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Fabio Yáñez-Romero1, Andres Montoyo2, Rafael Muñoz2,
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Abstract: Large language models have shown impressive performance in Natural
Language Processing tasks, but their black box characteristics render the explain-
ability of the model’s decision difficult to achieve and the integration of semantic
knowledge. There has been a growing interest in combining external knowledge
sources with language models to address these drawbacks. This paper, OntoLM ,
proposes a novel architecture combining an ontology with a pre-trained language
model to classify biomedical entities in text. This approach involves constructing
and processing graphs from ontologies and then using a graph neural network to
contextualize each entity. Next, the language model and the graph neural network
output are combined into a final classifier. Results show that OntoLM improves the
classification of entities in medical texts using a set of categories obtained from the
Unified Medical Language System. We can create more traceable natural language
processing architectures using ontology graphs and graph neural networks.
Keywords: External Knowledge, Ontologies, Large Language Models, Graph Neural
Networks.

Resumen: Los grandes modelos de lenguaje han mostrado un rendimiento impre-
sionante en tareas de Procesamiento del Lenguaje Natural, pero su condición de
caja negra hace dif́ıcil explicar las decisiones del modelo e integrar conocimiento
semántico. Existe un interés creciente en combinar fuentes de conocimiento exter-
nas con LLMs para solventar estos inconvenientes. En este art́ıculo, proponemos
OntoLM , una arquitectura novedosa que combina una ontoloǵıa con un modelo de
lenguaje pre-entrenado para clasificar entidades biomédicas en texto. El enfoque
propuesto consiste en construir y procesar grafos provenientes de una ontoloǵıa uti-
lizando una red neuronal de grafos para contextualizar cada entidad. A continuación,
combinamos los resutlados del modelo de lenguaje y la red neuronal de grafos en
un clasificador final. Los resultados muestran que OntoLM mejora la clasificación
de entidades en textos médicos utilizando un conjunto de categoŕıas obtenidas de
Unified Medical Language System. Utilizando grafos de ontoloǵıas y redes neuronales
de grafos podemos crear arquitecturas de procesamiento de lenguaje natural más
rastreables.
Palabras clave: Conocimiento Externo, Ontoloǵıas, Grandes Modelos de lenguaje,
Redes Neuronales de Grafos.
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1 Introduction

This work is centred on the premise that using
structured external knowledge can help dur-
ing the fine-tuning process of large language
models, and it also makes the architecture
more traceable and explainable as it provides
semantic knowledge during the process. To
validate the premise, a multilabel classifica-
tion task is chosen. In this task structured
knowledge is used with language models form-
ing an even larger architecture which com-
bines the language model with a graph neural
network (GNN) in a final classifier.

This work aims to insert structured ex-
ternal knowledge into the decision-making of
a model based on pretrained language mod-
els, improving the results obtained in classi-
fication tasks and obtaining a final architec-
ture (OntoLM) that will allow traceability
through the GNN and the initial structures
obtained from UMLS.

An ontology defines the possible relations
between different types of entities and is used
as a schema to decide how relational informa-
tion should be stored in an ordered way. The
rules defined in the ontology are expressed in
the final knowledge base (KB) derived from
this ontology. KBs store information about
many domains in a structured way. Big KBs
like UMLS or WordNet have proven their
usefulness in many downstream tasks where
factual information is needed, reducing the
amount of wrong information returned (Chen
et al., 2017). AlKhamissi et al. (2022) con-
sider the following criteria as the most impor-
tant characteristics for considering a language
model as a KB:

• Accessibility: all the information of a
KB can be queried directly.

• Easy to edit: every entity or relation
can be modified with minor effort.

• Consistency: queries with the same
meaning should give the same result.

• Reasonableness: how suitable is the
application of reasoning techniques over
their structure rather than deep learning
models.

• Explainability and interoperability:
explainable algorithms and techniques
are more suitable; for example, knowl-
edge base schema or path walking tech-
niques.

By contrast, big deep learning models used
in Natural Language Processing (NLP) store
large amounts of information through their
training with large amounts of text, as shown
in the most recent cases with BERT (Devlin
et al., 2019) or GPT-4 (OpenAI et al., 2024).
Language models have proven to be very use-
ful in numerous tasks carried out in language
processing. Their different architectures allow
them to cover both classification and text gen-
eration tasks. However, these models have a
large amount of probabilistic knowledge which
cannot be interpreted.

