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Resumen: Este art́ıculo trata el problema de análisis de investigación cient́ıfica
a través de múltiples colecciones disciplinarias. Nuestro método se aplica en: (1)
descubrimiento sin supervisión de temas cient́ıficos a través de múltiples disciplinas;
(2) comparación de los temas de misma disciplina; y (3) análisis temporal.
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Abstract: This paper addresses the problem of scientific research analysis across
multiple research literature collections. We use topic modeling in three novel com-
parative tasks: (1) unsupervised discovery and comparison of scientific topics across
multiple disciplines; (2) comparison of topics within the same discipline; (3) analysis
of topic evolution over time within and across disciplines and trend analysis.
Keywords: evaluation, linguistic processing, probabilistic topic models

1 Introduction

The scale and complexity of today’s research
problems demand that scientists go beyond
the boundaries of their individual disciplines
and explore other related areas. Advances
in molecular imaging, for example, require
knowledge in areas such as radiology, cell bi-
ology, physics, and computer vision. Now
more than ever, the traditional separation
between scientific disciplines needs to be
bridged to foster interdisciplinary research.

Although more and more researchers with
different backgrounds collaborate on large
projects, integrating different disciplines is
rather a complex process still largely unex-
plored. Such integration can open up novel
scientific avenues of inquiry and, thus, may
give birth to novel insights and correlations
which can help answer complex questions.
Thus, new research methodologies are re-
quired to foster interdisciplinary research.

This paper addresses the problem of sci-
entific research analysis across multiple re-
search literature collections. We employ here
cross-collection Latent Dirichlet Allocation
(ccLDA), a recently-introduced model (Paul
and Girju, 2009a), and apply it to three novel
comparative tasks in the domain of scientific
literature: (1) unsupervised discovery and
comparison of scientific topics across multiple
disciplines; (2) comparison of topics as they
appear in different publications and venues

within the same discipline; and (3) analysis
of topic evolution over time through modeling
topics over different time intervals within and
across disciplines. We also experiment with
trend analysis and propose a novel measure-
ment of topic influence which measures the
temporal correlation of related topics over
time. Finally, we provide a quantitative eval-
uation of ccLDA to supplement previous eval-
uations of this model. We show that ccLDA
can achieve competitive performance when
used as a generative classifier for a small num-
ber of collections.

2 Previous Work

Most of the work on the analysis of scien-
tific research covers what is known as cita-
tion analysis (Rubin, 2004) – the use of cita-
tions in scholarly works to build a graph with
links between works and researchers. This
approach, however is limited in that the ci-
tation graphs created are sparse and do not
span related fields.

Another possibility is to use topic mod-
els which uncover structures used to explore
text collections, which has been shown to be
useful for analyzing scientific research trends
(Griffiths and Steyvers, 2004). For example,
the area of computational linguistics has been
modeled by Hall et al. (2008) who study the
history of ideas using LDA and topic entropy.
Topic modeling across multiple collections,
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however, is a little-studied problem. In pre-
vious research, we also used LDA (Paul and
Girju, 2009b) to study three research fields
using a cosine similarity measure to find re-
lated topics. However, one important limita-
tion of LDA alone is that it can not explicitly
model interdisciplinary topics.

One possibility is Markov topic models
(MTM) (Wang et al., 2009), a family of
models which can simultaneously learn the
topic structure of a single collection while
discovering correlated topics in other collec-
tions. These models, however, do not explic-
itly model the similarities and differences be-
tween collections as we propose in this re-
search.

We feel that cross-collection LDA
(ccLDA) is a good model for this problem
because not only does it find topics that are
shared among collections, but it models the
per-topic differences between the collections.

3 The Model

In this section we first review the basic
probabilistic latent semantic indexing (pLSI)
and Latent Dirichlet Allocation (LDA) mod-
els. We then review cross-collection LDA
(ccLDA), an extension of LDA, which we will
employ, further analyze, and extend in this
research.

