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Abstract: This work describes the task of complex word identification (CWI) in
Spanish medical texts for patients. Identifying complex words is the first step in
lexical simplification, which aims to overcome the language gap between patients
and healthcare professionals, enable access to information, and ensure unambiguous
terminology for effective and clear communication. As part of the task, we created
a medical complex words annotation guideline and compiled a corpus consisting of
225 texts (162575 tokens). A total of 18203 complex words (single and multi-words)
were manually labeled, each text being annotated by two linguists with high inter-
annotator agreement (F1 = 84.42%). The corpus was utilized to train two machine
learning classifiers (Support Vector Machines and Logistic Regression) as baselines,
in addition to seven deep learning transformer models. The models were selected by
considering two factors: language (Spanish and multilingual) and domain (general
or medical). The final results on the test set achieve an overall average F1 score of
79.02 (±0.65) for the transformer model with the best performance.
Keywords: Automatic Text Simplification, Language Resources, Corpora.

Resumen: Este art́ıculo describe la tarea de identificación de palabras complejas
en textos médicos en español para pacientes. Este es el primer paso para la sim-
plificación léxica, cuyo objetivo es superar la barrera lingǘıstica entre pacientes y
profesionales sanitarios, permitir el acceso a la información y garantizar una termi-
noloǵıa sin ambigüedades y una comunicación clara y eficaz. Se ha creado una gúıa
de anotación y se ha compilado un corpus de 225 textos (162575 tokens). Se anotaron
18203 palabras complejas (entidades simples como multipalabra), siendo cada texto
revisados por dos lingüistas, y alcanzando un alto valor de acuerdo entre anotadores
(F1 = 84.42%). El corpus se ha empleado para entrenar modelos de aprendizaje
automático (máquinas de soporte vectorial y regresión loǵıstica) como referencia,
y siete modelos de aprendizaje profundo basados en transformers. Estos modelos
fueron seleccionados considerando dos factores: idioma (español o multilingüe) y
dominio (general o médico). Los experimentos finales muestran una puntuación F1
de 79.02 (±0.65) para el modelo transformer con mejores resultados.
Palabras clave: Simplificación Automática de Textos, Recursos Lingǘısticos, Cor-
pus.

1 Introduction

Lexical simplification (LS) focuses on im-
proving accessibility to textual information
by replacing complex words with simpler al-
ternatives (Saggion, 2017). When it comes to
healthcare information, this process becomes
even more important, since patients some-

times have limited vocabulary and difficul-
ties understanding their diagnoses (Williams
et al., 1995; Makaryus and Friedman, 2005).
An in-depth analysis of the fluctuations of
medical discourse as well as the individual’s
reading comprehension (Shahid et al., 2022)
can reveal how language shapes patient re-
lationships and knowledge communication in
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the medical field. To illustrate how medi-
cal conditions and treatments are described
in professional texts, we could consider the
differences between a consent form from a
surgical stomach procedure and the instruc-
tions to prevent stomach cancer in a leaflet.
The shifts in tone, terminology or structure
would provide enough insights to understand
communication effectiveness with laymen pa-
tients (Bellés-Fortuño, 2016; Montalt and
Garćıa-Izquierdo, 2016).

Despite the efforts by healthcare providers
to ensure clinical descriptions of symptoms
and diagnoses, time constraints and limited
consultations times are an important aspect
that could hinder communication in this re-
spect (Jabour, 2020). These issues, along-
side low health literacy levels, interfere in pa-
tients’ ability to understand relevant infor-
mation (Roter and Hall, 2006).

In order to overcome these barriers, a
Natural Language Processing (NLP) appli-
cation could be used to detect medical com-
plex words for patients before providing them
with an explanation or simpler synonym.
This process may be automated with deep
learning or machine learning (ML) models
that can be integrated in an end-user appli-
cation. This article reports our efforts to ad-
dress the first step in the LS approach, i.e.
the annotation and complex word identifica-
tion task.

The annotation task may be quite chal-
lenging even for linguists, and the use of ter-
minologies and ontologies in lexical simplifi-
cation within the field is crucial (Finlayson
and Erjavec, 2017). Once the annotation of
complex words has been conducted following
guidelines from standardized terminological
sources, the computational process of lexical
simplification starts. It typically involves the
automatic identification of words, a proposal
for simpler synonyms and the selection of the
most appropriate word based on context, se-
mantics and sentence readability (Moen et
al., 2018; Qiang et al., 2020).

