
Alias Assignment in Information Extraction

Emili Sapena, Llúıs Padró and Jordi Turmo
TALP Research Center

Universitat Politècnica de Catalunya
Barcelona, Spain

{esapena, padro, turmo}@lsi.upc.edu

Resumen: Este art́ıculo presenta un método general para la tarea de asignación de
alias en extracción de información. Se comparan dos aproximaciones para encarar el
problema y aprender un clasificador. La primera cuantifica una similaridad global
entre el alias y todas las posibles entidades asignando pesos a las caracteŕısticas
sobre cada pareja alias-entidad. La segunda es el clásico clasificador donde cada
instancia es una pareja alias-entidad y sus atributos son las caracteŕısticas de ésta.
Ambas aproximaciones usan las mismas funciones de caracteŕısticas sobre la pareja
alias-entidad donde cada nivel de abstracción, desde los carácteres hasta el nivel
semántico, se tratan de forma homogénea. Además, se proponen unas funciones
extendidas de caracteŕısticas que desglosan la información y permiten al algoritmo
de aprendizaje automático determinar la contribución final de cada valor. El uso
de funciones extendidas mejora los resultados de las funciones simples.

Palabras clave: asignación de alias, extracción de información, entity matching

Abstract: This paper presents a general method for alias assignment task in
information extraction. We compared two approaches to face the problem and learn
a classifier. The first one quantifies a global similarity between the alias and all the
possible entities weighting some features about each pair alias-entity. The second
is a classical classifier where each instance is a pair alias-entity and its attributes
are their features. Both approaches use the same feature functions about the pair
alias-entity where every level of abstraction, from raw characters up to semantic
level, is treated in an homogeneous way. In addition, we propose an extended
feature functions that break down the information and let the machine learning
algorithm to determine the final contribution of each value. The use of extended
features improve the results of the simple ones.

Keywords: Alias Assignment, Information Extraction, Entity Matching

1 Introduction

Alias assignment is a variation of the en-
tity matching problem. Entity matching de-
cides if two given named entities in the data,
such as “George W. Bush” and “Bush”, re-
fer to the same real-world entity. Varia-
tions in named entity expressions are due to
multiple reasons: use of abbreviations, diffe-
rent naming conventions (for example “Name
Surname” and “Surname, N.”), aliases, mis-
spellings or naming variations over time
(for example “Leningrad” and “Saint Peters-
burg”). In order to keep coherence in ex-
tracted or processed data for further analysis,
to determine when different mentions refer to
the same real entity is mandatory.

This problem arises in many applications

that integrate data from multiple sources.
Consequently, it has been explored by a
big number of communities including statis-
tics, information systems and artificial in-
telligence. Concretely, many tasks related
to natural language processing have been
involved in the problem such as question
answering, summarization, information ex-
traction, among others. Depending on the
area, variants of the problem are known
with some different names such as iden-
tity uncertainty (Pasula et al., 2002), tu-
ple matching, record linkage (Winkler, 1999),
deduplication (Sarawagi and Bhamidipaty,
2002), merge/purge problem (Hernandez and
Stolfo, 1995), data cleaning (Kalashnikov
and Mehrotra, 2006), reference reconciliation
(Dong, Halevy, and Madhavan, 2005), men-

Procesamiento del Lenguaje Natural, nº39 (2007), pp. 105-112 recibido 18-05-2007; aceptado 22-06-2007

ISSN: 1135-5948 © 2007 Sociedad Española para el Procesamiento del Lenguaje Natural

tion matching, instance identification and so
others.

Alias assignment decides if a mention in
one source can be referring to one or more
entities in the data. The same alias can be
shared by some entities or, by the opposite,
it can be referring to an unknown entity. For
instance, alias “Moore” would be assigned to
the entity “Michael Moore” and also to “John
Moore” if we have both in the data. Howe-
ver, alias “P. Moore” can not be assigned to
any of them. Therefore, while entity match-
ing problem consists of determining when two
records are the same real entity, alias assign-
ment focuses on finding out whether referen-
ces in a text are referring to known real en-
tities in our database or not. After alias as-
signment, a disambiguation procedure is re-
quired to decide which real entity among the
possible ones is the alias pointing to in each
context. The disambiguation procedure, ho-
wever, is out of the scope of this paper.