3.1 Basic Topic Modeling

The most basic generative model that as-
sumes document topicality is the standard
Näıve Bayes model, where each document is
assumed to belong to exactly one topic, and
each topic is associated with a probability
distribution over words (Mitchell, 1997).

While this single-topic approach can be
sufficient for classification tasks – that is, by
modeling each document as a single topic or
class, we can use the model to predict the
class label of new documents – it is often too
limiting for unsupervised grouping of seman-
tically related words into topics. A better
assumption is that each document is a mix-
ture of topics. For example, a news article
about a natural disaster may include topics
about the causes of such disasters, the dam-
age/death toll, and relief aid/efforts. Proba-
bilistic latent semantic indexing (pLSI) (Hof-
mann, 1999) is one such model. In this
model, the probability of seeing the ith word
in a document d is:

P (wi|d) =
∑

z

P (wi|topic = z)P (topic = z|d)

One of the main criticisms of pLSI is that
each document is represented as a variable d
and it is not clear how to label previously un-
seen documents. This issue is addressed by
Blei et al. (2003) who introduced the Latent
Dirichlet Allocation model. Furthermore, the
probabilities under this model have Dirichlet
priors, which results in more reasonable mix-
tures and less overfitting. In LDA, a docu-
ment is generated as follows:
1) Draw φz ∼ Dirichlet(β) for each topic z
2) For each document d, draw a topic mixture
distribution θ(d) from Dirichlet(α). Then for each
word wi in d:

– Sample a topic zi from θ(d)

– Sample a word wi from φz

The Dirichlet parameters α and β are vec-
tors which represent the average of the re-
spective distributions. In many applications,
it is sufficient to assume that these vectors
are uniform and to fix them at a value pre-
defined by the user. In this case, the Dirichlet
priors simply function as smoothing factors.

3.2 Cross-Collection LDA

Cross-collection LDA (ccLDA) (Paul and
Girju, 2009a) is an extension of LDA for com-
paring multiple text collections. Each topic
is associated with two classes of word distri-
butions: one that is shared among all collec-
tions, and one that is unique to the collection
from which the document comes. For exam-
ple, when modeling reviews of different lap-
tops, the topic describing the preloaded soft-
ware contains the words “software”, “appli-
cation”, “programs”, etc. in its shared distri-
bution with high probability, and the Apple-
specific word distribution contains the words
“itunes”, “appleworks”, and “iphoto”.

When generating a document under this
model, one first samples a collection c (which
is observable in the data), then chooses a
topic z according to the document’s multi-
nomial topic mixture. One then chooses
x (either 1 or 0) to determine whether to
draw from the shared topic-word distribution
or the topic’s collection-specific distribution.
The probability of x is a binomial that is de-
pendent on the collection and topic of the
current token.

The generative process is thus:
1) For each topic z:

– Draw φz ∼ Dirichlet(β)
2) For each topic z and each collection c:

– Draw σz,c ∼ Dirichlet(δ)
– Draw ψz,c ∼ Beta(γ0, γ1)

3) For each document d, choose a collection c
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and draw a topic mixture θ(d) from Dirichlet(αc).
Then for each word wi in d:

– Sample zi ∼ Multinomial(θ(d))
– Sample xi ∼ Binomial(ψz,c)
– If xi = 0, sample a word wi from φz ;

else if xi = 1, sample wi from σz,c

Inference of the model can be done with
Gibbs sampling, a basic Markov chain Monte
Carlo method (Paul and Girju, 2009a).

4 Experimental Results

In this section we describe the corpus em-
ployed in this research and the experimen-
tal setup. Then we demonstrate the perfor-
mance of ccLDA on three novel applications
in the domain of scientific literature. We
experiment with the effects of different pa-
rameter settings, the model’s performance in
the task of document classification, and au-
tomatic methods for cleaning the results. We
also compare against the relevant literature.