In this work, we address these tasks in
Spanish texts for patients, in line with the
research goals of the CLARA-MeD project.1

We provide an annotated corpus of med-
ical complex words as a gold standard.
The annotated corpus was used to fine-tune
state-of-the-art pre-trained transformer mod-

1https://clara-nlp.uned.es/home/
med/(Retrieved 2025/2/10)

els specifically for this task (Vaswani et al.,
2017). Transformer models have demon-
strated excellent performance for a wide
range of NLP tasks. These state-of-the-
art models are robust to variations in real-
world medical data, learning faster to ignore
noise and focus on relevant linguistic pat-
terns. For the purposes of this research, seven
transformer-based models were selected, pay-
ing special attention to two parameters (lan-
guage and domain), as two key factors to test
the performance after fine-tuning. In addi-
tion to these models, we compared classical
ML models as baselines: Support Vector Ma-
chines (SVM) and Logistic Regression (LR)
classifiers.

Our work will be useful to evaluate lin-
guistic nuances and multilingual capabilities
of the selected models, as well as whether a
lack of original exposure to terminology and
contextual usage may affect how a model de-
tects complex words in Spanish texts. During
this process, the models were tested on CWI
within three different text typologies: Clini-
cal trials (CT), Consent Forms (CF) and Pa-
tient information documents (PID).

In brief, our contributions are as follows:

1. A corpus of 225 texts (162575 tokens),
which was doubly-annotated with 18203
complex words and high agreement val-
ues (F1 = 84.42%). The dataset and
code used in this study are publicly
accessible on: https://digital.csic.
es/handle/10261/373675.

2. A guideline with criteria for annotating
complex words in Spanish medical texts.

3. A set of CWI classifiers with seven
transformer-based models and two
baseline machine classifiers (SVM
and LR). The code is available
on: https://github.com/fede-
ortega/LS-CWI-ES/ and the fine-
tuned models are available on:
https://huggingface.co/CLARA-MeD.

The article is structured with a Back-
ground section (§2) and a description of the
methods used (§3). Our results are shown
in §4. Then, a discussion (§5) is established
to interpret the key findings of the study
and compare them with previous research
in the medical field, highlighting similarities
and differences, before the conclusions (§6).
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2 Background

2.1 Dichotomy of Medical
Discourse

One of the main difficulties in a medical con-
text is defining the variabilities of terminol-
ogy used between professionals and patients.
According to the ISO 1087 Terminology work
and terminology science – Vocabulary (2019)
a term is a “designation that represents a
general concept by linguistics means”, which
may be a mono- or a multi-word expression.

Provided that both paradigmatic and
syntagmatic variations play a major role
in knowledge representation (Faber et al.,
2012), linguists can facilitate specialized com-
munication and knowledge transfer between
specialized users and patients. According to
Cabré (2003), terminological units’ member-
ship to a general or specialized domain de-
pends on cognition, syntax and pragmatics.
These aspects explain the intersection be-
tween general and specialized discourse, as
they cannot be separated into two water-tight
compartments. Understanding the inter-
play between patients’ general discourse and
healthcare providers’ specialized discourse is
essential for effective communication.

2.2 Texts for patients

Real life doctor-patient interaction has the
advantage of rephrasing, asking questions
and answering in a short time. Nonethe-
less, laymen patients often lack the special-
ized knowledge required to understand a doc-
tor’s report or laboratory test on their own.

This explains the relevance of health liter-
acy and the importance of providing health
services targeting patients care. Health lit-
eracy is the individual’s capability to effec-
tively understand and use health information
Ratzan (2001). Interpreting complex medical
terminology in healthcare settings is funda-
mental for patients. In the context of NLP,
ML or deep learning applications must be de-
signed to assist patients to accurately recog-
nize medical complex words to provide clear,
comprehensible information which allows LS.

Many countries, including the USA,
Canada, Australia, China and countries from
the European Union, have prioritized health
literacy in their policies and practices. In line
with Juvinyà-Canal, Bertran-Noguer, and
Suñer-Soler (2018), specifically in Europe,
health literacy is seen as a vital component
of the European health strategy.