There is little previous work that directly
addresses the problem of alias assignment
as a main focus, but many solutions have
been developed for the related problem of en-
tity matching. Early solutions employ man-
ually specified rules (Hernandez and Stolfo,
1995), while subsequent works focus on learn-
ing the rules from training data (Tejada,
Knoblock, and Minton, 2002; Bilenko and
Mooney, 2003). Numerous solutions focus
on efficient techniques to match strings, ei-
ther manually specified (Cohen, Ravikumar,
and Fienberg, 2003), or learned from training
data (Bilenko and Mooney, 2003). Some oth-
ers solutions are based in other techniques
taking advantage of the database topology
like clustering a large number of tuples (Mc-
Callum, Nigam, and Ungar, 2000), exploi-
ting links (Bhattacharya and Getoor, 2004)
or using a relational probability model to de-
fine a generative model (Pasula et al., 2002).

In the last years, some works take advan-
tage of some domain knowledge at the seman-
tic level to improve the results. For example,
Doan et al. (Doan et al., 2003) shows how
semantic rules either automatically learned
or specified by a domain expert can improve
the results. Shen et al. (Shen, Li, and Doan,
2005) use probabilistic domain constraints in
a more general model employing a relaxation
labeling algorithm to perform matching.

Some of the methods used for entity
matching are not applicable to alias assign-

ment because the information contribution of
the pair alias-entity is poorer than that of an
entity-entity pair. An alias is only a small
group of words without attributes and, nor-
mally, without any useful contextual infor-
mation. However, using some domain know-
ledge, some information about the entities
and some information about the world, it is
possible to improve the results of a system
that uses only string similarity measures.
This paper presents a general method for

alias assignment task in information extrac-
tion. We compared two approaches to face
the problem and learn a classifier. The first
one quantifies a global similarity between the
alias and all the possible entities weighting
some features about each pair alias-entity.
The algorithm employed to find the best
weights is Hill Climbing. The second is a
classical pairwise classification where each
instance is a pair alias-entity and its at-
tributes are their features. The classifier is
learned with Support Vector Machines. Both
approaches use the same feature functions
about the pair alias-entity where every level
of abstraction, from raw characters up to se-
mantic level, is treated in an homogeneous
way. In addition, we propose a set of ex-
tended feature functions that break down the
information and let the machine learning al-
gorithm to determine the final contribution
of each value. The use of extended features
improves the results of the simple ones.
The rest of the paper is structured as fol-

lows. In section 2, it is formalized the prob-
lem of alias assignment and its representa-
tion. Section 3 introduces the machine learn-
ing algorithms used. Next, section 4 presents
the experimental methodology and data used
in our evaluation. In section 5 we describe
the feature functions employed in our empi-
rical evaluation. Section 6 shows the results
obtained and, finally, we expose our conclu-
sions in section 7.

2 Problem definition and

representation

The alias assignment problem can be formali-
zed as pairwise classification: Find a function
f : N×N → {1,−1} which classifies the pair
alias-entity as positive (1) if the alias is rep-
resenting the entity or negative (-1) if not.
The alias and the entity are represented as
strings in a name space N . We propose a
variation of the classifier where we can use

Emili Sapena, Lluis Padró y Jordi Turmo

106

also some useful attributes we have about
the entity. In our case, function to find will
be: f : N ×M → {1,−1} where M repre-
sents a different space including all entity’s
attributes.

We define a feature function as a function
that represents a property of the alias, the
entity, or the pair alias-entity. Once a pair
alias-entity is represented as a vector of fea-
tures, one can combine them appropriately
using machine learning algorithms to obtain
a classifier. In section 3 we explain how
we learn classifiers using two different ap-
proaches. Most of the feature functions used
here are similarity functions which quantify
the similarity of the pair alias-entity accor-
ding to some criteria. In a similarity func-
tion the returned value r indicates greater si-
milarity in larger values while shorter values
indicates lower similarity (dissimilarity).