Using only language models can present
problems because of the lack of internal rea-
soning in such a model, as well as biases
(Bender et al., 2021) and toxic information
(Gehman et al., 2020) contained in them. The
information obtained in these models is not
easy to update, so they tend to be easily out-
dated due to the high cost of re-training them.
Also, these models have many inconsistencies,
as shown by works that obtain different infor-
mation using prompt engineering techniques
(Elazar et al., 2021).

Finally, traceability, interpretability, and
explainability are easier to achieve with a well-
defined ontology that generates information
based on certain rules or schema and their
graph structure (Agarwal et al., 2023). Deep
learning models that consider the entire struc-
ture of a graph in the training data often
provide more traceable structures that can be
understood intuitively (Zhou et al., 2020).

The paper is structured as follows: Sec-
tion 2 discusses other works using similar ap-
proaches, trying to provide semantic knowl-
edge with external knowledge or training data
for language models. Section 3 describes the
aim and characteristics of the corpus associ-
ated with the experiment. The next sections,
4 focuses on the whole architecture of the
experiment with a specific focus on data pro-
cessing and model training 5. Subsequently,
the results are reported in section 6. The dis-
cussion of the results obtained is carried out
in section 7, whereas conclusions and future
work arising from the discussion are explained
in section 8.

2 Related Work

The use of external knowledge and language
models has been extensively researched to
address the issues encountered in language
models. Some works, such as (Kaur et al.,
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2022) or (Sun et al., 2021), aim to pretrain the
model by incorporating semantic knowledge
or altering the existing architecture. Others
train a language model from scratch using
an innovative masking approach (Zhang et
al., 2019), improving many benchmarks. In
both cases, the computational cost is high,
making it difficult to adopt similar experiment
strategies.

Other approaches try to bring semantic
knowledge into the language model without
updating the language model parameters, ei-
ther by using pre-processing (Sun et al., 2024)
or post-processing (He, Zhang, and Roth,
2022) techniques. These approaches are usu-
ally less expensive, making them more acces-
sible and versatile than previous examples.

The factual knowledge contributed to the
language model can have an unstructured ori-
gin, as in the case of Peng et al. (2023), or
it can come from structured knowledge bases,
where the information is mainly organised in
the form of triples (Huang et al., 2022).

The advantage of using a structured knowl-
edge source as external knowledge is the elim-
ination of ambiguities present in the text, as
well as an ordered information structure that
does not introduce more noise than necessary
and the provision of semantic knowledge, such
as synonymy, hyponymy, and hyperonymy or
antonymy relations (Mrkšić et al., 2016) de-
pending on the knowledge base used.

Previous work has attempted to provide
structured knowledge by capturing the seman-
tics of KBs and feeding this knowledge into
deep learning models from modules specialised
in this task (Piad-Morffis et al., 2019).

Other works have been carried out that at-
tempt to benefit from the knowledge present
in knowledge bases with GNNs because of
the inherent relation of this architecture with
their different nodes. Jiang et al. (2020)
proposes to use knowledge from a graph to
perform text classification, in their case they
create the graph by performing Named Entity
Recognition (NER) on short texts, augment-
ing the information obtained with a general
knowledge base and initiating embeddings of
each entity using Word2Vec (Mikolov et al.,
2013). The graph is processed using Gated
Graph Neural Networks (GGNNs) (Li et al.,
2017), and they also process the whole text
with a pre-trained language model (PTLM).
Finally, they use an attention background on
the GGNN and the PLM results to classify

the text. There are other methods to create
embeddings of the entities and relations of
a knowledge graph. These methods can be
considered contextualised embeddings from
knowledge graphs (Yáñez Romero et al., 2023-
09).

Another example is Feng et al. (2020), who
use pre-trained language models and knowl-
edge from different ontologies to answer ques-
tions with a fixed number of answers as con-
text. In their work, they form different graphs
with ontology entities from the entities de-
tected in both question and possible answers.
This information is passed through a GNN
that considers the type of relation between
each node and a node scoring system to fil-
ter the possible paths between questions and
answers. This novel way of applying external
knowledge to language models has a major
problem: it is used specifically to respond to
questions with a fixed number of answers.

