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Abstract: This study critically examines the resource efficiency and performance of
Shallow Machine Learning (SML) methods versus Large Language Models (LLMs)
in text classification tasks by exploring the balance between accuracy and environ-
mental sustainability. We introduce a novel optimization strategy that prioritizes
computational efficiency and ecological impact alongside traditional performance
metrics leveraging Automated Machine Learning (AutoML). Our analysis reveals
that while the pipelines we developed did not surpass state-of-the-art (SOTA) models
regarding raw performance, they offer a significantly reduced carbon footprint. We
discovered SML optimal pipelines with competitive performance and up to 70 times
less carbon emissions than hybrid or fully LLM pipelines, such as standard BERT and
DistilBERT variants. Similarly, we obtain hybrid pipelines (using SML and LLMs)
with between 20% and 50% reduced carbon emissions compared to fine-tuned alter-
natives and only a marginal decrease in performance. This research challenges the
prevailing reliance on computationally intensive LLMs for NLP tasks and underscores
the untapped potential of AutoML in sculpting the next wave of environmentally
conscious AI models.
Keywords: Natural Language Processing, Machine Learning, AutoML, LLM.

Resumen: Este estudio analiza cŕıticamente la eficiencia de recursos y el rendimiento
de los métodos de Aprendizaje Automático Superficial (SML) frente a los Grandes
Modelos de Lenguaje (LLM) en tareas de clasificación de texto explorando el equilibrio
entre precisión y sostenibilidad medioambiental. Se introduce una novedosa estrategia
de optimización que prioriza la eficiencia computacional y el impacto ecológico
junto con las métricas de rendimiento tradicionales aprovechando el Aprendizaje
Automático de Máquinas (AutoML). El análisis revela que, si bien los pipelines
desarrollados no superan a los modelos SOTA más avanzados en cuanto a rendimiento
bruto, reducen significativamente la huella de carbono. Se descubrieron pipelines
óptimos de SML con un rendimiento competitivo y hasta 70 veces menos emisiones
de carbono que pipelines h́ıbridos o totalmente LLM, como las variantes estándar de
BERT y DistilBERT. Del mismo modo, obtenemos pipelines h́ıbridos (que incorporan
SML y LLM) con entre un 20% y un 50% menos de emisiones de carbono en
comparación con las alternativas fine-tuneadas y sólo una disminución marginal del
rendimiento. Esta investigación pone en cuestión la dependencia predominante de
los LLM de alta carga computacional para tareas de PLN y subraya el potencial sin
explotar de AutoML para esculpir la próxima oleada de modelos de IA con conciencia
medioambiental.
Palabras clave: Procesamiento del Lenguaje Natural, Aprendizaje Automático,
AutoML, LLM.

Procesamiento del Lenguaje Natural, Revista nº 73, septiembre de 2024, pp. 221-233 recibido 03-04-2024 revisado 03-05-2024 aceptado 15-05-2024

ISSN 1135-5948 DOI 10.26342/2024-73-16 © 2024 Sociedad Española para el Procesamiento del Lenguaje Natural



1 Introduction

In the rapidly evolving domain of Natural Lan-
guage Processing (NLP), the advent of Large
Language Models (LLMs) such as BERT (De-
vlin et al., 2018), GPT-3 (Brown et al., 2020)
and GPT-4 (OpenAI, 2023) has brought sig-
nificant advancements, enhancing model capa-
bilities across a myriad of tasks. Despite their
impressive performance, the environmental
impact of training and deploying these models
has become a growing concern, highlighting
the need for sustainable AI practices (Faiz
et al., 2023; Dodge et al., 2022). Concur-
rently, the efficient and task-specific nature of
Shallow Machine Learning (SML) techniques
(Kowsari et al., 2019) suggests a potential
pathway to achieving high performance in
NLP tasks while mitigating environmental
costs. However, these techniques also face
challenges related to their task-specific nature
and the complexity involved in selecting op-
timal models and parameter configurations
(Hutter, Kotthoff, and Vanschoren, 2019).

