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Abstract: This paper investigates the use of entailment-based methods for Clinical
Temporal Relation Extraction (CTRE), addressing challenges such as data scarcity,
label imbalance, and domain-specific complexity. By reframing the task as a Natural
Language Inference (NLI) problem, the approach reduces annotation requirements
and improves generalization across datasets. Experiments with the THYME and
E3C corpora show that NLI-based models outperform traditional classifiers in low-
resource settings, demonstrating strong transferability and resilience to class imba-
lance, making them an effective solution for CTRE in clinical narratives.
Keywords: Temporal Relation extraction, Natural Language Inference, Medical
domain, transfer learning

Resumen: Este art́ıculo investiga el uso de métodos basados en Inferencia del Len-
guaje Natural (NLI) para la extracción de relaciones temporales en textos cĺınicos
(CTRE), abordando desaf́ıos como la escasez de datos, el desequilibrio de las etique-
tas y la complejidad espećıfica del dominio. Al reformular la tarea como un problema
de NLI, el enfoque reduce los requisitos de anotación y mejora la generalización entre
conjuntos de datos. Los experimentos con los corpus THYME y E3C muestran que
los modelos basados en NLI superan a los clasificadores tradicionales en entornos
de bajos recursos, lo que demuestra una fuerte transferibilidad y robustez frente al
desequilibrio de clases, lo que los convierte en una solución eficaz para CTRE en
narrativas cĺınicas.
Palabras clave: Extracción de relaciones temporales, inferencia del lenguaje natu-
ral, dominio médico, aprendizaje por transferencia

1 Introduction

In medical reasoning, the temporal evolution
of the events related to a patient’s situation
is crucial for diagnosis, prognosis or even for
making the right therapeutic decisions. Seve-
ral studies have investigated the impact that
temporal information might have on diffe-
rent systems and medical contexts, such as
inclusion criteria on clinical trials, chronic di-
sease risk prediction or patient phenotyping,
among others (Dalianis, 2018), (Bui, Aberle,
and Kangarloo, 2007), (Hirsch et al., 2014),
(Caron et al., 2017), (van der Linden, van
Wijk, and Funk, 2021), (Wang et al., 2022).
For example, in Intensive Care Units (ICU),
evolution notes store the temporal progres-

sion of a medical condition of a patient indi-
cating the amelioration or deterioration after
the administration of a given treatment, or
the application of a given procedure. Kno-
wing temporal dependencies between rela-
ted events is especially relevant in this case
(Johnson et al., 2016).

Clinical Timeline Extraction is a high-
level task that aims to build temporal re-
presentations of clinical texts. The task
is usually decomposed in three lower-level
tasks: 1) Identification of temporal expres-
sions and clinical events, 2) extraction of
temporal relations among clinical events and
temporal expressions, and 3) clinical event ti-
meline ordering. In this paper, we will focus
on the second task.
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Figura 1: Dashed arrows represent missing-
relations (i.e. non-anotated relations) either be-
cause they are implicit and derivable (e.g. diag-
nosis before died) or underspecified (Missing-
Relations). Green arrows represent explicitly an-
notated relations.

Temporal reasoning is challenging in two
respects. First, initially, each event or ti-
me expression could potentially be combi-
ned with respect to all the others, leading to
a substantial increase in hypotheses, which
scales quadratically with respect to the total
number of entities (events and time expres-
sions). However, as (Ning, Feng, and Roth,
2017) pointed out, the majority of conceiva-
ble event-time expression pairings lack any
explicit connection in the manual annotation
(see Figure 1). This has as a consequence a
highly imbalanced number of actually related
pairs and annotated as such compared to the
missing ones.

The second challenge, as most recent re-
views point out (Alfattni, Peek, and Nena-
dic, 2020),(Olex and McInnes, 2021), con-
cerns specifically the medical domain. All
studies on temporal relation extraction in cli-
nical and medical narratives highlight that
one of the major challenges is the lack of suf-
ficiently large open-access datasets.

Data annotation requires expertise and ti-
me to annotate training data at large sca-
le with sufficient consistency, which is very
costly. In addition, annotated datasets show
poor transfer properties between domains:
Information Extraction (IE) annotations de-
pend on the labeling schema used in each do-
main, and moving to new datasets requires
new schemas, and the manual annotation of
new data.

Entailment-based approaches have been
widely used as an effective method to save
annotation effort and perform transfer lear-
ning across multiple data sources and sche-
mas (Sainz et al., 2021; Sainz et al., 2022;
Baucells et al., 2023; Vashishtha et al., 2020).

The approach consists of reformulating the
classical Relation Extraction multiclass clas-
sification task (See Table 1) as a natural lan-
guage inference (NLI) task and passing the
input to an entailment model, whose output
is then mapped to that of the target task.

