the traditional evaluation metrics.

Given the issues that may arise when eval-
uating NLG models, this paper aims to em-
pirically analyse and compare different evalu-
ation metrics in the context of a relatively re-
cent task, commonsense generation. Comon-
sense generation is the task of reasoning
about the commonsense while generating co-
herent text. This task can favour the gener-

ation of texts that are not only correct but
also diverse, as including commonsense in the
generation can produce multiple valid out-
puts while being semantically different (Yu
et al., 2022). Specifically, this work focuses
on the CommonGen shared task, previously
mentioned. Sentences will be generated us-
ing different NLG architectures (traditional
and recent) and evaluated based on differ-
ent metrics during the experimentation. Our
goal is to address the following three research
questions: (1) Which type of NLG architec-
tures perform best for commonsense genera-
tion? (2) How good are the generated sen-
tences of the best-performing system from a
qualitative perspective? (3) To what extent
can LLMs-based tools, such as ChatGPT, be
a good alternative or complement to auto-
matic evaluation metrics?

2 Related Work

2.1 NLG Architectures

The first NLG works date from the decade
of 1970 (McDonald, 2010). Since that time,
numerous NLG approaches have been pro-
posed, and they can be broadly categorised
into three distinct groups according to their
architecture (Gatt and Krahmer, 2018):

• Modular architectures: This group of ap-
proaches considers language generation
as a process of three well-differentiated
stages. (1) Macroplanning, which in-
cludes all the tasks that select what in-
formation should be included in the gen-
erated text, (2) Microplanning, which in-
cludes all the tasks related to the pars-
ing of that information, selecting how to
say the information selected previously
and (3) Realisation, which perform the
tasks of generating the selected informa-
tion by applying the correct syntactical
and grammatical rules. Reiter proposed
the standard architecture of this group
(Reiter, 1994), consisting of a sequential
pipeline of those previously mentioned
stages. Other examples of this architec-
ture can be found in (Mann and Moore,
1981), (Hovy, 1987), (Levelt, 1989), and
(Nirenburg, Lesser, and Nyberg, 1989).

• Planning perspectives: This group of ap-
proaches still considered language gener-
ation as a process of different stages, but
they needed a smaller number of tasks
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Figure 1: Ilustrative example of the CommonGen task.

to perform the generation. Some exam-
ples of approaches within this group are:
(Appelt, 1985), (Bateman, 1997),(Koller
and Stone, 2007), (Rieser and Lemon,
2009), (Nakatsu and White, 2010) and
(Lemon, 2011).

• Global approaches: This group is the
most predominant in recent years. They
do not distinguish between tasks, per-
forming the generation process in one
step. An important architecture in
this group is the Transformers proposed
by (Vaswani et al., 2017), which sig-
nificantly improved the performance of
the NLP field with the concept of self-
attention. Other research works us-
ing alternative architectures to Trans-
formers are: Graph Neural Networks
(Scarselli et al., 2008), Generative Ad-
versarial Nets (Mirza et al., 2014),
Recurrent Neural Networks (Sutskever,
Vinyals, and Le, 2014), and Memory
Networks (Sukhbaatar et al., 2015).

2.2 Commonsense Generation

The task we want to focus on in this em-
pirical analysis is the commonsense genera-
tion; therefore, we will briefly describe and
contextualise it. LLMs tend to base their
predictions on the likelihood of relationships
between words, so they lack a fundamen-
tal characteristic in human communication,
the commonsense. Commonsense knowledge
refers to the information that is widely ac-
cepted in everyday life (Bhargava and Ng,
2022). Integrating commonsense knowledge
in the human language has been recognised
as an important and challenging task in the
NLG field (Wang et al., 2021), as there is
a need to enhance the capability of NLG
systems of integrating it in their outputs.
Therefore, some shared tasks have been pro-
posed to advance the state of the art of