In this proposal, an architecture similar
to (Yasunaga et al., 2021) is used to classify
entities detected in a given text. For this
purpose, language models trained in the spe-
cific domain of the text and ontologies with
knowledge of the same domain will be used.
The architecture of the graphs used during
training will be adapted to the proposed ob-
jective, and the GNN introduced by Feng et
al. (2020) and the improvements introduced
by Yasunaga et al. (2021) will be utilized.

3 Corpus

The corpus used to classify medical entities
has been created by annotating medical terms
found in abstracts of papers obtained from
PubMed. Annotated texts focus on diseases,
as these texts were collected to classify en-
tities related to diseases and ailments. The
annotations made contemplate 40 different
categories obtained from the semantic types
of UMLS. Specifically, this corpus has been
annotated semi-automatically by performing
NER on the abstracts using NER models ob-
tained from sci-spacy (Neumann et al., 2019),
namely ’en-core-sci-lg’. Then, each annota-
tion was supervised, and labels that did not
correspond to the context of the entity were
removed. However, the corpus used is very
unbalanced, as differences of 1 to 100 can be
found between the categories with the lowest
representation and those with the highest rep-
resentation. This problem was mitigated by
undersampling the dataset.
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Finally, a corpus was obtained where each
entity can be annotated with more than one
category since, in its context, this entity can
be considered within different UMLS cate-
gories, e.g. in Text 1 the entity pharmacologi-
cal treatments can be classified as healthcare
activity or research activity. Therefore, we are
faced with a multi-label classification prob-
lem.

This work analyzed salivary Lf
concentration under different
handling conditions and donor-
dependent factors, including age,
inter-diurnal variations, physical
activity, and pharmacological
treatments.

(1)

However, in the corpus used, most entities
are classified with only one label, with a few
examples having two labels and almost none
with more, as shown in Figure 1.
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Figure 1: Clustering of training data based on
the number of labels.

4 OntoLM

The proposal performs a supervised classi-
fication task on annotated medical entities
obtained from biomedical texts. In brief, su-
pervised learning is performed by augment-
ing a pre-trained language model with the
knowledge from the UMLS medical ontology,
carrying out the training of a GNN. The dif-
ferent sections of the architecture are listed
as follows:

1. The starting point is the data obtained
from the corpus with their corresponding

labels.

2. The UMLS ontology database is then
used to augment the annotated data with
the possible entities detected in UMLS
(4.1).

3. The graphs necessary for the model’s
training are created according to section
4.2.

4. The language models used to represent
the entities and process the text are
named in section 4.3.

5. Finally, a summary of the task covered
in the experiment is given 4.5.

Figure 2 shows the complete proposed ar-
chitecture, starting from the texts with an-
notated entities. In the pre-processing stage,
each text document is represented in light yel-
low, the database and the entities extracted
from it can be seen in orange, and the input
tensors to the model are in grey. During the
training step, depicted in light blue/salmon,
the model’s components are frozen/learning,
respectively. Numerical values represent the
order of the data flow.

The complete experiment considers all
three components: GNN, LLM, and a multi-
layer perceptron (MLP).

4.1 Ontology structure

Understanding the structure of the initial on-
tology from which one starts is essential to
forming a coherent graph for the proposed
task. In this case, UMLS will be used as it
contains much knowledge from the medical
field (Bodenreider, 2004).

Considering UMLS entities and relations
as a graph, the minimum structure of this
database would be triples. Each triple consists
of a head entity eh and a tail entity et with its
respective relations r so that a triple would
be represented by the expression (eh, r, et).
It is possible to generate a knowledge graph
from UMLS using specific data tables that
indicate the relations between the different
entities, i.e. triples.

These concepts and relations constitute
the main data source of UMLS, known as its
Metathesaurus. However, UMLS has other
sources of knowledge, such as the Lexicon,
which generates the different linguistic vari-
ants of a term, or the semantic network,
which generates higher-level categories that
encompass the concepts in the database. The
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Figure 2: OntoLM architecture. The box above shows all the pre-processing of the data carried out
before training. The bottom box shows the training stage.

UMLS semantic network classifies each con-
cept based on Semantic Types (TUIs) (Mc-
Cray, 1989), which can represent direct rela-
tions between the different concepts or clas-
sify these concepts in higher-level categories.
Moreover, TUIs are organised hierarchically
among themselves and can have a subset
within another set.