Entailment-based models have primarily
been applied to tasks requiring knowledge
of general domains and factual relationships
between entities (e.g., “Barack Obama was
born in Hawaii”). However, their potential
usefulness in specialized scenarios, such as
those in the medical domain, has been unde-
rexplored. Similarly, the effectiveness of mo-
deling temporal relations via entailment is
still an open research question. Our research
aims to investigate the feasibility of poten-
tial improvements of the temporal relation
extraction using entailment models. We aim
to show that the models are particularly ef-
fective in scenarios where there is little an-
notated data, where the annotated labels are
extremely unbalanced and the domain is very
specific (i.e. medical health records).

In this paper we present an entailment-
based system for temporal relation extrac-
tion. We empirically show that (1) recasting
the task as an entailment problem is an ef-
fective approach to model complex temporal
relationships in the medical domain, as well
as (2) there is a transfer for temporal know-
ledge between datasets. (3) We show that
entailment-based models need less annotated
data than supervised classifiers in scenarios of
low data-regimes, and they are not that affec-
ted due to the extremely unbalanced distri-
bution of the training examples. (4) We show
that generic NLI models contain little tem-
poral knowledge, but it can be learned from
existing data sources.

2 Related Work

Relation Extraction (RE) aims to iden-
tify and extract complex relationships bet-
ween entities referenced within textual con-
tent. Clinical Temporal Relation Extraction
is a specific case of RE where the entities are
clinical events and time expressions. The clas-
sical approach to RE conceives the task as a
classification problem. Given a pair of entities
e1 and e2 within the context X, the objective
(see Equation 1) is to maximize the probabi-
lity assigned to the correct class y (the ac-
tual relation). The set of classes includes all
predefined relations, along with an additio-
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Element type Example Relation type

EVENT-TIMEX 39.6 weeks of gestation OVERLAP
EVENT-EVENT history was negative for blood coagulopathies CONTAINS
TIMEX3-TIMEX3 The patient was diagnosed with diabetes in 2018 BEFORE

and started insulin therapy two months later

Tabla 1: TLINKs among: temporal expressions (TIMEX3) and clinical events (EVENT).

nal OUTREL class, which accounts for both
unannotated missing relations and true non-
relations.

ŷ = arg max
y∈C

P (y | e1, e2, X) (1)

Since the irruption of the transformer ar-
chitectures (Vaswani et al., 2017), approa-
ches to solve both general domain and clini-
cal Temporal Relation Extraction predomi-
nantly rely on pre-trained language models
like BERT (Devlin et al., 2019) and special
token embeddings to facilitate classification
(Classical-BERT-based RE). Works on these
lines include (Ning, Subramanian, and Roth,
2019; Lin et al., 2019; Zhou et al., 2021; Lin et
al., 2021a; Lin et al., 2023; Knez and Žitnik,
2024). (Lin et al., 2019) introduce special to-
kens to mark events and employ a BERT
network, using the [CLS] token embedding
to classify temporal relations. (Zhou et al.,
2021) improve performance through soft lo-
gic regularization, predicting relation proba-
bilities while ensuring consistency with rule-
based constraints. (Lin et al., 2021a) enhance
extraction in the medical domain by utilizing
entity-specific pre-training of BERT. Finally,
(Knez and Žitnik, 2024), following the work
done by (Lin et al., 2023) for medical entity
factual relations, explore a bimodal architec-
ture integrating information from text docu-
ments and knowledge graphs combining them
to make a unified prediction.

Classical BERT-based RE systems require
large amounts of labeled examples which are
costly to annotate as addressed by (Sainz et
al., 2021). This is especially relevant in the
clinical domain because open-access datasets
are scarce and their annotation requires spe-
cialized professionals. Additionally, classical
BERT-based RE systems suffer enormously
in datasets with imbalanced label distribu-
tions, since imbalance tends to drag the th-
reshold towards the large class, that is, the
OUTREL class (Wang et al., 2023). (Obamu-
yide and Vlachos, 2018; Sainz et al., 2021)

demonstrate that reformulating RE as a Na-
tural Language Inference (NLI) task helps re-
duce the annotation effort in low-data regi-
mes where classical BERT-based RE techni-
ques fail to perform accurately (Baldini Soa-
res et al., 2019). Moreover, (Sainz et al., 2022;
Baucells et al., 2023) demonstrated that re-
framing tasks as entailment problems redu-
ces reliance on schemas, a primary barrier to
transferring annotations across domains and
datasets. Furthermore, adopting the NLI ap-
proach helps address the OUTREL imbalance
issue.