Feature functions can be divided in four
groups by its level of abstraction from raw
characters up to semantic level. In the lower
level, the functions focus on character-based
similarity between strings. These techniques
rely on character edit operations, such as
deletions, insertions, substitutions and sub-
sequence comparison. Edit similarities find
typographical errors like writing mistakes or
OCR errors, abbreviations, similar lemmas
and some other difference intra-words.

The second level of abstraction is centered
in vector-space based techniques and it is also
known as token-level or word-level. The two
strings to compare are considered as a group
of words (or tokens) disregarding the order in
which the tokens occur in the strings. Token-
based similarity metrics uses operations over
sets such as union or intersection.

In a higher level we find some structural
features similar to the work in (Li, Morie, and
Roth, 2004). Structural features encode in-
formation on the relative order of tokens be-
tween two strings, by recording the location
of the participating tokens in the partition.

The highest level includes the functions
with added knowledge. This extra know-
ledge can be obtained from other attributes of
the entity, from an ontology or can be know-
ledge about the world. Some previous works
(Shen, Li, and Doan, 2005; Doan et al., 2003)
use this extra knowledge as rules to be satis-
fied. First, rules are specified manually or ob-
tained from the data, and then they need to
assign some weight or probability to each rule

and also distinguish hard rules from soft ones.
In (Shen, Li, and Doan, 2005) weights are es-
tablished by an expert user or learned from
the same data set to classify. In our work,
we present another way to use this informa-
tion. We propose to add more feature func-
tions to increase the number of attributes for
our classifier. Each new feature function de-
scribes some characteristic of the alias, of the
entity, or of the pair alias-entity that needs
some extra knowledge. The contribution of
each feature will be learned as any other simi-
larity function when some machine learning
method is applied.

3 Learning classifiers

Two approaches are used and compared in
order to obtain a good classifier using fea-
ture functions introduced above, Hill Climb-
ing (Skalak, 1994) and Support Vector Ma-
chines (Cortes and Vapnik, 1995). Each one
has different points of view of the problem.
The first one, treats the problem as a near-
est neighbor model and tries to determine
a global Heterogeneous Euclidean-Overlap
Metric (HEOM) from the target alias to all
the entities in the database. The alias will
be assigned to the entities with a HEOM
shorter than some cut-value. Each pair alias-
entity has a HEOM composed by all the va-
lues of similarity. The second point of view
is a classical classifier based on the instance’s
attributes projected in a multidimensional
space. The classifier consist in an hyperplane
that separates samples in two classes. Each
pair alias-entity with the values of the fea-
ture functions as attributes is an instance for
the classifier that can be classified as positive
(matching) or negative (not matching).
The first point of view determines a

HEOM composed by the values returned by
the similarity functions. All the similarity
functions are normalized and transformed to
dissimilarities in order to obtain a small
value of HEOM when alias and entity are
similar and large value otherwise. HEOM is
obtained with all the dissimilarities weighted
in a quadratic summatory:

HEOM =

√

∑

i

wi(di)2

where di is the dissimilarity correspond-
ing to the similarity function i and wi is
the weight assigned to this value. Using a

Alias Assignment in Information Extraction

107

training data set, Hill Climbing determines
the best weight for each feature and the cut-
value in order to achieve the best possible
performance. The algorithm in each step in-
creases and decreases each weight in a small
step-value and selects the modification with
best results. The process is repeated until no
modification is found to improve the result of
the current solution. The method is executed
several times starting with random weights.
Some of the advantages of Hill Climbing is
that it is easy to develop and can achieve
good results in a short time.
The second approach consist in a pair

alias-entity classifier using Support Vector
Machines (SVM) (Cortes and Vapnik, 1995).
SVM have been used widely as a classifier
(Osuna, Freund, and Girosi, 1997; Furey et
al., 2000). This technique has the appea-
ling feature of having very few tunable pa-
rameters and using structural risk minimiza-
tion which minimizes a bound on the general-
ization error. Theorically, SVM can achieve
more precise values than Hill Climbing (for
our task) because they search in a continuous
space while hill climbing is searching discrete
values. In addition, using kernels more com-
plex than linear one, they might combine at-
tributes in a better way. Moreover, statistical
learning avoids one of the problems of local
search, that is to fall in local minimums. In
the other hand, SVM computational cost is
higher than hill climbing.