The Spanish healthcare policies highlight
patients’ awareness since 2019, when the
Spanish Health Literacy Network started col-
laborating in research projects. Members of
the association have focused on heart disease
(Falcón et al., 2022) or COVID-19 (Mart́ınez
et al., 2022), and started other campaigns
such as Health without doubts (Fernández,
Juvinyà, and Suñer, 2021b) or Always ask
three questions (Fernández, Juvinyà, and
Suñer, 2021a).2

These initiatives help patients make in-
formed decisions about their health, adhere
to medical advice and engage with healthcare
providers, owing to the following reasons:

1. Clarity and precision: language experts
ensure that medical terms are clear, re-
duce ambiguity and lower the risk of mis-
interpretation. Cimino (1998) proposed
an example of context-sensitive ambi-
guity and context-independent ambigu-
ity by explaining the concept of myocar-
dial infarction. This concept could mean
right ventricular infarction or left ven-
tricular infarction; however, the patho-
physiologic process does not vary. This
does not apply to the term diabetes,
which can also be specified by adding
mellitus, gestational, neonatal, type 1 or
2, with a different pathological process.

2. Standardization: linguists contribute to
the standardization of medical knowl-
edge, and facilitate consistent terminol-
ogy across languages and regions, which
helps global health communication.

2.3 Terminological resources

Terminology extraction for text annotation
requires an overview of various medical the-
sauri, classification systems, and standards
crucial for the registration of medical in-
formation. Since no single terminological
database serves all purposes, the resources re-
viewed for the task presented in this article
include detailed descriptions and applications
of each system within clinical contexts.

A crucial part of the complex word anno-
tation task of this job consisted in finding key
medical classification systems and using their
standardized terminology to identify complex
words. Some of the most useful have been:

2https://shorturl.at/jrjtu (Accessed 2024/8)
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1. The International Classification of Dis-
eases (ICD) vs 10 (World Health Orga-
nization, 2004).3

2. The Medical Subject Headings (MeSH)
(Lipscomb, 2000).4

3. SNOMED Clinical Terms (SNOMED
CT) (Donnelly and others, 2006).5

4. The Medical Dictionary for Regulatory
Activities (MedDRA) (Brown, Wood,
and Wood, 1999).6

5. The Anatomical Therapeutic Chemical
(ATC) Classification (World Health Or-
ganization, 2019).7

Each resource fulfills a different purpose,
from biomedical and health-related informa-
tion to pharmacovigilance in drug regulation.
All these tools are integrated in the UMLS
metathesaurus, which provides a comprehen-
sive framework to bring together the biomed-
ical ontologies. In the annotation part of this
work, the UMLS (Bodenreider, 2004) was of
paramount importance, as it allowed to map
concepts between languages. For example,
when some widespread English abbreviations
appeared in clinical texts like echo (‘echocar-
diography’), which is not the equivalent of
eco in Spanish, since it is the abbreviation
for ecograf́ıa (‘US’ or ‘ultrasound’ in English).
The search for echo can be seen in Figure 1.

In the NLP field, these terminological
resources allow the expansion of complex
words with synonyms for the same concept.
Nonetheless, exact synonyms hardly occur,
and each specialty has its own connotations.
Considering that there is no perfect relation
between natural language expressions and
concepts of a domain, these tools help to re-
duce variation and lack of consensus, orga-
nize polysemic words and paraphrases.

2.4 Lexical simplification

Understanding medical texts, such as our
own health records or scientific findings re-
lated to our medical conditions, is crucial for
everyone. However, medical texts often use
specialized complex words and abbreviations
derived from Latin or Greek. This makes

3https://shorturl.at/kK6Nz (Retrieved 2024/8)
4https://shorturl.at/qAR7V (Retrieved 2024/8)
5https://www.snomed.org/ (Retrieved 2024/8)
6https://www.meddra.org/search (Accessed

2024/8)
7https://shorturl.at/9j7JA (Retrieved 2024/8)

Figure 1: Example of search in the UMLS for
echocardiography (CUI: C0013516).

medical texts hard to understand (Keselman
and Smith, 2012), and it is not a current is-
sue, as the need for making changes has been
studied for decades.

What is more, a difference should be made
between plain language and easy-to-read lan-
guage. The latter does not only involve sim-
plification, but improvement over the visu-
alization of the text, such as using bullet
points and short enumerations or adjusting
each sentence of a text to a certain number
of characters. Conversely, for the former, the
International Plain Language Federation8 is
the institution that sets an ISO standard so
that readers can easily find and understand
what they need. Our work presented in this
research article is more focused on plain lan-
guage enhancement to improve professional
practices rather than entirely changing the
structures of the studied texts. Our simplifi-
cation task does not aim to automatically re-
place complex phrases; instead, it is intended
to assist laymen patients in understanding
more complex texts.