Textual Entailment Textual Entailment
focuses on reasoning about text relationships
by determining the logical relationship bet-
ween two pieces of text: a premise and a hy-
pothesis. Originally introduced by (Dagan,
Glickman, and Magnini, 2006), the task was
later expanded upon by (Bowman et al.,
2015), who termed it as Natural Language
Inference (NLI). Given a textual premise and
a hypothesis, the task is to decide whether
the premise entails or contradicts (or is neu-
tral to) the hypothesis. For RE, the premise
corresponds to the context X, and the re-
formulation involves generating, by means of
concrete verbalizations, a hypothesis for each
possible relation y ∈ C (see Figure 2).

Several studies have demonstrated that re-
formulating traditional classification tasks as
Natural Language Inference (NLI) problems
can effectively harness the reasoning capabi-
lities of NLI models. This approach has been
shown to improve performance and enhan-
ce generalization in the original classification
tasks, particularly in scenarios with limited
data availability (Uppal et al., 2020), (Sainz
et al., 2021). As mentioned above, NLI re-
formulation involves leveraging high-level se-
mantic reasoning in specific semantic tasks.
For example, (Poliak et al., 2018) described
efforts to recast 7 semantic phenomena, in-
cluding RE, from a total of 13 datasets into
NLI examples.

But to our knowledge temporal RE recast
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Figura 2: General overview of the inference using the NLI approach. The input text containing two
entity mentions (on the left) is taken as the premise. The entailment templates are used to verbalize
hypotheses using the entity mentions as placeholders (2018 as e1 and diagnosed as e2 of the relation).
The entailment probability of each premise-hypothesis pair is obtained from the NLI model, and the
pair with the highest entailment probability is selected to infer the correct relation label. Note that each
hypothesis is related to one label.

as NLI has only been explored by (Vashishtha
et al., 2020). The authors reformulated mul-
tiple datasets annotated for event duration
and event ordering into more than one million
NLI examples and investigated how well mo-
dels trained on generic NLI datasets capture
these forms of temporal reasoning. Unlike our
work, their temporal reasoning was limited to
the before relation type.

3 Problem Formulation

Clinical Timeline Extraction involves cons-
tructing temporal representations of clini-
cal texts, where TLINKs encode the tem-
poral relations between the combination of
two elements of TIMEX3 (temporal expres-
sions) and EVENT (clinically relevant enti-
ties) as shown in Table 1. Most annotation
guidelines are based on Allen’s seven seminal
temporal relations (Allen, 1983). In this pa-
per, we focus specifically on the Clinical Tem-
poral Relation Extraction (CTRE) subtask,
centered on classifying each temporal rela-
tion (TLINK) within the label set C. The set
C in most datasets comprises the following
temporal relation labels: BEFORE, BEGINS-ON,
ENDS-ON, CONTAINS, OVERLAP, and OUTREL.

The TLINK identification task is usually
formulated as a classical relation extraction
(RE) problem, specifically a pairwise classi-
fication task, where the objective is to de-
termine the temporal relationship between

every pair of EVENTS and TIMEX3s. This
strategy has a quadratic cost since it genera-
tes TLINK candidates for all possible pairs
of entities and produces a very unbalanced
proportion of relation/OUTREL candidates as
shown in Figure 1.

4 Entailment Based Approach

Our application of the entailment-based ap-
proach aligns with previous works (Sainz et
al., 2022) and can be summarized into th-
ree steps illustrated in Figure 2. To reformu-
late Clinical Temporal Relation Extraction
(CTRE) as an entailment task, each context
X, which contains the entities e1 and e2, is
treated as the premise. For each possible tem-
poral relation, we generate a corresponding
hypothesis.

This process involves crafting verbaliza-
tions that effectively represent the seman-
tic meaning of the relations. For example, a
verbalization for the OVERLAP relation might
state that e1 occurs at the same time as
e2, which would entail the existence of an
OVERLAP relation between e1 and e2. Addi-
tionally, verbalizations that contradict each
relation must also be generated. Neutral ver-
balizations are also employed, but for the sa-
ke of clarity, their generation will be explai-
ned later.