The TUIs used to catalogue the different
concepts can be used as categories in entity
classification problems within the biomedi-
cal field. Considering all the classification
TUIs, there are 127 different ones, forming a
large number to be used in classification prob-
lems. Of the 127 initial categories obtained
from UMLS, 34 were eliminated because they
did not provide value for classifying disease-
related entities, such as Temporal concept or
Geographical Area. This leaves a total of 93
categories, a particularly high number for mul-
tilabel classification using language models.
For this reason, the 93 categories have been
reduced by grouping them by their hierarchi-
cal relations so that Plant, Fungus or Animal
can be grouped under TUI Organism. The
number of categories considered has been re-
duced to the 20 most representative ones to
balance the final categories obtained. The 40
initial categories and the chosen 20 categories
are shown in Table 1.

For each example to be classified, 20 graphs
are generated with the detected entities of the
text, which a GNN then processes. Also, 20
statements are generated and processed by the

UMLS Id Category Names Nº Labels
T001 Organism -
T005 Virus -
T007 Bacterium -
T018 Embryonic Structure -
T023 Body Part Organ Or Organ Component 801
T025 Cell 801
T026 Cell Component 801
T028 Gene Or Genome 801
T032 Organism Attribute -
T033 Finding 801
T037 Injury Or Poisoning -
T038 Biologic Function 801
T043 Cell Function 801
T046 Pathologic Function 801
T047 Disease or Syndrome 801
T049 Cell or Molecular Dysfunction 801
T050 Experimental Model of Disease -
T055 Individual Behavior -
T058 HealthCare Activity 801
T062 Research Activity 801
T066 Machine Activity -
T069 Environmental Effect of Humans -
T070 Natural Phenomenon or Process -
T073 Manufactured Object -
T079 Temporal Concept 801
T085 Molecular Sequence -
T091 Biomedical Occupation Or Discipline -
T093 HealthCare Related Organization -
T098 Population Group 801
T101 Patient or Disabled Group 801
T103 Chemical 801
T114 Nucleic Acid Nucleoside or Nucleotide -
T116 AminoAcid Peptide or Protein 801
T121 Pharmacologic Substance 801
T123 Biologically Active Substance 801
T167 Substance -
T184 Sign or Symptom -
T190 Anatomical Abnormality -
T201 Clinical Attribute 801
T204 Eukaryote -

Total Statements 15321

Table 1: The 40 initial categories considered in
the classification task, and the 20 final categories
used after undersampling the dataset.

language model. A graph and a statement are
generated for each possible category among all
those considered. The construction method
of each graph and statement is indicated in
the following sections.
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4.2 Proposed Graph Structure

For the classification of words from a text, it is
necessary to modify the network architecture
proposed in (Feng et al., 2020) and (Yasunaga
et al., 2021), since it is not about answering
questions. Therefore the possible answers
cannot be used as a context.

In this structure, there is an initial entity,
which is the target entity to classify, and the
rest of the entities detected in the text belong-
ing to the biomedical field. The other entities
detected will serve as context to classify the
target word.

To introduce the context of the entity
to be classified and the possible classifica-
tion it refers to, entities that do not exist
in UMLS are created representing the exact
word found in the text, and new relations that
will connect these entities with UMLS entities.
For instance, the word ’results’ in a medical
text may refer to different entities within the
knowledge base, such as ’Clinical results’ or
’Experimental results’.

From the initial entity, which is the anno-
tated entity, using matching with n-grams of
three characters, the possible entities referred
to by that word are obtained, each with their
respective classifications. The initial entity
is related to these entities from the ontology
using a newly created relation meaning of.
From the ontology entities, the rest of the
entities directly connected to them that share
one or more semantic types can be obtained
using the UMLS database. This step can be
done many times, increasing the size of the
final graph. The final node of the network
is each of the possible categories used in the
architecture. This node will be directly con-
nected to the rest of the entities detected in
the target text related to the category (based
on UMLS possible entities). The new relation
used in this case will be belongs to. The con-
sidered relations can be expanded with direct
relations to the possible TUIs of the word to
be classified, further extending the graph and
thus connecting to the initial entities. The in-
termediate triples obtained from the ontology
present the different relations considered in
the UMLS version.