Alarcon et al. (2019) briefly reviewed
the various methods that exist to achieve
this goal for the Spanish language, in-
cluding supervised, unsupervised and hy-
brid techniques. Supervised methods require
annotated datasets to fulfill their purpose
(Štajner, Calixto, and Saggion, 2015), which
poses a significant challenge when working
with languages that have limited annotated

8https://www.iplfederation.org/ (Accessed
2024/8)
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corpora for text simplification (Saggion et al.,
2011). Regarding methodological strategies,
Paetzold and Specia (2017) suggest that lex-
ical simplification should be carried out in
four stages: CWI, Generation of Substitutes
(GS), selection of substitutes, and substitutes
ranking. Our work adheres to this methodol-
ogy, but we will focus exclusively on the CWI
task.

Specifically, in this article, we define com-
plex word as any lexical item that hinders the
understanding of the text contents for a non-
specialized reader. Complex words may be
medical terms that convey specialized knowl-
edge (e.g., jargon or acronyms), or general
domain words that are rare in everyday us-
age, which include mono-, multi-words and
abbreviations. Given the variety of profiles
with which we could associate the means of
this task, we focus on individuals with func-
tional literacy as to using the technical re-
sources required to access a medical text un-
derstanding tool.

In the past decade, research groups have
extensively explored CWI and several shared
tasks have been organized (Yimam et al.,
2017; Yimam et al., 2018; Ortiz-Zambranoa
and Montejo-Ráez, 2020; Saggion et al.,
2023). Some teams have used lexicon-
based approaches over the past few years
(Sulayes, 2020; Deléger and Zweigenbaum,
2009), which demands creating datasets with
candidate complex words, often using special-
ized medical sources (Elhadad and Sutaria,
2007); a list of resources is enumerated in
(Paetzold and Specia, 2017).

Another approach is based on word fre-
quency thresholds (Bott et al., 2012; Leroy
et al., 2013), which may nonetheless lack ade-
quate performance in real use. Other groups
have addressed CWI by means of machine
learning (Shardlow, 2013) or formulating it
as a sequence labeling task (Yimam et al.,
2017; Gooding and Kochmar, 2019). Re-
cently, standard logistic regression models
have been applied across languages to alle-
viate the data bottleneck (Finnimore et al.,
2019). The predominant trend has been char-
acterized by word embeddings, and, in re-
cent times, deep learning (De Hertog and
Tack, 2018), including recurrent neural net-
works (RNN) (Pylieva et al., 2019) and cur-
rent Large Language Models (LLMs) (Smădu
et al., 2024). For more details on CWI, we re-
fer to a recent survey (North, Zampieri, and

Shardlow, 2023).

3 Methods

3.1 Dataset statistics

After considering which approach our task
should follow, the main objective of this
work is to test the performance of existing
transformer-based models for lexical simpli-
fication, as well as other traditional ML al-
gorithms. For this purpose, three collections
of 75 open-source texts have been manually
annotated and peer-revised to achieve a gold
standard. Note that these texts do not con-
tain personal data from patients. These sets
of texts belong to three different typologies:

1. Consent forms (CFs):9 the form which
patients willingly complete in order to
undergo a clinical intervention or for ac-
cepting participation in a clinical experi-
ment. These texts come from Fundación
Rioja Salud10 and accredited websites,
such as Consejeŕıa de Salud y Consumo
de la Junta de Andalućıa.11

2. Clinical trial announcements (CTAs):
the public information about any con-
trolled study assessing the safety and
efficacy of a therapeutic agent involv-
ing consenting human subjects. This set
was extracted from the European Union
Drug Regulating Authorities Clinical
Trials Database (EudraCT).12

3. Patient information documents (PIDs):
texts of informative nature targeting pa-
tients and general audience. Topics
range from transplants to several types
of cancer, pain or diseases. This set was
primarily extracted from the public pa-
tient portal of the Spanish Autonomous
Region of Castilla y León13 and the
Spanish National Transplant Organiza-
tion.14

The corpus files were divided into three
sets of training (60%), development (20%)
and test (20%). The statistics of each col-
lection of texts can be seen in Table 1.

9These consent forms were provided by Ana Rosa
Terroba, a collaborator in the CLARA-MeD project,
in which this research was conducted.