The task then involves determining the
entailment probability for each plausible re-
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Label Entailment templates Contradiction templates

BEFORE {e1} occurs before {e2} {e2} is prior to {e1}
{e1} happens before {e2} {e1} is subsequent to {e2}
{e2} occurs after {e1}
{e2} happens after {e1}

CONTAINS {e1} reports {e2} {e2} consists of {e1}
{e1} demonstrates {e2} {e2} controls {e1}

{e1} shows {e2} {e2} practices {e1}
{e1} is observed in {e2}
{e1} objectifies {e2}
{e1} confirms {e2}

OVERLAP {e1} and {e2} occur at same time {e1} happens at different time than {e2}
at some point in time {e1} shares no time with {e2}
{e1} and {e2} overlap
at some point in time

BEGINS-ON {e1} begins when {e2} begins {e1} starts before {e2}
{e1} begins with {e2} {e2} starts before {e1}

{e1} simultaneously begin {e2} {e2} prior to {e1}
{e1} Prior to {e2}

ENDS-ON {e1} ends with {e2} {e2} terminates with {e1}
{e1} ends when {e2} ends {e2} ends with {e1}
{e1} terminates with {e2}

Tabla 2: Verbalization templates for entailment and contradiction alignment for given {e1} (source) and
{e2} (destination) entities (event and temporal expression mentions).

lation between e1 and e2 within the con-
text X, relative to the contradiction and neu-
tral probabilities independently for each re-
lation. The final prediction is made by selec-
ting the relation associated with the highest
entailment probability. As described below,
the entailment model can be further trained
on temporal reasoning datasets by reformu-
lating temporal RE as an entailment pro-
blem. Figure 2 shows the main workflow of
the approach. First, given the input text that
contains the two entities (i.e. TIMEX3 or
EVENT mentions), all the entailment ver-
balizations are generated as the hypotheses
for the entailment model. Note that the input
context is considered as the premise for the
model. Second, we obtain the entailment pro-
babilities for each hypothesis/verbalization
and, finally, we return the most probable hy-
pothesis, that is, we return the CTRE label
of the verbalized hypothesis with the highest
entailment probability above a threshold. If
none overpasses the threshold we return the
negative class (OUTREL).

Relation verbalization The verbaliza-
tion process involves creating one or more
templates that represent the temporal rela-
tion. The templates include the placeholders

{e1} and {e2} that involve the source entity
and destination entity of the context. We ma-
nually create the templates that verbalize the
relations based on the guidelines of the THY-
ME and E3C datasets. In total, we genera-
ted between 2-6 templates per label. Table 2
shows the defined templates. Each relation la-
bel has entailment and contraction templates
that are associated with entailment or contra-
diction labels when doing the inference with
the entailment model.

Entailment model Given a premise and
hypothesis, the model returns the probabili-
ties of the hypothesis being entailed by, con-
tradicted to or neutral to the premise. In
principle, any model trained on the NLI task
can be used. The entailment model used in
this work is based on the RoBERTalarge (Liu
et al., 2019) checkpoint (Nie et al., 2020),
which has been trained on all SNLI (Bow-
man et al., 2015), MNLI (Williams, Nangia,
and Bowman, 2018), FEVER (Thorne et al.,
2018) and ANLI (Nie et al., 2020) datasets1.

Training The system based on NLI can be
used in a zero-shot fashion, but in the ca-

1The NLI models used on this work can be down-
loaded from the HuggingFace Models repository:
ynie/roberta-large-snlimnlifeveranliR1R2R3− nli.
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Figura 3: General overview of the training process of the entailment-based CTRE. On the left, input
information: the context, the event source (2018 ) and the destination (diagnosed). In the middle, hy-
potheses verbalized using the templates.

se that labeled data exists, we can reformu-
late the existing dataset into an entailment
problem in a similar way that this is done
in inference. We generate entailment, neu-
tral and contradiction hypotheses heuristi-
cally from the data using the templates de-
fined in Table 2. Given a set of labeled rela-
tion examples, we use the following steps to
produce entailment pairs for fine-tuning the
entailment model. 1) For each positive rela-
tion example in the dataset, we generate at
least one entailment instance by sampling
from the corresponding entailment templates
of the current CTRE label. That is, we gene-
rate one or several premise-hypothesis pairs
labeled as entailment. Similarly, 2) for each
positive example, a contradiction premise-
hypothesis is generated by randomly sam-
pling from the corresponding set of contra-
diction templates (cf. see the contradiction
template column in Table 2). Finally, (3) for
each negative relation we generate a neutral
premise-hypothesis pair, sampling a verbali-
zation from either entailment or contradic-
tion templates. We use the reformulated trai-
ning data for further training the entailment
model as shown in Figure 3. For the detec-
tion of missing-relations we deploy threshold-
based missing-relation detection (Sainz et al.,
2021). We apply a threshold value, and if
none of the CTRE labels surpasses the th-
reshold, the missing-relation is returned. On
the contrary, the relation with the highest en-
tailment probability is returned as the pre-
dicted label. In our experimentation, the th-
reshold is estimated as the one that maximi-
zes the macro F1-score in the development
set.

5 Experimental Setup

This section describes the employed datasets,
the evaluation settings, and the baselines and
models used in our experiments.