4.1 Experimental Setup

Paul and Girju (2009) experimented with
computational linguistics, linguistics, and ed-
ucation papers. Since we would like to try a
new but related field, we consider here psy-
chology instead of education. Our corpus
consists of approximately 11,100 abstracts
from the ACL Anthology (Bird, 2008), 6,000
abstracts from Linguistics journals, and 6,700
abstracts from Psychology journals. The ex-
act distribution is shown in Table 1. We
chose to include journals based on the fol-
lowing criteria for each journal: is a top jour-
nal, covers topics in areas that are pertinent
to this project, and covers a timespan of at
least a decade.

We removed a standard set of stop words
as well as words with a corpus frequency less
than 10. All punctuation was treated as a
word separator.

The hyperparameters of the Dirich-
let/Beta priors must be either learned or
specified by the user. Our implementation
of ccLDA uses a non-uniform αc for each
collection which is estimated automatically
using the approach in (Li and McCallum,
2006). We leave the other parameters as pre-
defined constants. We follow the heuristic
that β = δ = 0.01 is a good value for smooth-
ing topic-word distributions (Griffiths and
Steyvers, 2004) and we use standard Laplace
smoothing factors such that γ0 = γ1 = 1.0.

Unless otherwise specified, in each experi-
ment we ran the Gibbs sampler for a burn-in

Field Venue # Docs Years

CL ACL Journal 943 80-06
CL ACL Workshops 4,122 80-07
CL ACL 1,826 79-08
CL EACL 517 83-06
CL NAACL 543 01-07
CL Applied NLP 262 83-00
CL COLING 1,549 65-08
CL HLT 872 86-05
CL IJCNLP 471 05-08
CL Total 11,105 65-08

LING Language 379 93-08
LING Linguistics 152 97-08
LING Linguistic Inquiry 448 99-08
LING Journal of American Ling. 449 93-08
LING Journal of Sociology of Lang. 1,778 76-08
LING Language & Speech 1,385 58-08
LING Natural Lang. & Ling. Theory 558 83-08
LING Ling. & Philosophy 847 77-08
LING Total 5,996 58-08

PSYC Applied Cognitive Psychology 1,470 87-09
PSYC Basic & Applied Social Psych. 849 80-08
PSYC Cognitive Psychology 475 90-00
PSYC Eur. Journal of Social Psych. 1,804 71-08
PSYC Psychological Inquiry 892 90-08
PSYC Journal of Social Issues 896 90-08
PSYC Social Cognition 321 96-08
PSYC Total 6,707 71-09

Total Total 23,808 65-09

Table 1: Dataset - number of tokens and docu-
ments per field and publication venue. CL - Com-
putational Linguistics, LING - Linguistics, PSYC
- Psychology.

period of 2000 iterations, then we collected
and averaged 15 samples, each separated by
a 100-iteration lag.

4.2 Interdisciplinary Research

Topic Discovery

Automatic discovery of scientific topics is an
important part of modern literature analysis,
and topic models like LDA can be used to aid
trend analysis and browsing of related litera-
ture (Griffiths and Steyvers, 2004). Our con-
tribution is to discover scientific topics that
cross disciplines and to see how they compare
and differ across fields.

We modeled our corpus of 3 scientific fields
– computational linguistics (CL), linguistics
(LING), and psychology (PSYC) – with 15
topics1. This approach discovers some topics
that are at least somewhat related across all
three fields. For example, within the topic of
words/lexicology, the CL word distribution is
largely about word sense disambiguation, the
LING distribution is about phonology, and
the PSYC distribution is about language ac-
quisition and reading comprehension.

1We tried various numbers of topics, but 15
seemed to work the best, as there are not many topics
that belong to all three collections. For this task of
inducing clusters representing scientific topics, there
is no metric with which to optimize this parameter,
so tuning the number of topics is largely a “trial and
error” approach using our qualitative judgments.
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Since the three collections are largely dif-
ferent, however, the model struggled to find
topics that fit nicely across all of the collec-
tions, and the clusters are fairly noisy. We
also tried modeling only two collections at a
time (i.e., CL – LING, CL – PSYC, LING –
PSYC), which gave much better results. We
used 20 topics, determined after some empir-
ical experimentation. If the number of topics
is too large, then most of the discovered top-
ics are not shared across both collections.