Figure 3 illustrates the architecture of each
graph; every node represents an entity, the
blue nodes being the target entity in the text
to be classified. The green nodes are the pos-
sible nodes obtained from the ontology. The
orange nodes represent the remaining nodes

obtained from the text that have a category
that coincides with the possible categories of
the green nodes (based on three characters n-
gram matching on UMLS). The red nodes rep-
resent one of the 20 possible categories, which
matches the orange nodes category. Finally,
the white nodes represent those obtained from
existing relations in UMLS with the rest of
the previously mentioned nodes.

To avoid information loss and improve the
results if many jumps are made, the contex-
tual node Z is used (Yasunaga et al., 2021).
This node connects the initial node (target
word to be classified) with the final node (pos-
sible category).

Figure 3: Graph structure proposed by each state-
ment.

In cases where the target category is not
related to the entities of the text, only the cat-
egory is added as an isolated node. The other
categories of the text are not added. Thus,
a network is formed by the nodes obtained
from the initial entity and the isolated node
(connected only by the context node Z).

The proposed architecture is processed us-
ing the GNN introduced by Feng et al. (2020),
then a pooling is performed on the GNN and
fed into an MLP together with the language
model data and the context node Z.

4.3 Language Models

To represent the nodes of each graph in a for-
mat compatible with the GNN, it is necessary
to use embeddings containing the information
of each entity. Each node is initialised using
a specific language model for this task in this
case.

Language models can be used to create en-
tity embeddings, as they store a large amount
of knowledge in their model weights. With
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this in mind, language models trained on a
specific domain can represent entities and
their relations from that domain for subse-
quent tasks. This is the case of other works
such as (Wang et al., 2023) or (Wang et al.,
2022), where entity embeddings are created
using language models for entity linking and
relation inference.

A BERT model trained with UMLS data
is used to generate the embeddings of the
medical entities. This model was trained to
represent the different names that the same
medical concept can have in a similar way,
which is ideal for the present task (Liu et al.,
2021). In addition, the SapBert model used is
based on PubMedBERT (Gu et al., 2021), a
BERT model pre-trained in the biomedical do-
main, specifically taking texts from PubMed.
In this way, vectors of each biomedical en-
tity are obtained, giving as input each of the
biomedical concepts obtained from the graphs
in a text format to the tokenizer.

In the architecture, the BERT Large pre-
trained language model is used. This model
will receive each of the statements indicated
in the following section as input data.

4.4 Language Model Statements

The input to the language model associated
with the node is the entire context of the text
in question, such as Text 2.

[CLS] + Sentence + [SEP ] + term + [SEP ] + Label (2)

Where [CLS] and [SEP] are the special
classification and separation tokens used in
BERT, respectively. Considering Text 1, we
would have has input for term pharmacologi-
cal treatments, labels healthcare activity and
research activity, having two different inputs
for the LLM.

The information obtained from the graphs
after using the GNN proposed by Yasunaga
et al. (2021) is combined with the output of
the language model, representing that graph
along with the contextual node obtained from
the language model but adapted to the size
of the GNN nodes. The pre-trained language
model will return an embedding size equal to
its last hidden layer.

4.5 Classification problem

The proposed classification problem will try
to classify each entity detected in the target
text among the 20 reduced categories obtained
from the UMLS semantic types. The proposed

architecture as in Yasunaga et al. (2021) em-
ploys an MLP at the end of the architecture.
This MLP receives as input data the pooling
vector obtained from the GNN, the output of
each statement of the language model, and
the vector that represents the context node Z.
This concatenation will be received a total of
20 times, 1 for each category considered and
will return a single probability that will be
compared with the label in question.

The classification problem considered is
multilabel, so each word to be classified can
have more than one associated category, and
in this case, no category is mutually exclusive.
To carry out the classification, a sigmoid func-
tion and then binary cross entropy are used
as the final activation function of the MLP,
comparing each result obtained by the con-
catenation of a statement, graph, and context
node vectors with the label in question.

The loss function considered is defined at
the end of the MLP, so back-propagation up-
dates the weights of the MLP and the GNN,
as well as the linear transformations carried
out to adjust the vectors representing each
node of the graph to the dimensions of the
GNN. The language model weights are kept
frozen (OntoLMF ) or unfrozen (OntoLM) de-
pending on the experiment.