5.1 Datasets

We carried out our evaluation on two
datasets with similar annotation guideli-
nes (Wright-Bettner and Palmer, ; Magnini
et al., 2022): the THYME corpus (Styler IV
et al., 2014) and the E3C corpus (Magnini et
al., 2020; Magnini et al., 2021).

Each dataset provides specific entities
(EVENTS, TIMEX3) and existing TLINK
relations among them across the whole docu-
ment. Section 5.1.1 and Section 5.1.2 further
describe the THYME and EC3 datasets.

5.1.1 THYME corpus

The THYME corpus (Styler IV et al., 2014)
consists of de-identified real colon cancer me-
dical records from a hospital annotated fo-
llowing the THYME guides (Wright-Bettner
and Palmer, ). THYME has both tempo-
ral and coreference relations. In our expe-
riments, we use temporal annotations that
aim to create a timeline for each patient’s
notes. The project annotated health records
with events that are relevant to the patient’s
clinical timeline (MRI, surgery, etc.), as well
as relevant temporal expressions (such as the
date of surgery), and temporal relations bet-
ween the events (showing whether the sur-
gery came before or after the MRI, for exam-
ple). THYME TLINKs contain the following
relation types: BEFORE, CONTAINS, OVERLAP,
ENDS-ON and BEGINS-ON.
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THYME
Train split #Pos Total #Docs

1-doc 76 820 1
1 % 187 2087 2
5 % 784 8448 10

10 % 1580 16361 20
25 % 3653 38645 52

FT (100 %) 13840 144141 200

Tabla 3: THYME average Positive relations,
total relations and number of documents per
5 random text samples per split (FT = Full
Training set).

5.1.2 E3C corpus

As the second dataset, we use the publicly
available clinical histories from the E3C cor-
pus (Magnini et al., 2020; Magnini et al.,
2021). It is composed of general clinical sta-
tements that present the reasons for a clini-
cal visit, the description of physical exams,
and the assessment of the patient’s situation.
The narratives are extracted from multiple
medical literature sources, such as PubMed,
the Pan African Medical Journal, and the
SPACCC corpus, among others. English data
was partitioned splitting the set of documents
into train, development, and test, sampling
60 %, 20 %, and 20 % of documents at ran-
dom. Although the corpus contains annota-
tion in four different languages, namely En-
glish, Italian, Spanish, French and Basque,
the experiments were run only in English.

E3C EN
Train split # Pos Total # Docs

1-doc 59 360 1
50 % 884 5000 23

FT 1824 10303 46

Tabla 4: E3C average Positive relations, total re-
lations and number of documents per 5 random
text samples per split.

As explained in the guidelines (Magnini et
al., 2022), the E3C dataset contains two la-
yers of annotations. We focus on the second
layer that includes clinical relevant events, ti-
me expressions, and temporal relations accor-
ding to the THYME standard. We use the
gold entity mentions, putting our effort on
the detection of TLINKs. E3C contains the
following relation types: BEFORE, CONTAINS,
OVERLAP, PERTAINS, SIMULTANEOUS, ENDS-ON
and BEGINS-ON. The labels in the THYME
corpus and the E3C corpus are not identi-

cal. Notably, the PERTAINS label, which re-
presents a relationship between a substance
and a measure or quantity, is not a tempo-
ral relation but is annotated in the E3C cor-
pus. In contrast, the THYME corpus exclu-
sively annotates temporal relations and does
not include the PERTAINS label. As our fo-
cus is on temporal relations, we have exclu-
ded the PERTAINS label from the E3C data-
set for our analysis. Furthermore, to facilitate
the transfer of information between the two
corpora, the E3C SIMULTANEOUS relation has
been mapped to OVERLAP although they are
not exactly identical.

5.2 Evaluation Settings

Relation and Entity candidates Our
evaluation concentrates on predicting the
temporal relations between all possible intra-
sentence entity pairs. Specifically, we restrict
temporal relation extraction to entities occu-
rring within the same sentence, leaving the
evaluation of inter-sentence, document-level
extraction for future work. Addressing inter-
sentence relations differs fundamentally, as
it relies heavily on the document’s structure
and its sections (e.g., chief complaint, perso-
nal antecedents, family history, etc.), which is
out of the scope of this work. As mentioned
in the introduction, the majority of concei-
vable event-time expression pairings lack any
explicit connection in the manual annotation
(see Figure 1), we make missing-relations ex-
plicit (using OUTREL label) to those examples
without any CTRE label. This strategy ge-
nerates an extremely unbalanced dataset to-
wards the OUTREL label. Table 3 quantifies the
proportions between positive examples and
the total number and shows how unbalanced
the dataset is.