Tables 2 and 3 show an example of a topic
related to communication. We see that in
CL, this is strongly relevant to dialogue sys-
tems; in linguistics and psychology, this topic
is more focused on human behavior and so-
cial interaction.

speech information task recognition
interaction understanding human users
using speaker communication language

CL PSYC

dialogue face
spoken communication
user cues

systems facial
utterances verbal
utterance presence
dialogues expression

input stimuli
domain spatial
natural expressions

Table 2: The topic of communication.

These tables also highlight the differences
in modeling the collections pairwise com-
pared to modeling all three collections at
once. The communication topics formed
modeling CL–LING and CL–PSYC are ac-
tually quite similar, but the topic is a bit dif-
ferent when formed with all three collections.
The topics we get with only two collections
tend to be more semantically coherent.

information recognition using interaction
task time based communication context

current interactive real processing
CL LING PSYC

user speech performance
speech focuses memory
systems spontaneous task
spoken utterances cognitive
dialogue speaker effects
input function tasks
users spoken recall

utterances discourse learning
human utterance better

utterance relationship verbal

Table 3: The topic of communication.

4.2.1 Trend Analysis and Topic

Influence

Much work has been done with trend anal-
ysis of LDA-induced research topics (Grif-
fiths and Steyvers, 2004) (Hall, Jurafsky, and
Manning, 2008). Plots and regression can be
used to detect “hot” and “cold” topics by
measuring the frequency of documents con-
taining various topics over time.

We are particularly interested in the tem-
poral trends of multiple, related topics across
disciplines. For example, if the topic of se-
mantics rises or falls in linguistics, does the
topic follow suit in computational linguistics?
Does interest/disinterest in a topic carry over
across research fields? To investigate this
problem, we propose a novel measurement
of topic influence based on temporal corre-
lation.

We say a topic t influences a topic T if
there is a temporal correlation between them
such that the frequency of T rises or falls
within 0-2 years of a similar change in t. We
define this below as an accumulation of the
product of the change in each topic’s frequen-
cies over time intervals in which the frequen-
cies are changing either in the same or oppo-
site direction. This measure changes with the
size and strength of these similar/dissimilar
intervals.

Of course, these statistics alone can not
tell us that research in one topic is really in-
fluencing the other – that would require an
in-depth citation analysis which we leave for
future research. However, they are very use-
ful since the result of this measure can di-
rect one’s attention to the topics that show a
strong statistical influence, whereupon back-
ground knowledge and further research can
be used to determine if the correlation is
causative.

Work has been done to compare the sim-
ilarity of histograms, but these approaches
mainly compare the distance between seg-
ments or the similarity of peaks (Strelkov,
2008). They are thus sensitive to the entire
shape of the data, which is not appropriate
for this research since we do not expect topics
from different fields to be highly similar. We
also do not use standard correlation coeffi-
cients because these compare changes relative
to the distribution of the data; instead we
want to compare how the frequencies change
relative to the previous year.

Thus, we formulate the problem such that
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we look for time intervals where the the topic
frequencies are changing in the same or op-
posite directions. Specifically, we compare
the derivative of a topic t’s frequencies to
the second-order derivative of topic T at a
given year2. We would also like the measure
to be influenced more by larger changes, and
we would like to assign exponential weight
to the contiguous length of these time inter-
vals, since we believe the correlation is much
more likely to be causal if it spans many con-
secutive years. For a contiguous time interval
[i, j] in which topics change in either the same
or opposite direction over the entire interval,
we assign an influence score:

C(i, j, d) = αj−i ×

∫ j

i

(

d

dy
t(y − d)

d2T

dy2

)

dy (1)

where t(y) is the frequency P (t|y) and d is an
offset by which T lags t. We estimate dt

dy
(yi)

as t(yi)− t(yi−1). α is a user-defined parame-
ter that determines how much weight is given
to the length of the interval. We compare
(the discrete equivalent of) the first deriva-
tive of t to the second derivative of T to cap-
ture patterns such as when topic t increases
and topic T is still decreasing but the rate at
which it decreases slows down. (Certainly, if
T instead increases, then the correlation will
be even stronger.)