4 Evaluation framework

We evaluated both algorithms in the alias as-
signment task with a corpus of organizations.
Developing an IE system in the domain of
football (soccer) over the Web, one of the
problems we found is that clubs, federations,
football players, and many other entities re-
lated with football have too long official or
real names. Consequently, some nicknames
or short names are used widely in either free
and structured texts. Almost all texts use
this short names to refer to the entities as-
suming that everyone is able to distinguish
which real entity is pointed. For instance, to
refer to “Futbol Club Barcelona”, its typical
to find “FC Barcelona” or “Barcelona”. We
based the results of this paper in our study in
the specific domain of football, however, we
are presenting a general method for the alias
assignment task useful in any other domain.
The corpus consist in 900 football club

aliases assigned by hand versus a database
with 500 football club entities. Some of them
are assigned to more than one club while
some others are not assigned because the re-
ferring club is not in our database. Each al-
gorithm is trained and tested doing a five-
fold cross-validation. Some examples of an-
notated corpus can be seen in table 1.
Several aliases found across the Web are

referring to organizations not included yet
in the database. Furthermore, for each
alias-entity matching sample (classified as
positive) we have almost 500 samples not-
matching (classified as negative). This situa-
tion would drive accuracy always near 100%
even in a blind classifier deciding always ne-
gative. In order to have a reasonable evalua-
tion only the set of positive predictions Mp

are used in evaluation and compared with
the set Ma of examples annotated as posi-
tive. The measures used are Precision (1),
Recall (2) and F1 (3). Only F1 values are
shown and compared in this paper.

P =
|Mp ∩Ma|

|Mp|
(1)

R =
|Mp ∩Ma|

|Ma|
(2)

F1 =
2PR

P +R
. (3)

5 Experiments

We evaluated the task of alias assignment in
two experiments. In the first one, we com-
pared the performance of Hill Climbing and
SVM using a set of similarity functions. The
second is focused on an improvement of fea-
ture functions breaking them down in several
values representing more specific aspects of
their characteristics.

5.1 Algorithm comparison

In the first approach, functions return a value
of similarity depending on some criteria. In
this case, we are trying to simplify the clas-
sification process including only the informa-
tion we consider important. The larger num-
ber of features included, the longer takes an
algorithm to train and achieve good results.
Based in this principle, we tried to insert as
much information as we could in a few values.
The feature functions used in this first ex-

periment (example in figure 1) are the follow-
ing:

Emili Sapena, Lluis Padró y Jordi Turmo

108

Alias Assigned entities

Sydney FC Sydney Football Club

Man Utd Manchester United Football Club

Nacional Club Universidad Nacional AC UNAM,
Club Deportivo El Nacional,
Club Nacional,
Club Nacional de Football

Steaua Bucharest -not assigned-

Newcastle United Newcastle United Jets Football Club
Newcastle United Football Club

Krylya Sovetov Professional Football Club Krylya Sovetov Samara

Table 1: Example of some pairs alias-entity in the football domain

5.1.1 Character-based

• Prefix and Suffix similarities count
the words of the alias that are the begin
(prefix) or the end (suffix) of a word in
the entity name.

• Abbreviations similarity. If a word
s in the alias is shorter than a word t
in the entity name they start with the
same character and each character of s
appear in t in the same order, the func-
tion concludes that s is an abbreviation
of t. For example “Utd” is an abbrevia-
tion of “United” and “St” is an abbre-
viation of “Saint”.

5.1.2 Token-based

• Lexical similarity compares the words
between alias A and entity name B with-
out case sensitivity. A classical lexical
similarity is:

Sim(A,B) =
|A ∩B|

|A ∪B|

where |x ∩ y| correspond to a function
that returns the number of coincidences
between words in x and y, and |x ∪ y|
symbolize the number of different words
in the union of x and y.