Evaluation scenarios We created multi-
ple zero- and few-shot settings to measu-
re the robustness of entailment-based ap-
proaches compared to the classic supervised
models in low-resource scenarios. The zero-
shot 0 % setting aims to evaluate the default
knowledge for temporal reasoning in generic
entailment models. The goal of few-shot is
to measure the adaptability of the models.
For that, we create smaller versions of the
dataset that simulate low-resource scenarios.
In the case of THYME, we sample one docu-
ment, 1 %, 5 %, 10 %, and 25 % of the docu-
ments from the whole corpus. Table 3 shows
the sizes of THYME for each training split.
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In the case of E3C, we sample one document
and 50 % of the documents. The counts are
shown in Table 4. We generate 5 random sam-
ples for each of the defined splits to measure
the variability of the models. The full-train
(FT) scenario is provided for whole corpus
insight.

In addition, similar to zero and few-shot
scenarios, we define a dataset transfer set-
ting where we measure the transferability of
temporal knowledge of models that were trai-
ned on temporal reasoning to a new unseen
dataset. Continual fine-tuning settings seek
to measure the adaptability of entailment
models trained on a different temporal rela-
tion extraction setting.

5.3 Evaluation metrics

We have used the standard F1-Score, which
is a common metric on IE tasks. In parti-
cular, we report the macro average of F1-
Score over the positive labels, as standard
practice in information extraction. The ma-
cro average captures better the overall per-
formance for this particular setting, where
around 80 − 90 % of examples are missing-
relations (OUTREL). Focusing on the micro
average we would ignore the effectiveness of
correctly predicting less frequent labels. Ta-
ble 5 presents the label distribution of the
evaluation set in THYME and E3C, highligh-
ting the challenges of this particular setting.
Note that the reported results represent the
average of 5 random samples of each training
split.

Label E3C THYME

OUTREL 1847 (81.29 %) 61066 (89.45 %)
CONTAINS 242 (10.65 %) 4573 (6.70 %)

BEFORE 53 (2.33 %) 970 (1.42 %)
OVERLAP 75 (3.30 %) 1168 (1.71 %)
ENDS-ON 19 (0.84 %) 134 (0.20 %)

BEGINS-ON 36 (1.58 %) 361 (0.53 %)

Tabla 5: Label distribution of the evaluation sets
in E3C and THYME corpora.

5.4 Baselines and Models

Our primary baseline for comparison is our
re-implementation of the Entity Marker in-
put representation (EM) (Soares et al.,
2019). Entity markers help relation extrac-
tion models by embedding structural and se-
mantic information about entity pairs, im-
proving global feature learning. Additionally,

a classification layer is added to predict
the actual temporal relation between enti-
ties based on the entity marker vectors. The
EM strategy is evaluated on the same few-
shot splits as our system, enabling a direct
head-to-head comparison. EM, a state-of-the-
art model (Zhou and Chen, 2022), levera-
ges RoBERTalarge as its pre-trained models
and the relation representation obtained th-
rough entity markers. The model is a general-
domain model. Since the authors did not find
a medical domain-specific NLI model, we also
avoided using a medical domain-specific Ro-
BERTa for comparison purposes. In addition,
we implemented two simple baselines, that
aim to contrast the obtained results against
randomness and the simplest classifier. On
one hand, we compare our results with the
majority baseline, which always predicts the
most frequent positive label (CONTAINS). On
the other hand, the random baseline assigns
classes uniformly (ignoring the class distribu-
tion).

Parameter NLI Value EM Value

Learning Rate 2e-5 1e-5
Batch size 8 4
Max. epochs 7 20
weight-decay 0.01 0.01

Tabla 6: Hyperparameter values for NLI-based
and EM approaches.

6 Results

6.1 Main Results

Once we checked that our EM implementa-
tion obtained similar results to those of the
SOTA (Lin et al., 2021b), we evaluated the
described experiments. Table 7 shows the re-
sults for in-domain experiments carried out
in THYME and E3C, separately. It summari-
zes the performances in zero-shot (0 %), few-
shot (from 1-DOC to 25 %) and full training
(FT) settings. The experiments show that
the entailment-based approach (NLI) consis-
tently outperforms EM when few annotated
data is available. For example, up to 10 %
of the whole set of annotations in THYME.
Once there is enough annotated data EM be-
comes more competitive than NLI, at least
in THYME. Hypothetically, we would need
to annotate around 50 THYME documents
(circa 38,000 training examples) to train a
competitive supervised classifier.
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THYME E3C EN

Model 0 % 1doc 1 % 5 % 10 % 25 % FT 0 % 1doc 50 % FT

Majority - 2.5 2.5 2.5 2.5 2.5 2.5 3.8 3.8 3.8 3.8
Random 7.5 7.5 7.5 7.5 7.5 7.5 7.5 9.1 9.1 9.1 9.1
EM - 7.7±2,6 13.5±4,3 20.2±9,1 29.8±2,9 35.1±1,2 40.5 - 3.0±2,9 8.8±5,0 16.1±1,6

NLI 5.4 11.1±2.7 14.8±3.3 25.0±3.0 30.5±2.5 34.5±1.9 36.5 8.2 8.7±2.3 21.7±2.5 21.4±1.2

Tabla 7: Main results (Macro average F1-Score) comparing the performance of supervised classifier (EM)
and entailment-based approach (NLI), along with the random and majority class baselines.