10https://shorturl.at/rMN4M (Retrieved 2024/1)
11https://shorturl.at/xgkkk (Retrieved 2024/1)
12https://shorturl.at/Yn8IW (Retrieved 2024/1)
13https://shorturl.at/sNqsr (Retrieved 2024/1)
14https://www.ont.es/ (Retrieved 2024/1)
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Set #Texts #Sentences #Tokens #Complex Words

CFs 51/9/15 1798/429/528 33473/7338/9525 3354/699/851
CTAs 51/9/15 1699/324/374 32755/8006/6901 5105/1190/1114
PIDs 51/9/15 2064/281/680 43161/7014/14402 4043/678/1169
Total 153/27/45 5561/1034/1582 109389/22358/30828 12502/2567/3134

Table 1: Corpus statistics; counts in each split are separated by /, i.e., (train/dev/test).

3.2 Annotation process

All texts have been pre-processed using the
CLARA-MeD tool (Campillos-Llanos et al.,
2024),15 a dictionary-based system that de-
tects difficult-to-understand complex words
according to dedicated patient-oriented lexi-
cons and a word frequency list with a thresh-
old of 5000 (Figure 2). The detected words
are underlined and are possible candidates
to be annotated as (complex word, CW). The
resulting text with the highlighted complex
words is then uploaded to the BRAT anno-
tation tool (Stenetorp et al., 2012) in .ann
format. Lastly, linguists manually validate
if the automatically detected candidates are
complex words (or whose definition or syn-
onyms need to be improved), or label more
complex words that the CLARA-MeD tool
did not detect based on difficulties overcome
during the annotation process.

3.3 Annotation criteria

As the annotation task progressed, more an-
notation criteria were added, which are listed
as follows with the appropriate examples and
the texts in which they were present.

3.3.1 Nested complex words

Nested complex words are not annotated.
Only the more specific complex word (or that
with the longest span) is labeled. For exam-
ple (id of the text is given between brack-
ets): oclusión tubárica instead of tubárica
and oclusión tubárica (2022-000422-16).

3.3.2 Frequent complex words

Frequent complex words that are commonly
used by patients are not annotated; for ex-
ample, ciruǵıa, diabetes or cáncer. When
there is doubt on whether to annotate or not
a complex word, we decide if the word can be
further simplified. For example,intervención
quirúrgica can be simplified to operación
(2022-002680-30). Therefore, we annotate
intervención quirúrgica, but not operación.

15http://claramed.csic.es/demo (Accessed

2024/8)

3.3.3 Discontinuous complex words

Discontinuous entities are not annotated; the
full span between the discontinuous entities
(including the words between them) is an-
notated instead. For example, we annotate
tumor (T) 4b, instead of tumor and 4b sep-
arately. This is also the case for multi-word
elements only discontinued by a typographic
symbol annotated as one complex word. For
example, we annotated VIH 1/2 instead of
VIH 1 and 2 separately (2022-003594-33).

3.3.4 Measure units

Measure units will not be annotated when
they are of general use (e.g., mg.). However,
we annotated those that are infrequent to a
layman reader and are needed to understand
the text. For example, µg (‘microgram’) in:
≥2 µg (2021-001396-16).

3.3.5 Foreign words

Foreign words will not be annotated if there
is a translated equivalent in the text. Ex-
ample: Diagnóstico de enfermedad de Crohn
(Crohn’s disease) (2021-003314-39).

However, we annotate any foreign word if
it is only used without an Spanish transla-
tion. Example: RSV which stands for ‘Res-
piratory Syncytial Virus’ (2022-003124-41).

3.3.6 Names of genes

Genes will not be annotated, except for those
which are highly relevant or associated with
a disease. Example: BRCA: gene associated
with breast cancer (2022-003594-33).

3.3.7 Names of clinical trials

Names of clinical trials are not be annotated;
e.g., CLOU064A2301 (2022-001034-11).

3.3.8 Synonyms

We annotate synonyms of the same complex
words; e.g., diagnóstico temprano, synonym
of diagnóstico precoz (aula cyl erc 3).

3.3.9 Adjectives

Adjectives which do not belong to a phraseo-
logical unit will not be annotated. Example:
valvulopat́ıa estenótica grave in which grave
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Figure 2: Example of the CLARA-MeD tool and a sample CT text.

is not included as a phraseological unit (2020-
003312-27). However, the adjectives often
create a complete complex word with a con-
cept identifier in the UMLS Metathesaurus.
Thus, we annotate such cases; for example:
insuficiencia cardiaca refractaria (ci sec 1).