the commonsense generation. In the Avic-
cenna (Aghahadi and Talebpour, 2022) task,
a model is provided with two premises con-
taining a syllogistic relation. The objective
is to generate a conclusion that completes
that relation. Integrating commonsense in
keyword-to-text task have also been studied.
For instance, SituatedGen task (Zhang and
Wan, 2024) involves generating a pair of con-
trastive sentences, given a group of concepts
that includes temporal or geographical en-
tities. CommonGen (Lin et al., 2020) and
C2Gen (Carlsson et al., 2022) tasks consist
of generating a logical sentence describing an
everyday scenario given a set of words. Ad-
ditionally, the C2Gen task also gives as input
a context to which the generated text has to
adhere.

2.3 NLG Evaluation Metrics

To evaluate NLG systems is essential to be
able to compare and monitor the advance-
ments in the field. While human evaluators
would be the most accurate, this type of eval-
uation is usually impractical due to the tem-
poral and economic cost it involves. Conse-
quently, automatic evaluation metrics can be
a viable alternative (Khapra and Sai, 2021).
In that line, rule-based metrics have been
used for many years, and widely adopted
for evaluating different NLG tasks (Sai, Mo-
hankumar, and Khapra, 2022). These met-
rics tend to evaluate the quality of a text by
comparing it against a reference text based
on features such as words, characters or em-
bedding. Word-based metrics are the most
employed, measuring the word overlapping
between a candidate sentence and a reference
sentence. This group include metrics such
as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), METEOR (Banerjee and Lavie,
2005), CIDEr (Vedantam, Lawrence Zitnick,
and Parikh, 2015), or SPICE (Anderson et
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al., 2016). Character-based metrics tend to
align better with morphologically rich lan-
guages comparing the characters of a text in-
stead of the words. Extended Edit Distance
(Stanchev, Wang, and Ney, 2019) or chrF
(Popović, 2015) are metrics from this group.
Finally, embedding-based metrics capture
better the semantic similarity in some con-
texts, by comparing the similarity between
the embeddings. Some metrics within this
group are: MEANT (Lo, Tumuluru, and Wu,
2012), BERTscore (Zhang et al., 2020), and
Word Mover-Distance (Kusner et al., 2015).
Other recent types of approaches have stud-
ied to use of LLMs to evaluate semantic sim-
ilarity, usually with a higher correlation with
human evaluation from a deep semantic per-
spective. Some works have explored the ac-
curacy of using ChatGPT as an NLG evalu-
ator (Wang et al., 2023). Inside this group
of approaches some metrics have been pro-
posed, e.g. BARTScore (Yuan, Neubig, and
Liu, 2021) and GPTScore (Fu et al., 2023)
that use BART or GPT models to evaluate
the generated text.

3 CommonGen Task

We are going to compare the performance
of different NLG architectures and study the
suitability of some state-of-the-art metrics in
the CommonGen task1 (Lin et al., 2020).
The objective is to create a coherent sentence
describing an everyday situation using a set
of given concepts. This task assesses both
the capacity to apply commonsense knowl-
edge and the ability to generalise when work-
ing with unfamiliar combinations of concepts.

CommonGen released a dataset to address
this task, split into three subsets: training,
validation and testing. For every set of con-
cepts, several target sentences are provided.
Table 1 shows the total number of concept
sets and target sentences for each subset.

Corpus Train Dev Test

Concept sets 32 651 993 1 497
Target sentences 67 389 4 018 N/A

Table 1: Commongen Dataset distribution.

To train our models we used the train sub-
set. As reference sentences in the test subset

1This task can be accessed on
https://inklab.usc.edu/CommonGen/index.html.

are not available, to test the models’ perfor-
mance we used the evaluation subset.

4 Experimental Setup

To analyse the efficacy of diverse NLG auto-
matic evaluation metrics, we have formulated
a meticulously controlled scenario where the
generated text can be evaluated. This sce-
nario centres around addressing the research
questions outlined in Section 1.