This study addresses the ecological chal-
lenges associated with the significant com-
putational demands of deep learning models
(Schwartz et al., 2019) in NLP model devel-
opment. Our methodology leverages Auto-
mated Machine Learning (AutoML) (Hutter,
Kotthoff, and Vanschoren, 2019; Thornton
et al., 2013) to create and optimize LLM-
SML hybrid pipelines, incorporating multi-
objective optimization of performance and
resource consumption metrics for Text Classi-
fication. This approach aims to harness the
pre-trained language representations of LLMs
(Qiu et al., 2020), exploring their potential
to achieve satisfactory results in different do-
mains when paired with SML techniques with-
out fine-tuning, thus significantly reducing
their environmental footprint.

We aim to develop and evaluate SML-
only and LLM-SML hybrid pipelines for text
classification, emphasizing sustainable AI by
simultaneously optimizing performance and
resource-consumption metrics. By integrat-
ing performance and environmental impact
assessments into our evaluation, we seek to
demonstrate how these models can achieve
competitive task-specific accuracy with mini-
mal resource consumption.

The remainder of the paper is organized as
follows: Section 2 reviews related work, high-
lighting efforts to measure and mitigate the
environmental impact of ML models. Section

3 describes our methodology, including the
selection criteria for AutoML systems and our
approach to integrating SML and LLM mod-
els. Section 4 details the experimental setup
and presents our findings, followed by a discus-
sion in Section 5 that interprets these results
within the broader context of sustainable AI.
Finally, Section 6 concludes the paper with
reflections on the implications of our study
and suggestions for future research directions.

2 Related Work

This section summarizes the main advances in
effectively measuring, reporting, and mitigat-
ing the carbon emissions generated by modern
ML techniques and optimizing resource con-
sumption. Equally important, we review at-
tempts to compare SML methods with LLMs
in terms of performance and resource con-
sumption efficiency.

Numerous studies assess the environmental
impact of LLM solutions (Thompson et al.,
2021; Wang et al., 2023), which are becoming
increasingly popular and require significant
resources. The performance of these models
typically scales with the model size, dataset
size, and the amount of computing used for
training (Kaplan et al., 2020). Several studies
have consistently reported alarming numbers
on the carbon footprint of LLMs as the models
grow larger (Anthony, Kanding, and Selvan,
2020; Bannour et al., 2021; Dodge et al., 2022;
Faiz et al., 2023).

Efforts to address the scalability issue of
LLMs include using sparsely activated Mix-
ture of Experts (MoE) models that maintain a
constant computational cost while scaling the
number of parameters (Lepikhin et al., 2020;
Fedus, Zoph, and Shazeer, 2022). These mod-
els have outperformed dense models in the
speed-accuracy Pareto curve (Fedus, Zoph,
and Shazeer, 2022).

Another promising field for creating
compute-efficient LLMs is Knowledge Distil-
lation (KD). For instance, DistilBert (Sanh et
al., 2020) is a prime example of a model that
retains 97% of Bert’s (Devlin et al., 2018) lan-
guage understanding capabilities while being
40% smaller and 60% faster (Sanh et al., 2020).
Gu et al. (2023) proposes a new method scal-
able to larger language models, which outper-
forms previous KD methods.

Language models require significantly more
resources for training, tuning, and inference
than traditional shallow ML models. How-
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ever, once trained, depending on the amount
of data available and their pre-training, LLMs
can be employed for many different tasks.
For instance, GPT-4(OpenAI, 2023) can be
used for medical tasks where it was not pre-
viously trained (Nori et al., 2023). Addition-
ally, GPT-3 (Floridi and Chiriatti, 2020) can
produce state-of-the-art results in text classi-
fication without additional fine-tuning, using
a prompting strategy developed by Sun et al.
(2023).