3.3.10 Organizations

We annotated acronyms of medical organiza-
tions; e.g., NYHA (2020-003312-27).

3.4 Inter-annotator agreement

Four linguists revised the 225 texts (each
text was revised by two annotators), and the
inter-annotator agreement (IAA) was calcu-
lated using the F-measure. The strict IAA
was 84.42% and the relaxed IAA was 91.58%,
which was quantified using the BRATEval li-
brary16 in java. Once the texts were anno-
tated, the .ann files were extracted. These
.ann files were then converted to .conll for-
mat. As the last step, the .conll format files
were converted to .json to adapt to the re-
quirements of models in Hugging Face.

3.5 Model Training

Transformer-based models available on the
Hugging Face hub (Wolf et al., 2020) were
utilized for the CWI task. The choice of
transformers was based on their state-of-the-
art performance for NLP tasks. The models
were fine-tuned for our task by adapting the
notebook on token classification17 available

16https://shorturl.at/tlVSq (Retrieved 2024/4)
17https://shorturl.at/Y1vRP (Retrieved 2024/8)

in the Hugging Face’s GitHub. The follow-
ing are the seven models used in this work:

1. BETO – Spanish BERT (Cañete et al.,
2020): a monolingual, general domain
model with 110M parameters, trained
on the Spanish subsets of Wikipedia and
the Open Parallel Corpus.

2. Biomedical Language model for Span-
ish (RoBERTa EHR) (Carrino et al.,
2022): a monolingual and domain-
specific model, trained on Spanish med-
ical texts (125M parameters).

3. RoBERTa-EHR-CT (Campillos-Llanos
et al., 2021): a monolingual and
domain-specific pretrained model from
RoBERTa EHR, with the same number
of parameters, but fine-tuned on 1200
texts about clinical trials in Spanish.

4. mBERT base model (Devlin et al.,
2018): a multilingual, general do-
main model with 110M parameters, pre-
trained on Wikipedia for 104 languages.

5. Medical mT5 (Garćıa-Ferrero et al.,
2024): a multilingual, domain-specific
model, which was pre-trained on large-
scale medical data sources in English,
French, Italian and Spanish; we used the
large version (738M parameters).

6. mDeBERTa v3 (He, Gao, and Chen,
2021): a multilingual, general domain
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model, pre-trained on the Common-
Crawl corpus for 100 languages; we used
the large version (190M parameters).

7. RoBERTa-BNE-large (Gutiérrez-
Fandiño et al., 2022): the large version
(355M parameters) of the monolingual,
general-domain model trained on data
from the Spanish National Library.

Each transformer model was fine-tuned
with a batch size of 16, trained with 30
epochs, an early stopping of 5, a learning
rate of 2e-5 and the Adam optimizer. Models
were run with three seeds, and we provide the
average and standard deviation of the three
experimental rounds for each model. All ex-
periments were run in Google Colab Pro.

In addition to the transformer-based mod-
els, we have tested other classical ML models
as baselines, using Scikit-learn (Pedregosa et
al., 2011): SVMs and LR classifiers. SVM
classifiers work by finding the hyperplane
that best separates data points of different
classes with the maximum margin. SVMs
use kernel functions to transform the input
space, allowing for complex decision bound-
aries. For its part, LR is a binary classifi-
cation model that uses the logistic function
(sigmoid). The classifier models the input
features using optimization techniques and
outputs values between 0 and 1.

For ML models (SVM and LR), we re-
port the average across 5-fold cross-validation
on the train and development sets, and the
final scores on the test set. We employed
features focusing on lexical classes and po-
sitional characteristics of tokens. Namely, we
used the lowercase form of the token, the pre-
ceding word, and the subsequent word to cap-
ture contextual information. Additional bi-
nary features were incorporated to identify if
the token was in uppercase, title case, or con-
sisted entirely of digits. Furthermore, we uti-
lized the part-of-speech (POS) tag of each to-
ken, obtained using the spaCy library (Hon-
nibal et al., 2017), to enrich the syntactic un-
derstanding of the text.

The performance of the models was
measured using common evaluation metrics
(Hripcsak and Rothschild, 2005), and post-
evaluation of results was conducted to ana-
lyze false positives and false negatives. The
evaluation metrics were precision, recall, F1-
score and accuracy for all approaches. Given
the high classification imbalance—i.e., most

tokens do not belong to the complex word
class—we report the micro-average F1 and
we use the class weight=‘balanced’ pa-
rameter for the Scikit-learn classifiers.