4.1 NLG Models

We wanted to compare the performance of
classical architectures against the recent ar-
chitectures; thus, we selected three different
models (one modular architecture and two
global approaches) to conduct the experimen-
tation. We omitted to explore planning per-
spective architectures, which share similari-
ties with modular architectures. The key dis-
tinction lies in the varying number of steps
addressed during generation.

The first model we tested is SimpleNLG2

(Gatt and Reiter, 2009), which handles the
final step of language generation in the tra-
ditional modular NLG architecture, surface
realisation. It is one of the most popu-
lar traditional NLG systems, and due to
its popularity, it has been adapted to other
languages, such as German (Braun et al.,
2019), Mandarin (Chen, van Deemter, and
Lin, 2018), Spanish (Ramos-Soto, Janeiro-
Gallardo, and Bugaŕın, 2017) or Gali-
cian (Cascallar-Fuentes, Ramos-Soto, and
Bugaŕın Diz, 2018). Since we already knew
what information to incorporate into the fi-
nal text (specifically, the concepts among the
concept set), we followed an overgeneration
and ranking strategy to obtain the syntactic
representation. We first systematically gen-
erated all the possible sentence combinations
of the three concepts. Then, these combi-
nations were passed to SimpleNLG to per-
form the generation. Finally, we evaluated
and ranked the resulting sentences accord-
ing to Rouge L (Lin, 2004) against the tar-
get sentences on the evaluation set to obtain
the most suitable candidate sentence with a
higher score.

The second model we used was trained us-
ing a fine-tuning strategy from a T5 model
(Raffel et al., 2020). T5 is a pre-trained neu-
ral model that follows an encoder-decoder

2This API is available at
https://github.com/simplenlg/simplenlg.
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architecture. This model can perform well
on various NLG tasks, by adding a prefix
to the input. Furthermore, this model has
shown great results on concept-to-text tasks
(Roos, 2022), similar to the CommonGen
task. We fine-tuned a T5-small pre-trained
model, adding the tag “CommonGen:” be-
fore every input concept-set. Table 2 shows
the hyperparameter configuration we used to
perform the training.

Parameters Values

Number train epochs 4
Batch size 16
Dropout 0.1
Learning rate 1e− 4
Weight decay 0

Table 2: T5 fine-tuning hyperparameters.

The last model we tested was
RMT (Zhang et al., 2023). We re-
produced the model available at
https://github.com/littlehacker26/
Residual Memory Transformer because
it showed promising results in addressing the
CommonGen task and was publicly avail-
able. This model passes the probabilities
of a GPT-2 decoder (Radford et al., 2019)
to an encoder-decoder architecture with the
novelty that this architecture incorporates
three attention layers in the decoder, obtain-
ing the last hidden states from the GPT-2
decoder, and the RMT encoder.

4.2 Metrics

We used different metrics to measure the per-
formance of the aforementioned models. On
the one hand, as CommonGen is a shared
task with a leaderboard3, we employed the
same metrics as the leaderboard. This al-
lowed us to somehow compare our results
with those obtained by other participants.
However, it is important to note that com-
petitors’ results were evaluated using the test
subset (not publicly available), whereas the
results from our experimentation are based
on the evaluation subset, so a direct compar-
ison is not possible. Those metrics are:

• BLEU (Papineni et al., 2002): This
metric is commonly employed for ma-
chine translation tasks. It quantifies the
word overlap between a candidate sen-
tence and a target sentence, resulting in

3Leaderboard is available at
https://inklab.usc.edu/CommonGen/leaderboard.html.

a score between 0 and 1. A higher value
indicates greater similarity between the
candidate sentence and the target sen-
tence. In the CommonGen task, gen-
erated sentences were evaluated using
BLEU 4. That means that it is calcu-
lated the precision of the word overlap-
ping performs at a 4-gram level. This
metric is configurable, making it possi-
ble to calculate the precision at 3-gram,
2-gram, and 1-gram level.