Since LLMs create universal language rep-
resentations (Qiu et al., 2020), they have bet-
ter generalization capabilities than SML meth-
ods. On the other hand, SML requires custom
training for each downstream task, making
the development of task-specific ML pipelines
complicated. These challenges can nonethe-
less be overcome by automating the creation
of task-specific ML pipelines using AutoML
(Kotthoff et al., 2019).

There is a lack of comprehensive evaluation
of AutoML’s effectiveness and computing effi-
ciency, especially in generating SML and LLM-
SML hybrid pipelines compared to purely
LLM approaches. A study by González-
Carvajal and Garrido-Merchán (2020) com-
pared the performance of BERT against SML
techniques, some of which were generated
by H2OAutoML (LeDell and Poirier, 2020).
Their results highlighted the generalization
capabilities of LLMs over SML methods. How-
ever, their study only evaluated accuracy us-
ing Term Frequency - Inverse Document Fre-
quency (TF-IDF) (Yun-tao, Ling, and Yong-
cheng, 2005) for preprocessing, which limits
the scope of the evaluation.

AutoML shows potential for bridging the
performance gap between SML and LLM ap-
proaches while minimizing resource consump-
tion. Therefore, we examine several AutoML
systems, assessing their capability to auto-
mate and optimize SML, LLM, and LLM-SML
hybrid pipeline configurations.

2.1 AutoML

AutoML systems are designed to automate
the selection and optimization of machine
learning pipelines. However, there are many
solutions available that differ in their features.
In particular, we consider the following fea-
tures key to our research:

Supporting multiple libraries guaran-
tees a rich search space of SML methods

to be explored and a significant number
of combinations to be evaluated.

Including pre-trained models allows
for automatically comparing SML, LLM-
SML, and LLM pipelines.

Multi-objective optimization can be
potentially exploited for exploring the
tradeoffs between resource efficiency and
performance.

Resource constrains further allows for
generating resource-efficient solutions.

Table 1 compares several existing AutoML
systems, focusing on their flexibility based
on the features that we have identified as
relevant.

The richness of their search space is one
of the strongest factors influencing the po-
tential of AutoML systems. Including mul-
tiple libraries in the AutoML systems algo-
rithm pools can be crucial in unlocking pre-
viously unexplored, well-performing pipelines
combining techniques from multiple domains.
Auto-Sklearn (Feurer et al., 2020) relies on
Scikit-learn (Pedregosa et al., 2011), Auto-
Weka (Kotthoff et al., 2019) on Weka (Holmes,
Donkin, and Witten, 1994), and Auto-Keras
(Jin, Song, and Hu, 2019) on Keras (Chol-
let, 2018), which restricts their use to super-
vised learning problems. In contrast, TPOT-
NN (Romano et al., 2021), ML-Plan (Mohr,
Wever, and Hüllermeier, 2018), HML-Opt
(Estévez-Velarde et al., 2021), and Auto-
GOAL (Estevez-Velarde et al., 2019) integrate
technologies from different learning libraries.
Moreover, only HML-Opt and AutoGOAL
can seamlessly be used for tasks from domains
such as NLP.

Auto-Keras and ZAP (Öztürk et al., 2022)
focus on providing deep learning-based so-
lutions. In contrast, the other compared
systems mainly focus on building SML
pipelines—however, only ZAP and Auto-
GOAL support pre-trained models. While
the latter includes both LLMs and SML tech-
niques in its algorithm pool, Zap focuses on
vision models and, hence, cannot generate
NLP solutions.