If we sum the C values of all such inter-
vals across the timespan we want to compare,
we get an influence measure that satisfies the
preferences stated above. However, the time-
series should first be smoothed, otherwise the
year-to-year fluctuations that are natural in
this kind of data might prevent similarities
from being discovered. We did this by taking
a weighted average of the yearly frequencies
in overlapping intervals spanning 3 years.

This formula allows the topics to change
after a lag d, but what if we do not expect this
offset to be constant across the entire times-
pan? This is natural taken into considera-
tion the time necessary for the information to
spread after publication. Thus, we define a
lag range L = [0, 2] and look to maximize the
possible influence of disjoint intervals. The
optimal solution up to point j can be solved
with the recurrence:

2The intuition is that if the frequency of t is in-
creasing, we want to know if the rate of the frequency
of T also increases (that is, even if T is still decreas-
ing, if the rate at which it declines slows down, then
the increase from t could be said to be an influence.

speech word phonological words
phonetic english prosodic acoustic

CL LING

recognition perception
vocabulary production
recognizer vowel
continuous examines

spoken listeners
news identification

synthesis consonants
automatic frequency

transcription vowels

Table 4: The topics of speech recognition in CL
and speech in LING, which are related.

Opt(j) = max
1≤i≤j;d∈L

(
∑

[a,b]∈[i,j]

C(a, b, d) + Opt(i − 1 − d))

(2)

[a, b] ∈ [i, j] refers to each subinterval [a, b]

in the time range [i, j] such that d
dy
t(y−d)d2T

dy2

has the same sign for every y ∈ [a, b].
We say that Inf(T, t) = Opt(n) is the in-

fluence of t on T , where n is the last year in
the timespan considered.

This can be efficiently solved with dy-
namic programming. The complexity is dom-
inated by precomputing the C values for dif-
ferent time ranges [i, j] and different d val-
ues. Instead of explicitly finding each interval
[a, b] in the time range, we simply iterate from

y = i to j, summing d
dy
t(y − d)d2T

dy2 along the

way. When the sign of d
dy
t(y−d)d2T

dy2 changes,

we multiply this sum by αl where l is the
length of this segment, then we add this to
the total and reset the sum and l to 0. We can
treat d as a small constant: there are O(n2)
intervals [i, j] for which we must compute C
in this manner (i.e., O(n) time). Thus we can
näıvely calculate Inf(n) in O(n3). There is a
less naive way to compute this in O(n2), but
we save the details of this for future research.

Figure 1 shows a pair of topics (as in Ta-
ble 4) with one of the top influence scores.

To evaluate the influence measure, we
presented unlabeled plots over time of the
10 pairs with the highest influence scores
and asked two judges to determine (“yes” or
“no”) if they show a clear correlation over
some time interval(s). The judges agreed
“yes” on 70% of the examples.

To summarize, in this subsection we intro-
duced the measure of influence which finds
disjoint intervals such that the change in fre-
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Figure 1: Speech recognition has a strong in-
fluence on phonetics which tends to rise and fall
about 2 years after a similar trend in speech
recognition (early 90s). The small rises in speech
recognition in the 2000s are also mimicked by
phonetics after a short delay. This corresponds
to the tremendous market opportunities which
emerged for speech recognition in the 90s.

quency of topic T has either the same or op-
posite sign as that of t 0-2 years earlier, where
the year offset is variable. The measure sums
the product of the changes and multiplies the
summation over each interval by a factor that
is exponential in the length of the interval.