• CIDEr (Vedantam, Lawrence Zitnick,
and Parikh, 2015): This metric was pro-
posed to address the evaluation of image
captioning4. Specifically, it evaluates the
agreement between a candidate and a
target sentence. To do so, first, per-
form the stemming of all words for both
candidate and target sentence. Then,
it measures the co-existence frequency
of n-grams for both sentences, comput-
ing the weight for each n-gram using the
Term Frequency Inverse Document Fre-
quency (TF-IDF). Finally, it combines
the scores of the different n-grams.

• SPICE (Anderson et al., 2016): This
metric is commonly used on image cap-
tioning tasks as well. It measures the
similarity between two sentences using
the scene graph tuples parsed from the
candidate sentence and the target sen-
tences. Spice is computed based on the
F1-Score between the tuples of candi-
date sentences and target sentences.

Moreover, to have a wider vision of the
obtained results, we employed several addi-
tional metrics. These are:

• Cosine Similarity : This measurement
quantifies the similarity between two
non-zero vectors in an inner product
space (Han, Kamber, and Pei, 2012). To
do so, Candidate and target sentences
are converted into a vector. Then, the
cosine of the angle between these vectors
is applied, resulting in a value ranging
from -1 (indicating opposite directions)

4Target sentences from the CommonGen dataset
are extracted from image captioning datasets, and
therefore, they consider that is more convenient to
use metrics focused on image captioning tasks as they
usually assume system generations and human refer-
ences use similar concepts, and thus focus on evaluate
the associations between mentioned concepts.

127127

Analysing the Problem of Automatic Evaluation of Language Generation Systems

127



to 1 (representing highly similar direc-
tions). This metric can lead to more
accurate results when comparing texts
of varying sizes because it considers the
angle between vectors in a dimensional
space. (Guo, 2022) validates the suit-
ability of cosine similarity to address the
textual similarity evaluation.

• ROUGE (Lin, 2004): Originally, this
metric was proposed to address text
summarisation tasks. Despite its nature,
ROUGE is one of the most employed
metrics in NLG to measure the n-gram
lexical overlap between the candidate
and target sentences (Zhu and Bhat,
2020). ROUGE calculates the recall
score of the candidate sentence corre-
sponding to the target sentence. Specif-
ically, Rouge-L identifies the longest co-
occurring in sentence n-grams.

• Flesch Reading Ease (Kincaid et al.,
1975): The evaluation criterion con-
sists of determining how easy some-
thing is to read. Specifically, shorter
words and shorter sentences will be eas-
ier to read. In the CommonGen task
generated sentences should be dramat-
ically simple and describe an everyday
scenario. Thus, generating sentences
should be easy to read. This metric pro-
duces a value between 0 and 121, being
easier to read the higher the value is.
In our experimentation, the results ob-
tained within this metric are normalised
in a range from 0 to 1.

• BERTScore (Zhang et al., 2020): This
metric evaluates the quality of a text
by performing the sum of cosine sim-
ilarities between candidate and target
sentences. Specifically, BERTScore ob-
tains the contextual embeddings of those
candidates and target sentences from
BERT and calculates the cosine simi-
larity across their tokens. This metric
shows to correlate better with human
judgements on sentence-level evaluation.

5 Results and Discussion

Within this section, we will expose the results
obtained in our experimentation, analysing
them in detail.

5.1 CommonGen Leaderboard
Results

Firstly, to provide a brief background of
the overall results obtained in the Common-
Gen task, we selected some of the models
participating in it. Specifically, the follow-
ing models are selected to report their per-
formance according to their official results5:
The best-performing model of the competi-
tion, DKMR2 (He et al., 2022). The worst-
performing model of the competition, a fine-
tuning of a T5-base model (Raffel et al.,
2020). A model with intermediate results, a
fine-tuning of a T5-large (Raffel et al., 2020).
Table 3 shows the results obtained by these
models on the test set.