Due to our requirement to balance per-
formance and resource efficiency, selecting a
system that can optimize multiple objectives
simultaneously is vital. TPOT-NN imple-
ments multiobjective optimization to max-
imize classification accuracy and minimize
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Support multiple libraries ≈ ✓ ✓ ✓ ✓
Includes pre-trained models ✓ ✓
Multi-objective optimization ≈ ✓ ✓

Resource constraints ✓ ✓ ✓ ✓
Year 2017 2017 2018 2018 2019 2020 2020 2020 2022

Table 1: Comparison of several existing AutoML systems’ capabilities to deal with heterogeneous
scenarios. Entries marked with ≈ indicate that the system design theoretically supports the
capability, but we have no record of its implementation.

pipeline complexity simultaneously (Olson
and Moore, 2019). However, it does not al-
low users to set the optimization objectives.
Conversely, AutoGOAL’s latest version1 al-
lows for multiobjective optimization of any
set of objectives the user can provide. Un-
fortunately, no other studied systems have
implemented such a feature.

3 Methodology

Our research targets the generation and evalu-
ation of SML and LLM-SML hybrid pipelines
that emphasize sustainable AI. We hypothe-
size that combining these techniques to bal-
ance performance and resource efficiency can
reduce AI models’ environmental impact with-
out sacrificing performance.

We are using AutoML to automatically
generate, evaluate, and compare SML and
LLM-SML hybrid pipelines based on their
performance and computing time to achieve
this. Figure 1 shows examples of hypotheti-
cal pipelines that combine SML and LLMs in
different ways to produce varying results. We
aim to identify the Pareto front, represent-
ing the optimal balance between performance
and resource efficiency. By doing so, we ex-
pect to discover new combinations of SML
techniques and pretrained LLMs that do not
require expensive fine-tuning to produce good
results.

Based on our study of the current state
of AutoML (see Section 2), we selected Au-
toGOAL as our evaluation framework. This
AutoML system has a vast collection of al-

1The latest version of this system with all the
features is available at https://github.com/autogoal/
autogoal/tree/adding-huggingface-transformers

gorithms from multiple renowned machine-
learning libraries. Additionally, AutoGOAL
comes with adjustable resource consumption
limits whereby users can set rules for pipeline
evaluation duration and maximum memory
usage.

3.1 AutoGOAL

AutoGOAL (Estevez-Velarde et al., 2020) al-
lows for optimizing multiple objectives si-
multaneously. We selected macro F1 and
evaluationtime for optimization due to sev-
eral factors:

• Optimizing for the macro F1 score en-
sures the robustness and versatility of
the generated solutions, balancing preci-
sion and recall.

• Total training time has been strongly pre-
dictive of total energy consumed (kWh)
(Wang et al., 2023) (under the same hard-
ware conditions) and won’t add any over-
head to the models as directly measuring
hardware stats on regular intervals.

Algorithms

AutoGOAL imports algorithms from scikit-
learn (Pedregosa et al., 2011), nltk (Loper and
Bird, 2002), Spacy (Honnibal et al., 2020),
gensim (Řeh̊uřek and Sojka, 2010), transform-
ers from Huggingface, and others. A total
of 128 SML algorithms from such libraries
are included in our search space, of which
17 are classifiers. Figure 1 exemplifies how
AutoGOAL could potentially build hybrid
pipelines by utilizing LLMs as feature extrac-
tors that can be connected to any classifier.
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Figure 1: Illustrative example of an abstract pipeline, in which different steps can be performed
to achieve varying performance levels and compute time.

A comprehensive list of all algorithms is avail-
able at the system’s GitHub repository2.

Table 2 summarizes all the LLMs in Au-
toGOAL’s algorithm library. At the time
of writing, AutoGOAL only supports LLMs
for inference and has not enabled automatic
fine-tuning of the models. The system allows
them to be used as embedders at multiple
levels by pooling lower-level embeddings (e.g.,
sentence embeddings can be formed by pool-
ing word embeddings). This means all LLMs
can participate in LLM-SML hybrid pipelines
as AutoGOAL can select them for feature
extraction, eventually attaching them to a
classifier.