THYME → E3C EN

Model 0 % 1doc 1 % 5 % 10 % 25 % FT

Majority - 3.8 3.8 3.8 3.8 3.8 3.8
Random 9.1 9.1 9.1 9.1 9.1 9.1 9.1
EM - 2.9±3,0 6.5±2,9 10.3±5,3 13.8±1,8 16.3±2,6 19.2
NLI 8.2 9.2±4,3 10.0±2,3 12.9±2,7 16.9±3,2 16.5±1,3 17.1

Tabla 8: Zero Shot Transfer Learning (Macro average of F1-Score) from different THYME in domain
scenarios (0 %, 1doc, 1 %, 5 %, 10 %, 25 % and FT THYME proportions) to E3C EN via pretrained
checkpoints.

In E3C results are alike, NLI consistently
outperforms EM in all few-shot and FT set-
tings. It is worth noting that the EM results
in E3C are lower than expected in the 50 %
setting. A deeper look revealed problems of
the models to generalize from training.

In the zero-shot setting (0 % columns in
the tables), the entailment model cannot out-
perform the random baseline in any data-
set used in the evaluation. This is indicative
that generic entailment models do not have
the knowledge to infer temporal relations co-
rrectly and have to be acquired from other
resources in addition to the NLI datasets.

6.2 Dataset Transfer Results

Table 8 shows the results of training a mo-
del in THYME and testing it in E3C. The
comparison of EM with NLI shows a similar
trend as was described in the previous sec-
tion: when few annotated data are available,
the entailment model has better transferabi-
lity across datasets (from THYME to E3C).
That is, NLI requires less training data for
effective cross-dataset learning.

A closer look at the results reveals that,
overall, the training in THYME is quite ef-
fective when deploying the models (both EM
and NLI) in the E3C dataset. Note that,
using a 10 % of THYME for training the NLI
model is equivalent to training EM on the
whole E3C training set. Training an NLI mo-
del in 10 % of THYME attains 16.9 of F1-
Score while training EM on the full training

set reaches 16.2 of F1-Score (cf. Table 7).

6.3 Continual Fine-tuning Results

Tables 9 and 10 show the results of conti-
nued fine-tuning of the entailment and EM
models. That is, we evaluate the transfera-
bility of the models previously trained on a
different dataset (THYME) to a new training
dataset (E3C). The tables show the amount
of training used from the E3C dataset. Note
that in this setting the models are evaluated
always in E3C. We selected the best check-
points from THYME 25 % and FT splits as
the starting point of the continual setting.

The results show that in general entail-
ment models show better capabilities for
transferring temporal knowledge compared
to the EM models. As expected, EM struggles
to combine acquired knowledge from the old
and new training datasets, and only impro-
ves when sufficient new training data is avai-
lable (cf. Table 9). On the contrary, the en-
tailment model (NLI) obtains consistent im-
provements across the training splits in E3C,
with the exception of the 1doc setting.

The amount of training in THYME af-
fects the adaptation of the models. The larger
the amount of training in THYME the bigger
the difficulties to be adapted to E3C. Using
full training in THYME, the model is not
able to improve the results in E3C and the
F1-Score decreases from 19.2 to 16.8. Strong
fine-tuning in THYME affects to a lesser ex-
tent the entailment model, where it only lo-
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THYME 25% → E3C EN

Model 0 % 1doc 50 % FT

Majority - 3.8 3.8 3.8
Random 9.1 9.1 9.1 9.1
EM+e3c 15.9 16.8±4.5 14.4±4.0 20.7±4.1

NLI+e3c 18.3 8.7±2,3 21.5±2,7 21.4±2,2

Tabla 9: Continual pretrain (MacroF1-Score)
over best THYME 25 % checkpoint.