Model SPICE CIDEr BLEU 4

DKMR2 0.5243 0.3764 0.4649
T5-Large 0.2885 0.1512 0.3196
T5-Base 0.1987 0.0940 0.1854

Table 3: CommonGen leaderboard results.

Although DKMR2 is the top-performing
model, it achieves discrete results across
these metrics. Its highest score, 0.5243, is
in the SPICE metric. However, DKMR2
significantly outperforms both T5-Large and
T5-Base, nearly doubling their performance
in all three metrics (SPICE, CIDEr, and
BLEU).

Another aspect that needs to be taken
into account is that these metrics seem to be
aligned with the expected results achieved by
these models. T5-Base obtains lower results
compared to its larger version, T5-Large.
This means that metrics are performing as
expected for the entire test set.

5.2 NLG Architectures Results

This subsection aims to answer the research
question: Which type of NLG architectures
perform best for commonsense generation?
To test the metrics evaluation effectiveness,
we trained and reproduced the models ex-
plained in Section 4.1. With the models out-
lined in Section 4.1 we generated the sen-
tences for the whole evaluation set, as that
set contained a collection of target sentences
to compare with. Table 4 shows the results
obtained for the different metrics studied in
this research work.

5https://inklab.usc.edu/CommonGen/.
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Model SPICE CIDEr BLEU 1 ROUGE-L Readability Cosine BERTScore

SimpleNLG 0.183 0.059 0.129 0.310 0.139 0.374 0.900
T5-Small 0.256 0.109 0.600 0.444 0.215 0.287 0.914
RMT 0.215 0.024 0.371 0.345 0.343 0.302 0.889

Table 4: Results obtained by the experimented models.

T5-Small achieves the best results of the
three tested models with the metrics used in
the competition, SPICE, CIDEr, and BLEU.
They are based on a word, or character over-
lapping among the candidate and the refer-
ence texts. In the same line, BERTScore and
ROUGE-L also measure the embedding and
word overlapping of both texts respectively.
Consequently, they produce the same score,
being T5-Small the best-performing model.
Nonetheless, when comparing the cosine sim-
ilarity of the target text against reference
texts, SimpleNLG achieves a better score, as
this metric does not penalise the length dif-
ference between texts. That means a shorter
sentence could obtain a good score in this
metric. Furthermore, the best score on the
readability metric is obtained by the RMT
model. That could indicate that sentences
generated by RMT use a simpler vocabulary.

Otherwise, although the testing set was
different from the test set evaluated in
the competition, the results achieved by
our experimented models are far from the
best-performing model in the competition,
DKMR2. However, when comparing with
the other two selected models (T5-Base and
T5-Large), the results are not as far. T5-
Small scores 0.256 and 0.109 in the SPICE
and CIDEr metrics respectively, while T5-
Large obtains 0.288 and 0.151 in these met-
rics. That indicates, that the results are
aligned with what is expected, being a little
superior to the results obtained by a larger
model. Differently, the results obtained by
SimpleNLG —a traditional surface realisa-
tion engine— (0.183 and 0.059 in SPICE and
CIDEr respectively), are relatively close to
the results obtained by T5-Base (0.1987 and
0.0940), a model that follows a Transformer
architecture, being SimpleNLG easier to use
and less costly to train than T5.

In general, neural models (T5-Small and
RMT) have performed better than a tra-
ditional architecture (SimpleNLG). Among
both neural models, the best results are
achieved by the T5-Small model, which ac-
cording to our experiments and results, may

be the most appropriate model to use for
commonsense generation. Nevertheless, the
improvement just by using these metrics is
not as significant as the computing expense
these models consume against a traditional
architecture. Notwithstanding, analysing the
performance of these models just by evaluat-
ing the generated sentences globally with au-
tomatic metrics might be not enough to be
able to compare that improvement. There-
fore, we will show a more detailed analysis.