5 Experimentation

The data obtained from the corpus are not
correctly balanced, e.g. the category with
the highest representation has 100 times more
examples than the category with the lowest
representation. This leads to performing an
undersampling task on the data before train-
ing the model. Multi-Hop Graph Relation
Network (MHGRN) introduced by Feng et al.
(2020) also considers the number of different
relations, but in previous question-answering
experiments, the number of different relations
is not large. In this case, the experiments
consider all relations extracted from UMLS.

5.1 Undersampling

An undersampling task was carried out during
the experiments to balance the dataset used.
Balancing the dataset considerably improves
the results obtained, since otherwise good re-
sults are only obtained with the labels with
the highest representation. The final dataset
used has a total of 800 instances for each of the
labels, and each of these instances can have
more than one label. During the undersam-
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100%

Database % Nº Entities Nº relations
100% 2916715 1140

95% 2775806 50
91% 2654280 30
87% 2537174 20
78% 2288369 10

Figure 4: Number of different relations and
the total coverage of entities using these rela-
tions, around 95 percent of the database uses
only 50 relations.

pling task, training data was removed once
the limit set per label was reached. Having
a maximum of 800 in the most representa-
tive cases. Oversampling the data that has
very few instances is not recommended since
the training of the model gives very poor re-
sults on the categories where oversampling
is performed. Therefore, removing categories
with less than 800 instances is the best so-
lution, reducing the dataset to 20 categories.
The number of instances for each category is
shown in Table 1.

5.2 Number of relations

All the relations present in the UMLS version
have been used; however, of all these relations,
a few have much higher representation reach-
ing 95 per cent of the whole database down-
loaded with the top 50 relations, not counting
the introduced relations belongs to and mean-
ing of. With this in mind, a large part of the
database can be represented with few rela-
tions, which is likely to positively affect the
classification task by reducing the training
complexity of the GNN. The representation
of the database considering the number of
relations can be seen in Figure 4. In this case,
experiments using a simplified database with
reduced relations will be conducted in future
works.

5.3 Baseline

To carry out the experiment, the pre-trained
BERT model is considered as baseline, specifi-
cally the large version obtained from the Hug-
gingFace library together with an MLP com-
prising two hidden layers for final classifica-
tion. This language model is considered the
baseline since the whole system will use this
model and the rest of the proposed architec-
ture, to perform the classification.

6 Results

Precision and recall have been measured for
each category considered during the experi-
ment. Specifically, confusion matrices were
used for each category, thus obtaining true
positives, true negatives, false positives, and
false negatives. In this way, the F1 score of
each category was obtained, and the overall
results can be seen in Table 2. Figure 5 shows
the best micro results obtained for the model
with better macro F1 (OntoLMF ).

Model Accuracy Precision Recall F1
Baseline 0.97 0.42 0.83 0.56
OntoLM 0.96 0.59 0.62 0.60
OntoLMF 0.97 0.74 0.62 0.68

Table 2: Macro Accuracy, Precision, Recall
and F1 for each experiment. Results for the
best epoch.

7 Discussion

The proposed final architecture trains 1.2
million parameters, 300 times less than pre-
trained language models such as BERT Large.
However, the training becomes computation-
ally expensive due to the large number of ten-
sors representing graphs used as model input
data compared to classical language model
training, which employs only text tensors dur-
ing this stage. The experiments were carried
out using one 40 GB A100 GPU, spending a
total of 12, 18 and 3 hours for training three
epochs on Baseline, OntoLM and OntoLMF ,
respectively and incrementing the batch size
as much as possible to fill the GPU mem-
ory. Moreover, considering a graph and a
statement for each possible term category in-
creases the computational cost considerably.
An attempt has been made to reduce the com-
putational cost of the input data by reducing
the size of the graphs, since in the case of
the experiments carried out by Yasunaga et
al. (2021), the size of the graphs used is 200
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Figure 5: Precision, Recall and F1 for the best experiment in each of the 20 categories used.

nodes at most. In our particular case, reduc-
ing the size of the graphs to 100 nodes at most
allows us to obtain good representations of
each instance while reducing the weight of the
input tensors by 40 per cent.

During the evaluation of the training
epochs, notably during the different exper-
iments, the real positives were not learned in
the first two epochs. This is associated with
the fact that this problem is a multilabel clas-
sification with too many negative categories,
i.e., most of the label categories are zero, so re-
turning zero in all categories for each training
instance reduces the loss function consider-
ably. Next, to reduce the loss function, it is
necessary to identify the true positives in the
output.