THYME FT → E3C EN

Model 0 % 1doc 50 % FT

Majority - 3.8 3.8 3.8
Random 9.1 9.1 9.1 9.1
EM+e3c 19.2 16.0±2.8 13.6±5.2 16.8±7.9

NLI+e3c 17.1 14.2±3.3 19.7±1.1 19.0±1.8

Tabla 10: Continual pretrain (MacroF1-Score)
over best THYME FT checkpoint.

ses 1.4 points. Finally, experiments show that
the use of a single document is not sufficient
to adapt the models to new scenarios. For
the entailment model, it attains worse results
when a single document is added from the
E3C training (a decrease from 18.3 to 8.7).

7 Discussion

7.1 Transfer Learning

The transfer learning experiments reveal that
reformulating the task as entailment is mo-
re robust than using EM. By abstracting in-
formation to a higher semantic level, the en-
tailment approach achieves better generaliza-
tion, particularly across different labels and
scenarios, as shown when comparing Tables
11 and 12. Notably, as expected, OVERLAP
exhibits higher variability among the labels.
It is worth recalling that we equate the
E3C’s SIMULTANEOUS label with THYME’s
OVERLAP, though they are not entirely equi-
valent. Despite this, the entailment-based ap-
proach demonstrates superior generalization
compared to the BERT-based ER classifier
across most labels. The only exception is
BEGINS-ON, which shows comparable perfor-
mance in both approaches.

Related to the transfer generalization it
is important to mention that although both
corpora belong to the medical domain, THY-
ME holds real admission records while E3C
contains medical literature articles. As (Lin
et al., 2021b) pointed out, the language of
biomedical literature is different from the cli-
nical notes found in electronic medical re-

Label E3C Transfer CONT. CONT.
25 % FT %

OUTREL 68.69 83.62 70.20 76.51
CONTAINS 35.86 33.42 33.78 33.73

BEFORE 23.76 26.37 23.61 29.14
OVERLAP 13.62 04.30 14.42 12.90
ENDS-ON 20.25 22.22 22.22 11.32

BEGINS-ON 19.60 09.52 30.00 21.05

Tabla 11: NLI E3C FT vs NLI THYME → E3C
EN FT per class results. CONT. refers to CON-
TINUAL pretrain.

Label E3C Transfer CONT. CONT.
25 % FT %

OUTREL 88.83 83.62 87.26 88.03
CONTAINS 17.94 33.42 25.48 31.05

BEFORE 25.88 26.37 30.63 20.89
OVERLAP 04.81 04.30 0 02.46
ENDS-ON 17.39 22.22 22.22 16.00

BEGINS-ON 25.92 09.52 34.48 32.25

Tabla 12: EM E3C FT vs EM THYME → E3C
EN FT per class. CONT. refers to CONTINUAL
pretrain.

cords. The NLI ability to better transfer in-
formation across both datasets suggests that
the CTRE task recast improves semantic abs-
traction achieving better temporal reasoning.

8 Conclusions

We demonstrated that an entailment-based
reformulation effectively models complex
temporal relationships in the medical do-
main. Our findings indicate that this ap-
proach outperforms BERT-based relation ex-
traction methods in low data scenarios, alig-
ning with the conclusions of (Sainz et al.,
2021) for factual relations. Furthermore, we
showed that entailment-based methods facili-
tate effective transfer between datasets, par-
ticularly in low-data regimes, employing con-
tinual pretraining. This involves selecting the
best checkpoint from a subset of the sour-
ce dataset and continuing pretraining on a
subset of the target dataset. Our results sug-
gest that while BERT-based RE classifiers
perform better using ample data, entailment-
based reformulations excel in low-data set-
tings, mitigating majority-class bias. Finally,
although generic entailment models exhibit
limited temporal knowledge, such knowled-
ge can be effectively acquired from even the
most scarce existing data sources.

Edgar Andres Santamaria, Oier López de Lacalle, Aitziber Atutxa, Koldo Gojenola

358358



Limitations and Future Work

This work utilizes general-domain NLI mo-
dels, which may not be optimal for the cli-
nical domain. It focuses on same-language
transfer learning, while cross-language trans-
fer remains a future goal, particularly for
underrepresented languages like Spanish,
French, and Italian. The study demonstrates
that LLMs can learn temporal reasoning and
transfer knowledge across tasks, raising the
question of whether unsupervised Silver cor-
pora generated through data augmentation
could enhance this ability.

Future research will explore the role of na-
rrative containers (e.g., the CONTAINS la-
bel) in constructing fully connected knowled-
ge graphs from clinical notes. Additionally,
the study aims to compare NLI’s effectiveness
in mitigating the majority class bias with
other intermediate tasks, such as QA. Lastly,
the authors plan to investigate the integra-
tion of temporal knowledge from multiple
datasets (e.g., MACCROBAT, eHealthKD,
THYME, E3C) to enhance LLMs’ temporal
reasoning capabilities through continual trai-
ning.
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