5.3 Qualitative Analysis

Within this section, the research question we
want to answer is: “How good are the gen-
erated sentences of the best-performing sys-
tem from a qualitative perspective?”. For
this, we conducted a manual analysis of the
entire set of sentences generated by Sim-
pleNLG, T5-Small, and RMT models. Sen-
tences generated with SimpleNLG tend to be
a short combination of three concepts. In
contrast, sentences generated by T5-Small
and RMT are syntactically correct sentences,
but sometimes they are semantically not ac-
curate. However, they often repeat informa-
tion within the same sentence.

To analyse those results deeply, we se-
lected several examples of the generated sen-
tences for different concept sets to make a de-
tailed qualitative and human analysis. This
selection was made based on the model with
better results from the previous quantita-
tive analysis, conducted in Section 5.2, i.e.,
T5-Small. To illustrate its qualitative per-
formance, we selected a semantically correct
sentence, a sentence that contained a frag-
ment that was nonsensical, and a sentence
which has no semantically correct fragments.
Then, we selected the corresponding sen-
tences of the same concept set in the other
two models, SimpleNLG and RMT. Figure 2
shows the selected concept set and the sen-
tence each model has generated for that col-
lection of words.

As can be seen, the generated sentences
by SimpleNLG are short and formed just
by combining the words of the concept set.
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Lie looks bed.

Target 
sentence

Generated 
sentence

 [bed, lie, look]

Concept Set

He looks at the clock while lying in bed.

It was scary for the girl to lie on the bed 
without taking a look under it.

The baby lies on a bed and looks at the 
camera while his mother looks on and 

gives him a look of lies.

A woman is lying on a bed and looking 
at the camera.

SimpleNLG

T5-Small

RMT
Exhausted, she looks forward to lying 
down in bed for the night.

good looking family lying on a bed.

Stand hands pocket.

 [hand, pocket, 
stand]

A girl was standing with her hands in her 
pocket.

When I stand around, I have my hand in 
my pocket.

The man standing in the pocket is making 
a hand gesture with his left hand and 

stands in a pocket.

A man standing in a pocket with his hand 
in the middle of a pocket.

The boy has his hands in his pocket as 
he stands at he bus stop.

Standing, someone 's hand reaches into 
his pocket.

Meal prepares eat.

 [eat, meal, 
prepare]

A child eats a meal her mother prepares.

The chef prepared a meal for the 
customer to eat.

The man is preparing to eat a meal 
prepared for a group of people preparing 

to go out to eat.

A man is eating a meal and preparing it 
for the meal. People preparing to eat a meal.

She is to bounce the ball a hundred 
times I 2 minutes.

SimpleNLG

T5-Small

RMT

SimpleNLG

T5-Small

RMT

Figure 2: Results obtained for selected tuples.

These sentences are neither semantically nor
syntactically correct, and a major part of the
generated sentences by this model are non-
sensical. In contrast, sentences generated
by T5-Small are syntactically well formed
and in most cases, they include commonsense
knowledge. However, there are fragments
in those sentences that are semantically in-
correct, as the example “A man is eating a
meal and preparing it for the meal.” that the
first part of the sentence, (a man is eating
a meal) do not correlate well with the sec-
ond part (preparing it for the meal). Finally,
sentences generated by RMT are also gen-
erally syntactically correct. Even so, they
tend to repeat already said information in
the generated sentence, e.g. the sentence
“The man standing in the pocket is making a
hand gesture with his left hand and stands in
a pocket.” repeats the information that the
man is standing in a pocket. Moreover, some
of these sentences are also nonsensical, such
as the fragment “gives him a look of lies”.

Table 5 shows the results obtained in the
NLG evaluation metrics for the aforemen-
tioned generated sentences. For the first con-
cept set, “[bed, lie, look]”, the model that
better results achieves in most metrics is
T5, as the sentence generated by it is bet-
ter formed in terms of semantic and syn-
tactic quality. Nevertheless, RMT and Sim-
pleNLG sentences obtain better scores than
T5 on the SPICE and BERTScore metrics,
despite they are nonsensical. This suggests

that these metrics may not be fully effective
for evaluating this sentence.