However, in the case of study, we know
that some word in the entity name may
not occur in the alias but, almost always,
if a word occur in the alias, it must be in
the entity name. In other words, an alias
use to be a reduced number of words of
the entity name. Although, it is difficult
to find an alias using words that do not
occur in the entity name (it is possible,
however). In order to take advantage of
this asymmetry in our lexical similarity,
words of the alias not appearing in the

entity name decrement the similarity as
is shown bellow:

Sim(A,B) = max(0,
|A ∩B| − |Wa|

|A ∪B|
)

where Wa represents the words appear-
ing in A but not in B and max function is
used taking care that similarity function
never returns a value lower than zero.

• Keywords similarity is another lexi-
cal similarity but avoiding typical do-
main related words. These kind of words
occur in several names and can cause a
good lexical similarity when the impor-
tant words (keywords) are not matching.
For example, “Manchester United Foot-
ball Club” and “Dundee United Football
Club” have a good lexical similarity but
bad keyword similarity because “foot-
ball” and “club” are considered typical
domain-related words. It uses the same
formula as Lexical similarity but not in-
cluding typical domain-related words in
A and B. Lexical similarity and Key-
words similarity could be combined in a
lexical similarity weighted with TF-IDF.
However, the true contribution of each
token to similarity is domain-specific
and not always proportional to TF-IDF.
Some words have many occurrences but
are still important while some others ap-
pear few times but are not helpful at all.

5.1.3 Structural

• Acronyms similarity looks for a cor-
respondence between acronyms in the
alias and capitalized words in the en-
tity name. This feature takes care of
the words order because the order of

Alias Assignment in Information Extraction

109

www.inter.it

s.p.a.

Milano

Internazionale

Club

Football

Milan

Inter

city

web

city

prefix
abbreviation

city

abbreviation

prefix

typical word

typical word

Alias

Inter Milan www.inter.it

Football Club Internazionale Milano s.p.a.

Entity

Figure 1: Example of a pair alias-entity and
its active features

the characters in an acronym defines the
order that words must have in the en-
tity name. An example of acronym is
“PSV” which match with “Philips Sport
Vereniging Eindhoven”.

5.1.4 Semantic

• City similarity returns 1 (maximum si-
milarity) only when one word in the alias
correspond to a city, one word in the en-
tity name corresponds to a city and both
are the same city. In other cases, returns
0 (no similarity). It can be useful when
some cities can have different names de-
pending on the language. For instance,
“Moscow” and “Moskva” are the same
city or “Vienna” and “Wien”. This fea-
ture requires a world knowledge about
cities.

• Website similarity function compares
the alias with the URL of the organiza-
tion’s website if we have it. Avoiding the
first TLD (.com, .de, .es) and sometimes
the second (.co.uk, .com.mx) its usual
for an organization to register a domain
name with the most typical alias for it.
The return value of this function is the
ratio of words of alias included in the
domain name divided by total number
of words in the alias. We can use this si-

milarity function because we have more
information about the entity than only
the official name. In case we don’t have
this information the return value would
be zero.

5.2 Extended features

The second experiment uses extended feature
functions. This means that most of the fea-
ture functions used previously are modified
and now they return more than one value
breaking down the information. The feature
functions are the same but returning a vec-
tor of values instead of one value. The clas-
sifier may use this extra information if it is
helpful for classification. For instance, lexi-
cal similarity now returns: number of words
in the alias, number of words in the entity
name and number of equal words. Combin-
ing these values the classifier can achieve a
function like our original lexical similarity or
maybe a better one.
In this second approach the target is to

compare the original feature functions with
the extended ones. We choose SVM for this
experiment because SVM can use polynomial
kernels that may combine attributes in a bet-
ter way than a linear classifier. Consequently,
in this experiment we compare the best clas-
sifier obtained in the first experiment with
two SVM classifiers using the extended fea-
ture functions. One SVM will use a linear
kernel while the other will try to take advan-
tage of a quadratic one.
Table 2 shows the modifications realized

in each feature function.