4 Results

The transformer model with the best per-
formance in the F1 measure was mDeBER-
TaV3, followed by BETO and Medical mT5;
whereas for other ML classifiers, SVM suc-
ceeded in the CWI task compared to Logis-
tic Regression (Table 2). In the 5-fold cross-
validation with the training and development
sets, the SVM obtained an average F1 of
90.29, but the F1 decreased when applied on
the test set (F1 = 76.6). However, the F1
value was still below a random classifier.

The results from mDeBERTaV3 suggest
that it captured a high number of correctly
labeled complex words. When it comes to re-
call, the MarIA model scored the best results
with 82.98, which indicates that it had a bet-
ter performance in identifying the maximum
number of correctly labeled complex words in
all observations of the actual class. Among
all the models considered, mDeBERTaV3 ap-
peared to be the most balanced one, with
the highest F1 score. Furthermore, it had
a strong precision and a similar recall. The
BETO model excelled in recall as well, which
makes it a good choice if the task is minimiz-
ing missed complex words or false negatives;
however, it may include more false positives
compared to mDeBERTaV3. The RoBERTa-
EHR-CT model scored the highest accuracy,
which indicates good performance, yet less
favorable F1 outcomes than the vast major-
ity of the models. Overall, the RoBERTa
EHR model performed the weakest among
transformers, with the lowest metrics’ scores,
specifically an average F1 of 69.62.

In terms of performance across classes, we
observed that the inside class (I-CW) achieved
lower scores compared to the begin class
(B-CW). For example, the B-CW class had an
F1 score of ∼57% and ∼59% on the test
set with the LR and SVM models, respec-
tively; whereas the F1 score of the I-CW class
decreased to ∼26% and ∼25%, respectively.
Figure 3 shows the confusion matrix of the
gold standard and the predictions by the
mDeBERTa model. In a shallow error analy-
sis of this model, most errors seem to appear
in the B-CW class, which is mislabelled as the
O class, or vice versa. A detailed error analy-
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Precision Recall F1 Accuracy
dccuchile-bert-base-spanish-wwm-uncased 75.01 82.98 78.78 93.49

(±1.11) (±0.60) (±0.34) (±0.13)
roberta-bne-large 64.50 83.40 72.32 92.07

(±11.50) (±0.54) (±7.47) (±2.97)
bert-base-multilingual-cased 76.23 77.03 76.63 92.10

(±0.78) (±1.74) (±1.19) (±0.48)
microsoft-mdeberta-v3-base 79.05 79.01 79.02 94.86

(±1.39) (±0.70) (±0.65) (±0.22)
RoBERTa-bsc-bio-ehr-es 62.58 78.54 69.62 94.21

(±3.34) (±0.31) (±2.03) (±0.62)
RoBERTa-es-clinical-trials-ner 70.44 78.82 74.39 95.21

(±1.07) (±1.32) (±0.98) (±0.07)
Medical-mt5-large 74.94 82.07 78.34 94.72

(±1.16) (±0.40) (±0.77) (±0.13)
LinearSVM 76.60 76.60 76.60 76.60
Logistic Regression 75.24 75.24 75.24 75.24

Table 2: Results on the test set (for transformer models, we report the average of 3 experiments
and the ± standard deviation).

Figure 3: Confusion matrix for the test re-
sults with the mDeBERTa model compared
to our gold standard.

sis could shed more light on the most frequent
words that are misclassified. Due to the small
size of our annotated corpus, a thorough er-
ror analysis is left for future work, when more
data is collected and annotated.

5 Discussion

Comparing these findings with previous stud-
ies, we observe certain similarities with other
classifiers for the CWI task. For example,
Alarcon et al. (2019) reported an F1 score
of 74.97 using an SVM classifier, achieving
slightly lower results. In another article by
Alarcon, Moreno, and Mart́ınez (2021), their

research resulted in an F1 score of 72.7 us-
ing BERT independently, indicating a similar
trend with their previous work. On the other
hand, Truică, Stan, and Apostol (2023) ob-
tained better precision and recall results with
a multilayer perceptron; however, their over-
all accuracy did not fall within the range of
our reported values, with a 15% difference.
The results from Truică using SVM, random
forest or extra randomized trees presented
discrepancies compared to those of the per-
ceptron, suggesting an interesting compari-
son between classifiers.