Results obtained for the second concept
set, “[hand, pocket, stand]” reveal a diver-
gence among the generated sentences. While
SPICE, BLEU 1, and ROUGE L favour the
sentence produced by T5, Cosine Similar-
ity, readability and BERTScore indicate that
the RMT-generated sentence is better. Upon
closer analysis, both sentences exhibit cor-
rect syntax, but the sentence generated by
RMT redundantly reiterates information al-
ready present in the sentence. So, this sen-
tence is considered semantically worse than
the sentence generated by T5.

Finally, all metrics suggest that the sen-
tence generated by RMT achieves the best
performance on the third concept set, “[eat,
prepare, meal]”. Nonetheless, all the sen-
tences are semantically inaccurate. Sim-
pleNLG’s generated sentence comment that
a meal prepares to eat when that is not pos-
sible. In this respect, it is worth noting that
sentences generated by SimpleNLG were con-
figured to be in present tense only for sim-
plicity reasons, as it would be very difficult
to know a priori which verb tense would be
more appropriate for each sentence for each
given set of concepts. However, if this in-
formation was known, it would be possible
to configure SimpleNLG to adjust the sen-
tence to a specific tense, so in this example,
the same sentence put in passive voice “Meal
is prepared to eat” would be correct. T5’s

130130

Iván Martínez-Murillo, Paloma Moreda, Elena Lloret

130



Concept set Model SPICE BLEU 1 Rouge-L Readability Cosine BERTScore

[bed, lie,
look]

SimpleNLG 0.133 0.264 0.306 0.167 0.293 0.896
T5-Small 0.105 0.500 0.405 0.232 0.348 0.893
RMT 0.154 0.391 0.311 0.159 0.254 0.895

[hand,
pocket,
stand]

SimpleNLG 0.095 0.189 0.280 0.226 0.323 0.876
T5-Small 0.133 0.471 0.389 0.265 0.322 0.905
RMT 0.129 0.450 0.310 0.315 0.368 0.908

[eat,
meal,
prepare]

SimpleNLG 0.143 0.368 0.336 0.226 0.374 0.909
T5-Small 0.105 0.429 0.344 0.240 0.253 0.921
RMT 0.211 0.500 0.482 0.366 0.368 0.928

Table 5: Results obtained for the selected concept sets.

sentence contains the actions of eating and
preparing a meal at the same time when that
action can not be taken simultaneously. Fi-
nally, RMT’s sentence mentions that a man
is eating a meal prepared for another group
of people. This sentence is not completely
semantically wrong but is difficult to under-
stand. It also repeats some information, the
action of preparing to eat, so this issue af-
fects the quantitative results obtained by this
sentence that may increase. One aspect to
remark on within this concept set is that a
confusing sentence such as the one generated
by RMT, obtains the best score on the read-
ability score, suggesting that this metric may
be not accurate in this generation context.

Generally speaking, since almost all the
evaluation metrics highly rely on the target
sentences with which the generated sentences
are compared, the best option to be confi-
dent in the quantitative results achieved by
a model is to compare different metrics and
check the correlation among them, not for-
getting the qualitative evaluation of the gen-
erated sentences as well. As shown in our
empirical analysis, T5-Small, the model with
better quantitative results, generated syn-
tactically correct sentences which sometimes
contained semantically wrong fragments.

5.4 ChatGPT as a Text Evaluator

To debate the research question “To what
extent can LLMs-based tools, such as Chat-
GPT, be a good alternative or complement
to automatic evaluation metrics?” we con-
ducted a preliminary experimentation using
the same concept sets as in Section 5.3.