6 Results

In our first experiment described in section
5.1, we tried the two algorithms mentioned
above, Hill Climbing and SVM, with the fea-
ture functions described previously. Table 3
shows the results comparing it with a baseline
consisting of some simple rules using only lex-
ical, keywords, acronyms and abbreviations
similarities.
The first aspect to emphasize is that

the baseline, a simple rule-based classifier,
achieves a F1 measure over 80%. This in-
dicates that the alias assignment task has a
high percentage of trivial examples. The use
of machine learning and new features may
help with difficult ones. Actually, the results
show how machine learning algorithms signi-
ficantly outperform the results obtained by

Emili Sapena, Lluis Padró y Jordi Turmo

110

Feature Return Values

Prefix Pre1: # words in the alias that
are prefixes in the entity name

Suffix Suf1: # words in the alias that
are suffixes in the entity name

Abbrev. Abr1: # words in the alias that
are an abbreviation of a word in
the entity name

Lexical Lex1: # words in the alias
Lex2: # words in the entity
name
Lex3: # equal words
Lex4: # equal words case sensi-
tive

Keywords Key1: # keywords int the alias
(words excluding typical domain
words (football, club, etc))
Key2: # keywords in the entity
name
Key3: # of equal keywords

Acronym Acr1: the alias have an acronym
(boolean)
Acr2: the alias acronym
matches with capitalized words
in the entity name (boolean)
Acr3: # words in the alias with-
out acronyms
Acr4: # words in the entity
name without words involved in
acronyms
Acr5: # equal words without
words involved in acronyms

City Cit1: some word in the alias is
a city (boolean)
Cit2: some word in the entity
name is a city (boolean)
Cit3: both are the same city
(boolean)

Website Web1: The entity has a value in
the website field (boolean)
Web2: # words occurring both
in the alias and in the URL of
the entity

Table 2: Extended features used in the se-
cond experiment

the baseline. In the other hand, we find that
perform of Hill Climbing and SVM are simi-
lar. SVM seems to achieve better results but
the difference is not significant since the con-
fidence interval at 95% significance level is
0.8%.
In the second approach we wanted to use

the power of SVM combining features and we
break down the components of feature func-
tions as explained in section 5.2. SVM may
use this extra information if it is helpful for
classification. In table 4 two SVM with diffe-

Baseline Hill Climbing SVM
F1 80.3 87.1 87.9

Table 3: Results of experiment (1) comparing
simple rule-based baseline with hill climbing
and SVM

Features Simple Extended
Algorithm SVM SVM SVM
Kernel linear linear quadratic
F1 87.9 93.0 93.0

Table 4: Results of experiment (2) comparing
original features with extended features

rent kernels using extended features are com-
pared with results obtained in the first expe-
riment.
The results indicates that extended fea-

tures outperform the original ones. In the
other hand, we can see that a quadratic ker-
nel does not improve the results of the linear
kernel.

7 Conclusions

In this paper we have proposed a homoge-
neous model to deal with the problem of clas-
sifying a pair alias-entity into true/false ca-
tegories. The model consists in using a set
of feature functions instead of the state-of-
art approach based on distinguishing between
a set of lexico-ortographical similarity func-
tions and a set of semantic rules.
Some experiments have been performed in

order to compare different configurations for
the proposed model. The configurations dif-
fer in the set of feature functions and in the
discretization strategy for feature weights.
Also, two learning techniques have been ap-
plied, namely, Hill Climbing and SVMs.
We have seen that Hill Climbing and SVM

perform similar. Both algorithms used has
some advantages and disadvantages. On one
hand, Hill Climbing is simple and fast but has
two drawbakcs. The first one is that it looks
for weights by steps and it causes that the
weights are always discrete values decreas-
ing sometimes the final accuracy. The other
drawback is that local search can fall in local
minima. Although, it may be palliated by
executing the algorithm several times start-
ing with random values. On the other hand,
SVM work in a continuous space and learn
statistically which avoids the two drawbacks

Alias Assignment in Information Extraction

111

of hill climbing. Although, SVM take longer
to be tuned correctly.
In the second experiment, since SVM can

handle richer combinations of features when
using polynomial kernels, we tested SVMs
using a linear kernel and a quadratic one,
obtaining similar results. The feature set
used in this experiment was a refinement of
the previous one, that is, the features con-
tained the same information, but coded with
finer granularity. The results pointed out
that although the similarity functions used
in the first approach produced accurated re-
sults, letting the SVM handle all the param-
eters results in a significative improvement.