3.2 Measuring Energy and Carbon

We captured essential resource consump-
tion statistics to estimate the carbon emis-
sions associated with various computational
pipelines using the CodeCarbon (Schmidt et
al., 2021) Python library to measure car-
bon emissions and power consumption stats
from our pipeline training and testing. Ad-
ditionally, we extract CPU-usage statistics
via the psutil Python library (Rodola, 2020).
CodeCarbon uses pyNVML to generate GPU-
related statistics for Nvidia’s GPUs.

As noted by Wang et al. (2023), Recent
work has found that the existing libraries and
code for estimating the carbon emissions of
NLP techniques vary in accuracy and general-
izability to different types of hardware. They
computed an expected power loss constant
(close to 1) with which they calibrated Code-

2https://github.com/autogoal/autogoal/tree/
adding-huggingface-transformers

Carbon’s readings. However, as we aim to
make a comparative side-by-side analysis, we
don’t use such calibration as it won’t affect the
comparison and would require an additional
infrastructure energy analysis.

4 Experiments

We executed our proposal on three different
text classification tasks with varying difficulty
levels: IMDB Movie Reviews (IMDB) (Maas
et al., 2011), AG News (AG) (Zhang, Zhao,
and LeCun, 2015), and Yelp Reviews Full
(YR) (Zhang, Zhao, and LeCun, 2015). Table
3 illustrates the variation in the number of
examples and the number of classes to predict.
All classes are balanced among the datasets.

We ran the AutoML process for each task
in two different hardware setups. Table 4
presents setups A and B. SML pipelines were
generated on setup A. At the same time, we
employed setup B to find LLM-SML hybrid
pipelines, as it had an available GPU.

The AutoML system configuration for each
experiment is displayed in Table 5. All ex-
periments were carried out until the Global
Timeout (G. To) or 10000 pipeline evalua-
tions were reached, whichever came first. The
cross-validation steps (CV) were set to divide
all training data into 70/30 train/validation
splits. AutoGOAL was set to optimize
macro F1 and evaluation time.

After completing the optimization phase,
we evaluated the pipelines in the Pareto fron-
tier on corresponding test sets. This evalu-
ation occurred solely on setup B to get fair
and comparable resource consumption stats.
These stats were then used to compute each
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LLM Variants

BERT (Devlin et al., 2018) (cased, uncased) base, large, base-multilingual (only cased)
DistilBERT (Sanh et al., 2020) base (cased, uncased), base-multilingual (cased)
RoBERTa (Liu et al., 2019) base, large
XLM-RoBERTa (Conneau et al., 2020) base, large
DeBERTa (He et al., 2021) base
DeBERTaV3 (He, Gao, and Chen, 2023) base
MDeBERTaV3 (He, Gao, and Chen, 2023) base
ALBERT-v1 (Lan et al., 2019) base, large, xlarge, xxlarge
ELECTRA (Clark et al., 2020) (discriminator) small, base, large
T5 (Raffel et al., 2020) small, base, large, 3B, 11B
FLAN-T5 (Chung et al., 2022) base, large, xxl, xl
GPT-2 (Radford et al., 2019) base, medium, large, xl

Table 2: LLMs available in AutoGOAL’s algorithm pool.

Dataset Train S. Test S. Classes

IMDB 25k 25k 2
AG 120k 7.6k 4
YR 650k 50k 5

Table 3: Dataset statistics for IMDB Movie
Reviews, AG News, and Yelp Reviews Full.

Setup CPU RAM GPU

A i9-9900K (16c) 127 GB None
B EPYC 7742 (64c) 1TB A100

Table 4: System configurations for experi-
ments.

Exp. E. To G. To RAM CV

IMDB (A) 1h 65h 30GB 5
IMDB (B) 1h 65h 30GB 3

IMDB (A) 15m 24h 30GB 5
AG (B) 1h 48h 30GB 3

YR (A) 20m 24h 35GB 5
YR (B) 1h 48h 30GB 3

Table 5: AutoGOAL’s configuration for each
experiment (experiment’s dataset and sys-
tem setup, pipeline evaluation timeout, global
search timeout, RAM limit in evaluation, and
amount of stratified cross-validation steps).

pipeline’s carbon dioxide emissions during
training and testing.