4.3 Comparing Publication Venues

Partitioning documents by venue, we may be
able to detect editorial differences between
different journals and conferences. Since
workshops often focus on very specific top-
ics, we thought it would be interesting to
compare documents from the ACL workshops
with the ACL main conference.

We modeled these two collections with 50
topics, and while none of the topics showed
stark differences, we did see some special-
ized topics that were more prevalent in work-
shops. For example, bioinformatics is likely
to appear more in the workshops than the
main conference, as indicated by the infor-
mation extraction topic, whose workshop-
specific distribution contains words like pro-
tein, genes, and biomedical.

Table 5 shows the topic of word sense
disambiguation (WSD). There are not many
words assigned to the collection-specific dis-
tribution for the main conference, which cov-
ers the topic broadly. However, from the
second collection-specific distribution, we see
that WSD-related shared tasks and competi-
tions are much more likely to take place at
workshops than the main ACL conference.

We also compared two different confer-
ences, and thus modeled ACL and COLING,
again with 50 topics. We again did not find

prominent differences in most of the topics,
but there were some. For example, in the
user interfaces topic, we find that few to-
kens are assigned to the collection-specific
distribution for COLING and thus the distri-
bution seems somewhat arbitrary. However,
the ACL distribution contains top words such
as audio, video, captions, and restaurants.
From this, one might infer that ACL pub-
lishes more technical details and business ap-
plications in this topic than COLING.

disambiguation sense word
words sense lexical context

Conference Workshops

thought semeval
avoided participated

diab subtask
suggest competition
counting tries

finer tagging
counting team
heuristics participation

Table 5: Comparing the word-sense-
disambiguation topic between the ACL main
conference and the ACL workshops.

4.4 Topic Evolution Over Time

Analyses such as the temporal correlation
above measure the frequency of a topic over
time, and not the character of a topic over
time, which is also important.

Mei and Zhai (2005) model how topics
change over time, by partitioning the data
into time periods and modeling topics in each
time period. They discover related topics
across time periods using KL-divergence, a
measure of the similarity of two probability
distributions. Dynamic topic models (Blei
and Lafferty, 2006) also model topics as they
appear in different time partitions, but in-
stead of capturing topic relations using a
post-hoc similarity measure, the topic simi-
larity is modeled directly using a logistic nor-
mal prior over the word distributions, result-
ing in a smooth topic evolution over time.

However, both of these models will only
give us a snapshot of how the topics appear
in a given interval, and they do not explic-
itly model the main differences between the
intervals, which would be useful for qualita-
tively evaluating the key changes over time.
ccLDA can be applied to this task in a similar
manner – by partitioning the data into time
intervals – but since ccLDA explicitly models
what is unique to each interval, we think it is
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parsing grammar tree parser grammars
free context syntactic parse structure

Old New

number dependency
result probabilistic

corresponding stochastic
networks treebank
known pcfg
binding constraint

lr lexicalized
introduce ccg
consider projective

transformational robustness

Table 6: The grammar topic compared across
two time intervals.

better suited for this problem.
Here we partitioned the computational

linguistics documents by their decade of pub-
lication. We discarded papers published be-
fore 1980, and thus we could compare three
decades: the 80s, the 90s, and the 2000s. We
also experimented with partitioning the data
in two: “new” publications (year ≥ 2000) and
“old” publications (everything else).

The collection-specific clusters of ccLDA
show terms that are more likely to appear in
that collection than the others. In this ex-
periment, that means topical words that are
unique to that time period – in the most re-
cent time period, this will give us which terms
are novel or newly hot within a topic; in the
other time periods, this will give us once-
popular terms which are no longer largely re-
searched.

For example, we see webster in the topic
of lexical resources in the 1980s, but by
the 2000s, the top words in this topic are
web, ontology, wordnet, etc. We find once
again, however, that the clusters are some-
what noisy with three collections, and we see
better results when we use only two collec-
tions, “new” and “old”. A sample topic from
this set is shown in Table 6. Other examples
are the learning topic, which has svm as the
top word in the new distribution and neural
networks at the top of the old distribution.
In machine translation, we see that compa-
rable corpora and automatic alignments are
prominent research areas in the more recent
time interval.