References

Bhattacharya, Indrajit and Lise Getoor. 2004.
Iterative record linkage for cleaning and inte-
gration. In DMKD ’04: Proceedings of the 9th
ACM SIGMOD workshop on Research issues
in data mining and knowledge discovery, pages
11–18, New York, NY, USA. ACM Press.

Bilenko, Mikhail and Raymond J. Mooney. 2003.
Adaptive duplicate detection using learnable
string similarity measures. In KDD ’03: Pro-
ceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and
data mining, pages 39–48, New York, NY,
USA. ACM Press.

Cohen, W., P. Ravikumar, and S. Fienberg. 2003.
A comparison of string distance metrics for
name-matching tasks.

Cortes, Corinna and Vladimir Vapnik. 1995.
Support-vector networks. In Springer, edi-
tor, Machine Learning, pages 273–297. Kluwer
Academic Publishers, Boston.

Doan, AnHai, Ying Lu, Yoonkyong Lee, and Ji-
awei Han. 2003. Profile-based object match-
ing for information integration. IEEE Intelli-
gent Systems, 18(5):54–59.

Dong, Xin, Alon Halevy, and Jayant Madhavan.
2005. Reference reconciliation in complex in-
formation spaces. In SIGMOD ’05: Proceed-
ings of the 2005 ACM SIGMOD international
conference on Management of data, pages 85–
96, New York, NY, USA. ACM Press.

Furey, T. S., N. Christianini, N. Duffy, D. W.
Bednarski, M. Schummer, and D. Hauessler.
2000. Support vector machine classification
and validation of cancer tissue samples using
microarray expression data. Bioinformatics,
16(10):906–914.

Hernandez, Mauricio A. and Salvatore J. Stolfo.
1995. The merge/purge problem for large
databases. In SIGMOD ’95: Proceedings of

the 1995 ACM SIGMOD international confer-
ence on Management of data, pages 127–138,
New York, NY, USA. ACM Press.

Kalashnikov, Dmitri V. and Sharad Mehrotra.
2006. Domain-independent data cleaning via
analysis of entity-relationship graph. ACM
Trans. Database Syst., 31(2):716–767.

Li, Xin, Paul Morie, and Dan Roth. 2004. Iden-
tification and tracing of ambiguous names:
Discriminative and generative approaches.
In PROCEEDINGS OF THE NATIONAL
CONFERENCE ON ARTIFICIAL INTEL-
LIGENCE, pages 419–424. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT
Press; 1999.

McCallum, Andrew, Kamal Nigam, and Lyle H.
Ungar. 2000. Efficient clustering of high-
dimensional data sets with application to ref-
erence matching. In KDD ’00: Proceedings of
the sixth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining,
pages 169–178, New York, NY, USA. ACM
Press.

Osuna, Edgar, Robert Freund, and Federico
Girosi. 1997. Training support vector ma-
chines: an application to face detection. cvpr,
00:130.

Pasula, H., B. Marthi, B. Milch, S. Russell, and
I. Shpitser. 2002. Identity uncertainty and
citation matching.

Sarawagi, Sunita and Anuradha Bhamidipaty.
2002. Interactive deduplication using active
learning. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining,
pages 269–278, New York, NY, USA. ACM
Press.

Shen, W., X. Li, and A. Doan. 2005. Constraint-
based entity matching. In Proceedings of
AAAI.

Skalak, David B. 1994. Prototype and feature se-
lection by sampling and random mutation hill
climbing algorithms. In International Confer-
ence on Machine Learning, pages 293–301.

Tejada, Sheila, Craig A. Knoblock, and Steven
Minton. 2002. Learning domain-independent
string transformation weights for high accu-
racy object identification. In KDD ’02: Pro-
ceedings of the eighth ACM SIGKDD interna-
tional conference on Knowledge discovery and
data mining, pages 350–359, New York, NY,
USA. ACM Press.

Winkler, W. 1999. The state of record linkage
and current research problems.

Emili Sapena, Lluis Padró y Jordi Turmo

112