4.1 Results

We discovered a large number of valid
pipelines for all tasks. Table 6 summarizes
all the pipeline evaluations conducted in the
AutoML search and optimization procedure
using the preset configurations (See Table 5).

The columns tagged with ”A” refer to runs on
setup A, which is reserved for SML pipelines,
while the ”B” columns were used only for
LLM-SML pipelines. The summary includes
macro F1 scores across the lowest, mean, and
highest values and the evaluation time. The
table also records the number of pipeline eval-
uations that ended up in timeouts and the
ones exceeding either the RAM or the VRAM
limits, alongside the total pipeline evaluations
for each experiment.

The results indicate that SML pipelines
achieved the highest macro F1 performance
across all tasks during training. How-
ever, LLM-SML pipelines’ lowest and mean
macro F1 performance were consistently
better than their counterparts. Regarding
evaluation T ime, the lowest, mean, and high-
est values of Setup A were slightly better than
those of Setup B, except for the IMDB task,
where we see an outlier. This is reflected in
the number of pipelines discovered. For in-
stance, in IMDB, we discovered more than
twice as many SML pipelines as LLM-SML
pipelines in the same time frame.

Table 7 compares the best-performing
pipelines and the state-of-the-art solutions
across the target tasks. The SOTA models
outperformed the automatically discovered
pipelines in all cases, with the most consider-
able difference observed in the Yelp Reviews
Full task. The SML pipelines were consis-
tently more environmentally friendly than
their LLM-SML counterparts. For instance,
IMDB A 3 emitted almost ninety times less
carbon dioxide than IMDB B 1 while achiev-
ing higher performance.

Furthermore, Figure 2 illustrates the cor-
relation between accuracy and carbon emis-
sions for each task’s pipelines in the Pareto
fronts. We can observe a trend in which
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Meassure IMDB (A) IMDB (B) AG (A) AG (B) YR (A) YR (B)

macro F1

Lowest 0.22 0.33 0.01 0.09 0.00 0.15
Mean 0.54 0.61 0.37 0.67 0.19 0.31

Highest 0.90 0.88 0.91 0.90 0.51 0.48

evaluation T ime
Lowest 2.537 50.32 2.738 202.4 43.34 1348
Mean 130.4 336.9 40.69 595.5 90.32 2002

Highest 3537 975.9 146.9 1173 229.2 2931

Timeouts Amount 24 25 104 32 39 38
RAM exceedance Amount 59 6 128 1 73 1

VRAM exceedance Amount 0 156 0 14 0 14
Total Pipeline Evaluations 608 270 489 71 129 56

Table 6: Performance and computational efficiency metrics during pipeline discovery (Training).
Total Pipeline Evaluations include successfully evaluated pipelines and pipelines that exceeded
resource limits. Pipelines that failed to evaluate due to invalid parameter configuration or runtime
errors were excluded.

Dataset Type Solution Id Acc.
Time
(s)

Energy
(kWh)

Emissions
(gCO2)

IMDB

SML
IMDB A 1 0.887 1037s 0.144 27.93
IMDB A 2 0.882 18s 2.41e-3 0.4680
IMDB A 3 0.878 10s 1.31e-3 0.255

LLM-SML
IMDB B 1 (Electra base) 0.870 601s 0.119 23.24
IMDB B 2 (DistilBERT) 0.865 240s 5.05e-2 9.795

LLM

DistilBERT∗ 0.854 - - -
DistilBERT∗∗ 0.924 - - -
DistilBERT† - 341s 0.045 12
BERT∗∗ 0.936 - - -
BERT† - 478s 0.062 19