Nonetheless, drawing a direct comparison
between models might be challenging due
to the differences in our dataset from the
ones presented in previous research. The im-
plications of these findings are relevant be-
cause they indicate that transformers demon-
strate good performance in lexical simplifica-
tion tasks. Having said that, the CWI task
in Spanish texts is yet to be tested using
other datasets. In our research, the ability of
transformer-based models to capture seman-
tic relationships and contextual information
make them dynamic, especially for multi-
word CWs. This capability enables them to
be competent in grasping nuanced meanings
in which words are used, and to be fine-tuned
on domain-specific datasets.

Surprisingly, the general-purpose models
achieved the best scores, compared to the
domain-specific models like mT5, which was
pre-trained using medical texts from sources
like ClinicalTrials or PubMed. This could
mean some of the annotated complex words
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in the training data do not belong necessar-
ily to the medical domain or are polysemous
words. Some examples might be:

1. revocar, consentimiento or reinter-
vención (examples from several texts).

2. exploración: when used as examination
to find a pathology instead of going out
to explore a new place (ci sed 9).

3. coma: used as the state of profound un-
consciousnes instead of the third per-
son of the verb comer in Spanish
(aula cyl diabetes 5).

4. instrumental : as the medical equipment
necessary in a surgery instead of the
music-related meaning (ci 86).

5. progresar : with a negative meaning as
‘worsening’ rather than a positive one
(ci ser 4).

In spite of the favorable results obtained,
we are aware of certain challenges, given the
nature of the problem and due to the fact
that developing the corpus and annotating
it was a crucial starting point. Addressing
the identified limitations is feasible by adopt-
ing strategies such as: 1) Increasing the cor-
pus size, as this would allow for further gen-
eralization by the transformers models. 2)
Introducing embeddings as features for the
ML model. 3) Performing a thorough error
analysis on a subset of predictions, to pro-
vide further insights to improve the identi-
fication and classification of complex words.
As observed in our results, the poorer perfor-
mance on the inner class (I-CW) could reflect
that models are less robust when predict-
ing whether modifiers or adjectives should be
considered part of the complex word (e.g.,
aguda in apendicitis aguda, ‘acute appendici-
tis’). Indeed, annotators often hesitated to
annotate a wide or short span of multi-word
CWs. However, understanding where the
models fail is still unclear. 4) Using metadata
regarding the thematic sub-domains within
the corpus to establish a difference between
complex words belonging to different special-
ties, e.g. complex words in ophthalmology or
in oncology. 5) Reexamining our corpus to
establish a difference between complex words
belonging to the general domain and those
complex words belonging exclusively to the
medical domain. In doing so, we might as-
certain an explanation of performances using
general and domain-specific models.

After considering our limitations, further
factors should be taken into account if the
tested classifiers are to be integrated in real-
time services or solutions. If so, the feasibil-
ity of integrating ML-based or transformer-
based classifiers would vary. Transformer
classifiers provide better results but are less
transparent and require high computational
capacities. On the other hand, ML classifiers
provide less accuracy, but they are not com-
putationally demanding.

6 Conclusions

In this study, we evaluated standard ML
models (SVMs and Logistic Regression)
and fine-tuned transformer-based models for
CWI in Spanish texts for patients. Our re-
sults showed that transformer-based models
tend to achieve similar F1 scores and perform
better than traditional ML classifiers. Our
findings might indicate that language and do-
main are not the most relevant factors in the
CWI task with our data, since the mDeBER-
TaV3, BETO and Medical mT5 models were
the ones with the best performance, although
their scores were relatively similar. Even so,
our outcomes deserve to be confirmed with
additional experiments. The simplification
system was evaluated with a corpus consist-
ing of 225 texts and 18203 complex words,
which may limit the training of our models.
Therefore, future research could explore ex-
tending the annotations and enlarge the cor-
pus size for better generalizations, and re-
assess which complex words might belong to
the general discourse. By continuing to re-
fine and expand upon these methods, we can
make significant strides towards more inclu-
sive communication between Spanish health
providers and patients.
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and L. Màrquez, editors, Proceedings of
the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages
1148–1153, Florence, Italy, July. Associa-
tion for Computational Linguistics.

Gutiérrez-Fandiño, A., J. Armengol-
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Juvinyà-Canal, D., C. Bertran-Noguer, and
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