4.5 Evaluation

In our previous work, we evaluated ccLDA
with human judgments of cluster coherence
and by measuring the model log-likelihood of
held-out data compared against other mod-

els. We would like to take this opportunity
to perform another evaluation of ccLDA, this
time by applying it to a prediction task.

The main thing we would like to glean
from each experiment is the set of terms
within each topic that are good descriptors
of what is unique to each collection (e.g., a
research field, a publication venue, or a time
period). We can quantitatively evaluate the
model’s ability to do this by applying it to
the task of collection prediction, which will
give us a measure of how discriminative the
collection-dependent word distributions are.
In this subsection, we will use ccLDA to clas-
sify a document according to its time period.

Because ccLDA gives a document likeli-
hood that depends on the document’s collec-
tion or class, it is naturally suited for this
task. Classification of an unlabeled docu-
ment d thus becomes the problem of choosing
the c that maximizes the formula:

P (c)
∏

w∈d

∑

z

P (z|d) [P (x = 0|c, z)P (w|z, x = 0) +

P (x = 1|c, z)P (w|z, c, x = 1)]

These probabilities are obtained when the
model is learned on a training set, except
for P (z|d), which depends on the new doc-
ument. We can learn this through another
Gibbs sampling procedure, treating the doc-
ument as if c is known and doing this for all
values of c, however, the ability to quickly
label a new document is necessary for many
classification tasks, so we instead use a sim-
ple approximation from the learned Dirichlet
prior for each collection, which represents the
average topic mixture within that collection.
That is, P (z|d) ≈ αcz

∑

z
αcz

.

To see how important P (z|d) is to the per-
formance, we also experimented with approx-
imating this as a uniform constant, P (z|d) =
1
Z

where Z is the number of topics.
Table 7 shows the 5-fold cross-validation

accuracy of the old vs. new set from the
previous experiment, compared against that
of an optimally tuned SVM. In each cross-
validation iteration, the data is partitioned
in the same way for each classifier; that
is, they are evaluated with the same train-
ing/test sets. We used the SVM light and
SVMmulticlass kits 3 with the regularization
factor (that is, the trade-off between margin

3http://svmlight.joachims.org

Comparative Scientific Research Analysis with A Language-Independent Cross-Collection Model

159



size and training error) set to the default4 1
x2 .

ccLDA was run with 50 topics.

SVM1 SVM2 ccLDA1 ccLDA2

P 0.793 0.754 0.792 0.781

Table 7: The precision obtained by various clas-
sifiers during 5-fold cross-validation on the “new”
vs. “old” dataset. SVM1 refers to a support vec-
tor machine using the regularization parameter
C = 1

x2 ; SVM2 uses C = 1.0. ccLDA1 uses the
method described above with an approximation
for P (z|d) based on αc. ccLDA2 uses a topic-
independent, uniform approximation of P (z|d).

Due to its ability to separate out less-
discriminative words by way of the collection-
independent model, ccLDA achieves compa-
rable performance to the SVM.

5 Conclusions

This paper addresses the problem of sci-
entific research analysis across multiple re-
search literature collections. We employ
a recently-introduced model, cross-collection
Latent Dirichlet Allocation (ccLDA), and ap-
ply it to three novel comparative tasks in the
domain of scientific literature. We also exper-
iment with trend analysis and propose a novel
measurement of topic influence which mea-
sures the temporal correlation of related top-
ics over time. We evaluate ccLDA on the task
of document classification, which yields per-
formance comparable to an optimally-tuned
SVM. Ultimately, we show that ccLDA has
potential for a variety of applications in the
important domain of scientific research anal-
ysis, and could be a valuable component in
fostering interdisciplinary research. As fu-
ture work, we will experiment with other col-
lections and languages.
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