BERT-ITPT-FiT (Sun et al., 2019) 0.956 - - -
XLNet (Yang et al., 2019) 0.968 - - -

AG

SML
AG A 1 0.916 219s 2.95e-2 5.722
AG A 2 0.911 1106s 0.153 29.80

LLM-SML AG B 1 (BERT base) 0.901 1058s 0.173 33.63

LLM
XLNet (Yang et al., 2019) 0.955 - - -

RoBERTa-GCN (Lin et al., 2021) 0.956 - - -
CARP (Sun et al., 2023) 0.964 - - -

YR-F

SML YR A 1 0.530 77s 9.17e-3 1.7783

LLM-SML YR B 1 (Electra small) 0.496 2119s 71.42 76.49

LLM
BigBird (Zaheer et al., 2020) 0.721 - - -
XLNet (Yang et al., 2019) 0.729 - - -

Table 7: Comparison of Selected Pipelines with State-of-the-Art Solutions: Accuracy, Time,
Energy, and Carbon Emissions. The table shows the performance of selected pipelines with an
accuracy within 0.01 of the highest-performing pipelines across different datasets, along with the
employed LLM for hybrid pipelines. The report includes information on accuracy, training and
testing time, energy consumption, and carbon emissions. Data for entries marked with † was
extracted from Wang et al. (2023) (Appendix A.3), obtained by fine-tuning these models in an
A100-based machine (4xA100 GPUs + 32 Intel Xeon processors). Values for entries marked with
∗∗ were extracted from Pipalia, Bhadja, and Shukla (2020). Accuracy for entry marked with ∗
was extracted from Ng et al. (2023), which only trained the classification head.
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SML pipelines are more carbon-friendly while
achieving comparable performance results.
On average, SML solutions in the Pareto
fronts were over five times more carbon-
efficient than their counterparts.

5 Discussion

Regarding the AutoML search process, Fig-
ure 3 illustrates how the system’s optimization
strategy attempted to balance out macro F1

and evaluation time across iterations in
IMDB As shown in Table 6, SML pipelines
showed higher top performance and less train-
ing time on average than their hybrid coun-
terparts, which translated to better accuracy
and carbon efficiency on the test sets (see
Figure 2). This highlights the potential of Au-
toML and multi-objective optimization for au-
tomatically developing greener ML solutions,
eventually leading to an environmentally safe
democratization of Machine Learning.

As shown by Table 7, none of the pipelines
we produced matched the performance of
state-of-the-art (SOTA) solutions. However,
regarding carbon emissions, our solutions are
consistently and significantly more environ-
mentally friendly than the SOTA models.

On the IMDB dataset, our DistilBERT
pipeline resulted in 20% and 50% less carbon
emissions than fine-tuned DistilBERT and
BERT (Wang et al., 2023), respectively. Our
greener solution (MR A 3), in turn, is about
47 and 74 times more carbon-efficient than
both fine-tuned models, respectively, while
also outperforming our DistilBERT pipeline.

Being both BERT and DistilBERT quite
popular, there is a great deal of available data
regarding their performance. Pipalia, Bhadja,
and Shukla (2020) reported 92.5% and 93.6%
accuracy for finetuned DistilBERT and BERT,
respectively, on the IMDB dataset. Although
they do not report carbon emissions nor en-
ergy consumed by their training, we assume
their actual emissions are similar or worse
than the reported by Wang et al. (2023),
which employed highly optimized equipment
(Wang et al. (2023) also tested on lesser op-
timized hardware, rendering worse measure-
ments). On the other hand, Ng et al. (2023)
trained a single classification head connected
to the BERT embeddings, obtaining an accu-
racy of 85.4%, worse than our models.

Although we do not have concrete data re-
garding the SOTA models’ emissions, we esti-
mate that the generated DistilBERT pipeline

produced fewer emissions than BERT-ITPT-
Fit would on the same energy infrastructure
as with BERT. Although we cannot establish
a scaling relationship between BERT and XL-
Net, we assume the relationship applies due
to their similar size. However, this only serves
as an empirical estimate and not a definitive
proof.