Table 2 shows that significant improve-
ments have been obtained when using the pro-
posed architecture over the baseline. However,
the recall obtained in the baseline is far supe-
rior to the OntoLM experiments, suggesting
that proper hyperparameter tuning is likely
to give better results when running the full
architecture. Running experiments with the
full architecture yields better results by keep-
ing the language model frozen (OntoLMF ),
suggesting that the GNN architecture better
adapts the knowledge of the language model
for downstream tasks compared to the un-
frozen language model (OntoLM). This re-
sult suggests that the proposed architecture
can serve as an alternative to fine-tuning or
that we can improve the results obtained by
initially performing traditional fine-tuning on

the language model and then attaching it to
the overall architecture by training the GNN.
As an alternative to fine-tuning, the proposal
presented in this work is valid as, in addition
to the better results, the computational cost
(both in time and resources) is considerably
reduced if the language model is kept frozen.
The code of the experiments is available on
GitHub 1.

During the realisation of each experiment,
notably in the first two training epochs, the
models do not classify any statement as pos-
itive, thereby obtaining only true and false
negatives. The architecture finds as a first
valid option to optimise all results in this way
to reduce the loss function. Then, if the learn-
ing rate is low enough to classify the true
positives, each model will learn to classify
them, obtaining the best results in the first
10 epochs. This is quite likely considering
that the labels used have very few positive
categories, with 1 or 2 out of 20 in most cases.

Finally, the initial embeddings of each
graph are not as expressive as they could
be, mainly because the relations between the
different nodes are not represented with con-
textualised embeddings from the beginning as
with other methods. It is worth testing in fu-
ture work by initialising these nodes with con-
textual embeddings based on their respective
ontology and modifying the GNN architecture
to process those contextualized embeddings.

1https://github.com/FabioDataGeek/OntoLM
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8 Conclussion and Future Work

Given the results, multilabel classification
tasks are improved by incorporating exter-
nal structured knowledge. As far as we know,
few works have performed the classification
task with such a high number of categories.
In the case of (Lee, Lee, and Ahn, 2022) they
use 45 categories to perform multilabel clas-
sification of texts. However, in our case, the
objective is not to classify the text but the
possible entities found in a text from a certain
domain. To the author’s knowledge, very few
works perform this specific task with so many
categories. However, in tasks such as classifi-
cation based on International Classification of
Diseases codes, 10th edition (ICD-10), within
the biomedical field (Gérardin et al., 2022)
both entity and text classification studies ex-
ist, a task that is especially relevant to the
purpose of this work.

Experiments show us an alternative way
of adapting a language model to a specific
domain without changing the domain weights,
which is less computationally expensive and
faster than loading the language models for
fine-tuning. However, the time spent pre-
processing the data to generate each graph
must also be considered. The results obtained
with the proposed architecture open up sev-
eral lines of research, including the following:

1. The combination of ontologies with lan-
guage models in other domains to per-
form classification tasks. Using this ar-
chitecture with other ontologies can be
especially useful to cover other NLP tasks
such as word sense disambiguation with
WordNet (Fellbaum, 1998).

2. Classification of texts with ICD-10 codes,
using many categories and extending the
experiment with ontological knowledge.
UMLS is particularly interesting in this
particular case, as it has specific informa-
tion on ICD-10 codes.

3. Distillation of knowledge from language
models, capturing the knowledge inside
the language model using the GNN, with
a final architecture much smaller than
an LLM. If enough knowledge of the
language model can be captured in the
GNN, an architecture that detaches the
language model can perform the same
classification task.

4. Explainable and traceable NLP models
from well-defined graph architectures and
their respective GNN. After training the
model, inference can be made with new
data, and the activation of the different
components of the GNN can be seen to
determine the prediction obtained as sug-
gested by (Ying et al., 2019).

5. Optimise the proposed architecture to
avoid over-fitting while training the classi-
fier with datasets similar to the proposed
one and coupling previously fine-tuned
language models.

6. Consider alternative training methods for
classification with a large number of la-
bels, in this case, modifying the loss func-
tion according to the category to be clas-
sified ((Su et al., 2022), (Hüllermeier et
al., 2020).
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