We prompted GPT-4 model (OpenAI,
2023) via Bing interface6 the following text:
“Given the following three sentences, which
one does make sense?”. After that, the gen-

6GPT-4 can be accessed at
https://www.bing.com/chat

erated sentences are written. GPT-4 gives as
output a detailed explanation of why each of
the sentences makes sense or not, and argues
which sentence is the most appropriate.

Figure 3 shows the generated output for
the sentences generated with the concept
set [bed, lie, look]. GPT-4 argues that the
sentence generated with SimpleNLG is not
grammatically correct, correlating with hu-
man judgement. For the sentences generated
with T5-Small and RMT respectively, it says
that they are grammatically correct. How-
ever, analysing the RMT sentence, the frag-
ment “gives him a look of lies” is not seman-
tically accurate. Despite this, GPT-4 con-
cludes that the third sentence including that
fragment is the best choice.

Figure 3: Generated sentence for the concept
set [bed, lie, look].

The output generated for the second con-
cept set ([hand, pocket, stand]) can be seen
in Figure 4. In this output, GPT-4 contra-
dicts itself on the action of “a man stand-
ing in a pocket”. While the second sentence
says that this action is not correct (it is
metaphorical), it argues that the third sen-
tence is well-constructed and clear. More-
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over, GPT-4 concludes that the third sen-
tence is the most natural choice, when it re-
peats the metaphorical action of “standing
in a pocket” twice. At last, the concept set

Figure 4: Generated sentence for the concept
set [hand, pocket, stand].

[eat, meal, prepare], although being accurate
in the conclusion that the last sentence is the
most appropriate, fails at evaluating the sec-
ond sentence. GPT-4 says that this sentence
makes sense. But eating a meal while prepar-
ing it, is not physically possible, so that rea-
soning is not valid. As we have seen, GPT-4

Figure 5: Generated sentence for the concept
set [eat, meal, prepare].

explains why a sentence is valid or not. Nev-
ertheless, that explanation is not always cor-
related with human judgements, and neither
is accurate with its explanations. Therefore
there is still room for improvement in the way
LLMs such as GPT-4 evaluate the text ap-
propriateness.

6 Conclusions and Future Work

This paper presented an empirical analysis of
several NLG evaluation metrics and models

for the commonsense generation task. The
experiments conducted and the discussion of
the results led us to conclude that current
evaluation metrics highly depend on the set
of target sentences a text is compared with.

As we have seen, the alignment between
automated metrics and human evaluation is
not always accurate. When comparing the
performance of different models, the results
obtained by SimpleNLG are similar to the
results achieved by the other two models.
However, it is important to note that, when
analysing these sentences manually, the sen-
tences generated by SimpleNLG are just a
combination of concepts, often resulting in
nonsensical and not syntactically correct sen-
tences, while the sentences generated by the
other two models are at least syntactically
correct. This difference is not reflected in the
results obtained in these metrics. This may
indicate that using words that are contained
in the target sentences in a random order,
can produce similar results to syntactically
correct sentences using these metrics.

Another important point to consider when
evaluating using the standard NLG evalua-
tion metrics is repetition. In natural lan-
guage, repeating the same information can
be redundant, making that sentence of infe-
rior quality to one that avoids the repetition.
Nevertheless, in the context of these metrics,
the repetition not only fails to penalise the re-
sults obtained but raises the results obtained.
Furthermore, we have seen that some sen-
tences that are not semantically correct ob-
tain better results than sentences that are se-
mantically accurate, as most used metrics do
not evaluate the semantic information.

Finally, evaluating a model with several
metrics is more accurate than doing so with
only one metric, as it gives a wider vision of
how that model is performing.

One future line of work is to expand the
preliminary analysis of LLMs as text eval-
uators, exploring different available LLMs,
as they can capture and learn human pat-
terns from a semantic perspective. Therefore,
these models can indeed learn such patterns,
they may serve as valuable tools for evalu-
ating sentence correctness. Additionally, it
would be interesting to explore how to en-
hance the performance of our top-performing
model, T5-Small, also by incorporating com-
monsense knowledge into the model.
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