Segmentación de palabras en español mediante modelos del lenguaje basados en redes neuronales

Yerai Doval, Carlos Gómez-Rodríguez, Jesús Vilares

Resumen


En las plataformas de microblogging abundan ciertos tokens especiales como los hashtags o las menciones en los que un grupo de palabras se escriben juntas sin espaciado entre ellas; p.ej.: #añobisiesto o @ryanreynoldsnet. Debido a la forma en que se escriben este tipo de textos, este fenómeno de ensamblado de palabras puede aparecer junto a su opuesto, la segmentación de palabras, afectando a cualquier elemento del texto y dificultando su análisis. En este trabajo se muestra un enfoque algorítmico que utiliza como base un modelo del lenguaje |en nuestro caso concreto uno basado en redes neuronales| para resolver el problema de la segmentaci ón y ensamblado de palabras, en el que se trata de recuperar el espaciado estándar de las palabras que han sufrido alguna de estas transformaciones añadiendo o quitando espacios donde corresponda. Los resultados obtenidos son prometedores e indican que tras un mayor refinamiento del modelo del lenguaje se podrá sobrepasar al estado del arte.

Texto completo:

PDF