Regarding the visited pipelines, figure 4
shows all LLMs that participated in valid
solutions generated by the optimization pro-
cess. Almost every model from Table 2 was
evaluated at least once in the three tasks.
DistilBERT and Electra (Clark et al., 2020)
variants were the most commonly used models
in the experiments, while generative models
such as GPT-2 (Radford et al., 2019) and
T5 (Raffel et al., 2020) were the least used.
However, BERT, Roberta, and DistilBERT
had the highest mean macro F1 scores. Con-
cerning evaluation time, Distilbert, BERT,
AlBERT (Lan et al., 2019), and Electra were
the most efficient.

The results presented in Table 6 are fur-
ther supported by Figure 5. The figure shows
that SML pipelines are more efficient in terms
of compute time. Conversely, LLM-SML
pipelines have better average values with less
variance, even though they do not have the
best macro F1 scores. This demonstrates the
potential of SML models to fill the gaps in
AI-based applications as lightweight models
for specific purposes. By using AutoML to
compensate for the lack of flexibility of SML
models, it is possible to use these models as
building blocks to create complex and general
systems.

Our findings demonstrate that shallow
machine-learning methods, paired with effec-
tive AutoML strategies, are competitive in
specific NLP tasks. They also emphasize the
importance of considering both performance
and computational resource usage when de-
signing solutions, especially in real-world ap-
plications where resources are limited. Given
their higher resource consumption and larger
carbon footprint, it is crucial not to overuse
LLMs when more efficient and similarly per-
formant alternatives exist.

6 Conclusions

This paper explores the balance between ac-
curacy and environmental sustainability in
NLP, examining the resource efficiency of
SML methods versus LLMs using AutoML.
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Figure 2: Comparative analysis of accuracy and carbon footprint of SML and LLM-SML pipelines
Across Datasets. We report mean and standard deviation for both accuracy and carbon footprint.
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Figure 3: Our proposal’s optimization statistics regarding macro F1 and evaluation time of
the discovered pipelines in search. We report mean macro F1, cumulative maximum macro F1,
standard deviation of macro F1, and mean evaluation time over iterations (pipeline evaluations).

Our findings reveal that, although simpler
pipelines don’t necessarily surpass state-of-
the-art models, they significantly mitigate en-
vironmental impact. The DistilBERT hybrid
pipeline, for instance, reduces carbon emis-
sions by 20% compared to fine-tuned Distil-
BERT models and by 50% relative to BERT
models. We discovered SML optimal pipelines
with competitive performance and up to 70

times less carbon emissions than hybrid or
fully LLM pipelines, such as standard BERT
and DistilBERT variants. This highlights a
pivotal shift towards less reliance on resource-
intensive LLMs for NLP tasks, with SML
methods filling crucial performance gaps in
a more eco-friendly manner. Our results un-
derscore the untapped potential of SML tech-
niques as sustainable alternatives to LLMs in
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Figure 4: Occurrences of LLMs participating in solutions across tasks.
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Figure 5: Comparison of SML and LLM-SML pipelines discovered. We report mean and standard
deviation for evaluation time (a) and macro F1 (a) on training.

specific NLP applications, further emphasiz-
ing AutoML’s critical role in sculpting envi-
ronmentally conscious AI models.

While our exploration yielded practical
insights, it is crucial to contextualize these
findings within the scope of the study’s in-
herent limitations. Our reliance on several
datasets introduces another limitation, po-
tentially skewing our findings’ applicability
across the diverse landscape of NLP tasks.
Including a broader array of datasets and a
more diversified model selection, especially
integrating fine-tuning capabilities into Au-
toML, beckons as the next frontier for re-
search. Such expansions promise to unravel
the nuanced dynamics between AI model per-
formance, efficiency, and sustainability.
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